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A model of twisted bilayer graphene has been offered on the base of developed quasi-

relativistic approach with high energy k · p-Hamiltonian. Monolayer-graphene twist is
accounted as a perturbation of monolayer-graphene Hamiltonian in such a way that at

a given point of the Brillouin zone there exists an external non-Abelian gauge field of

another monolayer. Majorana-like resonances have been revealed in the band structure
of model at a magic rotation angle θM = 1.05◦. The simulations have also shown that

a superlattice energy gap existing at a rotation angle 1.08◦ vanishes at a rotation angle

1.0◦.
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1. Introduction

Experimentally it has been shown an appearance of unconventional superconduc-

tivity at a magic rotation angle θM = 1.05◦.1 A feature of the unconventional

superconductivity is accompanying insulator states such as flat bands. There is a

“superlattice gap” at a rotation angle θG = 1.1◦.2 A tuneable band gap of the
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superlattice makes it possible to design graphene electronics elements. The inter-

ference Moire pattern of electron density appears at magic rotation angles due to

coherence of the phase states of commensurately placed monolayers rotated rela-

tive to each other.Commensurate arrangement of monolayers relative to each other

provides a support of exceptional flatness which has been demonstrated to reduce

strain fluctuations, the main source of scattering and also the culprit for density

inhomogeneities. At small angles θ (θ < 2.0◦) of rotation of one monolayer relative

to another one, interaction of Dirac cones from different monolayers is strongly

decreased due to only tunnel interlayer coupling.3 In this case of electron-hole sym-

metry, the nontrivial topology of the practically undistorted monolayer structure

experimentally manifests itself as van Hove singularities of DOS. Hybridization of

electronic states from different monolayers is experimentally observed at energies

above the theoretically predicted energies of the van Hove singularities.3 Theoreti-

cally, these features are described by accounting of a third-nearest-neighbor coupling

t′′ in a single monolayer graphene and are produced by a trigonal warping of the

equi-energy model lines for small t′′ or hexagonal miniband for large t′′ (extra six

Dirac points) around the Dirac point K(K ′).4,5 But, due to the fact that the hexag-

onal miniband is near Γ-point, flattening of the band occurs without reduced to zero

Fermi velocity in the vicinity of the K-point that is in contradiction with experi-

ments. Theoretically, the reduced Fermi velocity can be obtained in the presence

of a Moire pattern provided interlayer interaction in a model of two monolayers

graphene is “switched on.” Such a model of bilayer graphene is a massive chiral

model with touching bands. Electron density moire pattern for mutually deformed

relaxed monolayers at small θ ≈ 1◦ and less has very small reduced AA stacking

region due to an energy “superlattice gap” closing at small θ ≈ 1◦.6 However, the

Fermi velocity in mutually deformed relaxed monolayers does not trends to zero,

also at value θM , although nonrelaxed deformed monolayers have a flat band at

θ → 0◦. The drawback of the model of nonrelaxed deformed twisted monolayers is

the high value of the first magic angle (θM = 1.25◦) for zero value of the Fermi

velocity. The phenomenological tight-binding model of the graphene superlattice

without strain, but with interlayer interaction of the graphite type in twisted layers

predicts flat bands due to zero Fermi velocity at θM = 1.05◦.7 The DFT-consistent

construction of an ab initio tight-binding graphene-superlattice model with uni-

versal form of interlayer couplings gives an agreement with the phenomenological

tight-binding model through the inclusion of maximally localized Wannier orbitals,

taking into account weak dipole interactions.8 However, the predicted value of θM
(1.08◦) in this construction is quite different from the experimental one. Besides,

the results of the ab initio tight-binding diverge strongly in respect to folding ap-

proximation. Thus, modern theoretical representations on twisted bilayer graphene

do allow to explain neither the appearance of flat zones at experimentally observed

rotation angles θ, nor experimentally observed van Hove singularities of DOS at

small θ.
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In papers9–16 it has been proposed a superlattice model of graphene on a sup-

port, for example, on hexagonal boron nitride. It has been shown that a Hamiltonian

of the superlattice represents itself a Hamiltonian of monolayer graphene with cor-

rections to pseudo-electric and pseudo-magnetic fields which strain the graphene

monolayer. It can be naturally assumed that for the bilayer twisted graphene the

similar approach could be of interest.

We propose to use a high-energy k · p quasi-relativistic monolayer graphene

model to describe graphene superlattices. Its advantages are the proven existence

of quasiparticle massless Majorana-like excitations, the presence of a dynamic mass

leading to reducing of the Fermi velocity with simultaneous flattening of bands,

the possibility of the existence of a hexagonal miniband in the vicinity of the Dirac

point as well as the presence of a nontrivial non-Abelian Zak phase.

2. Theoretical Background

Graphene is a 2D semimetal hexagonal monolayer, which is comprised of two trig-

onal sublattices A, B. Semi-metallicity of graphene is provided by delocalization of

π(pz)-electron orbitals on a hexagonal crystal cell. Since the energies of relativistic

terms π∗(D3/2) and π(P3/2) of a hydrogen-like atom are equal each other17 there

is an indirect exchange through d-electron states to break a dimer. Therefore, a

quasirelativistic model monolayer graphene, besides the configuration with three

dimers per the cell, also has a configuration with two dimers and one broken conju-

gate double bond per the cell. The high-energy k ·p Hamiltonian of a quasiparticle

in the sublattice, for example, A reads

[σ · p + σ · ~ (KB −KA)] |ψ∗BA〉 −
i2

c
ΣABΣBAψ̂

†
−σA |0,−σ〉

= Equψ̂
†
−σA |0,−σ〉 , (1)

|ψ∗BA〉 = ΣBAψ̂
†
−σA |0,−σ〉 , (2)

where ψ̂†−σA |0,−σ〉 is a spinor wave function (vector in the Hilbert space), σ =

{σx, σy} is the 2D vector of the Pauli matrixes, p = {px, py} is the 2D momentum

operator, ΣAB , ΣBA are relativistic exchange operators for sublattices A,B respec-

tively; i2ΣABΣBA is an unconventional Majorana-like mass term for a quasiparticle

in the sublattice A, |ψ∗BA〉 is a spinor wave function of quasiparticle in the sublattice

B, KA(KB) denote the graphene Dirac point (valley) K(K′) in the Brillouin zone.

A small term ~σ · (KB −KA) ∼ h
a in eq. (1) is a spin–valley-current coupling. One

can see that the term with conventional mass in (1) is absent.

The exchange interaction term Σxrel is determined as18

Σxrel

(
χ̂†−σ

A
(r)

χ̂†σB (r)

)
|0,−σ〉 |0, σ〉 =

(
0 ΣAB

ΣBA 0

)(
χ̂†−σ

A
(r)

χ̂†σ
B

(r)

)
|0,−σ〉 |0, σ〉 , (3)
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ΣABχ̂
†
σ
B

(r) |0, σ〉 =

Nv N∑
i=1

∫
driχ̂

†
σiB

(r) |0, σ〉∆AB〈0,−σi|χ̂†−σAi (ri)

× V (ri − r)χ̂−σB (ri)|0,−σi′〉 , (4)

ΣBAχ̂
†
−σ

A
(r) |0,−σ〉 =

Nv N∑
i′=1

∫
dri′ χ̂

†
−σA

i′
(r) |0,−σ〉∆BA〈0, σi′ |χ̂†σB

i′
(ri′)

× V (ri′ − r)χ̂
σA

(ri′)|0, σi〉 . (5)

Here interaction (2×2)-matrices ∆AB and ∆BA are gauge fields (or components of

a gauge field). Vector-potentials for these gauge fields are determined by the phases

α0 and α±,k, k = 1, 2, 3 of π(pz)-electron wave functions ψpz (r) and ψpz,±δk(r),

k = 1, 2, 3 respectively that the exchange interaction Σxrel (3) in accounting of the

nearest lattice neighbors for a tight-binding approximation reads18–20

ΣAB =
1√

2(2π)3
e−ı(θkA−θKB )

3∑
i=1

exp{ı[Ki
A − qi] · δi}

∫
V (r)dr

×


√

2ψpz (r)ψ∗pz,−δi(r) ψpz (r)[ψ∗pz (r) + ψ∗pz,−δi(r)]

ψ∗pz,−δi(r)[ψpz,δi(r) + ψpz (r)]
[ψpz,δi(r) + ψpz (r)][ψ∗pz (r) + ψ∗pz,−δi(r)]

√
2

 ,

(6)

ΣBA =
1√

2(2π)3
e−ı(θKA−θKB )

3∑
i=1

exp{ı[Ki
A − qi] · δi}

∫
V (r)dr

×

 [ψpz,δi(r) + ψpz (r)][ψ∗pz (r) + ψ∗pz,−δi(r)]
√

2
−ψ∗pz,−δi(r)[ψpz,δi(r) + ψpz (r)]

−ψpz (r)[ψ∗pz (r) + ψ∗pz,−δi(r)]
√

2ψpz (r)ψ∗pz,−δi(r)

 ,

(7)

where the origin of the reference frame is located at a given site on the sublat-

tice A(B), V (r) is the three-dimensional (3D) Coulomb potential, designations

ψpz, ±δi(r), ψpz, ±δi(r2D) ≡ ψpz (r ± δi), i = 1, 2, 3 refer to atomic orbitals of

pz-electrons with 3D radius-vectors r ± δi in the neighbor lattice sites δi, nearest

to the reference site; r ± δi is the pz-electron 3D-radius-vector. Elements of the

matrices ΣAB and ΣBA include bilinear combinations of the wave functions so that

their phases α0 and α±,k, k = 1, 2, 3 enter into ∆AB and ∆BA from (4 and 5) in

the form

|ψpz | |ψpz, ±δk | exp {ı (α0 − α±,k)} ≡ |ψpz | |ψpz, ±δk |∆±,k . (8)

Therefore, an effective number N of flavors in our gauge field theory is equal to

3. Then owing to translational symmetry we determine the gauge fields ∆±,i in
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Eq. (8) in the following form:

∆±,i(q) = exp (±ıc±(q)(q · δi)) . (9)

Substituting the relative phases (9) of particles and holes into (6) one gets the

exchange interaction operator ΣAB

ΣAB =
1√

2(2π)3
e−ı(θkA−θKB )

(
Σ11 Σ12

Σ21 Σ22

)
(10)

with following matrix elements:

Σ11 =
√

2

∑
j

Ij11∆−,j(q) exp{ı[Kj
A − q] · δj}

 , (11)

Σ12 =

∑
j

(
Ij12 + Ij11∆−,j(q)

)
exp{ı[Kj

A − q] · δj}

 , (12)

Σ21 =

∑
j

(
Ij21∆+,j(q)∆−,j(q) + Ij11∆−,j(q)

)
exp{ı[Kj

A − q] · δj}

 , (13)

Σ22 =
1√
2

{∑
j

(
Ij22∆+,j(q) + Ij12 + Ij21∆+,j(q)∆−,j(q)

+Ij11∆−,j(q)
)

exp{ı[Kj
A − q] · δj}

}
(14)

where Ijnimk =
∫
V (r)ψpz+niδjψ

∗
pz−mkδj dr, i, k = 1, 2; (n1,m1) = (0, 1),

(n1,m2) = (0, 0), (n2,m1) = (n2,m2) = (1, 1). There are similar formulas for

ΣBA.

Equation (1) can be rewritten as[
σAB ·

(
pBA + ~(KBA

B −KBA
A )

)
− 1

c
MBA

]
ΣBAψ̂

†
−σA |0,−σ〉

= v̂−1F EquΣBAψ̂
†
−σA |0,−σ〉 , (15)

where MBA = i2αΣBAΣAB , MAB = i2αΣABΣBA, v̂F is the Fermi velocity op-

erator: v̂F = ΣBA, σAB = ΣBAσΣ−1BA, pBA = ΣBA pΣ−1BA, KBA
B − KBA

A =

ΣBA(KB − KA)Σ−1BA. The equation similar to (15), can be also written for the

sublattice B. As a result, one gets the equations of motion for a Majorana bispinor

(|ψAB〉 , |ψ∗BA〉)T :20,21[
σBA2D · pAB − c−1MAB

]
|ψAB〉 = i

∂

∂t
|ψ∗BA〉 , (16)

[
σAB2D · p ∗BA − c−1 (MBA)

∗] |ψBA〉 = −i ∂
∂t
|ψ∗AB〉 . (17)
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Accordingly to (9) eigenvalues E
(1)
i , i = 1, 2 of (15) and, accordingly, eigenval-

ues Ei, i = 1, . . . , 4 of the 4 × 4 Hamiltonian (16), (17) are functionals of c±. To

eliminate arbitrariness in the choice of phase factors c± one needs a gauge condition

for the gauge fields. The eigenvalues Ei, i = 1, . . . , 4 are real because the system

of equations (16), (17) is transformed to Klein–Gordon–Fock equation.21 Therefore

we impose the gauge condition as a requirement on the absence of imaginary parts

in the eigenvalues Ei, i = 1, . . . , 4 of the Hamiltonian (16) and (17):

=m(Ei) = 0, i = 1, . . . , 4 . (18)

To satisfy the condition (18) in the momentum space we minimize a function

f(c+, c−) =
∑4
i=1 |=m Ei| absolute minimum of which coincides with the so-

lution of the system (18). For the mass case band structures for the sublattice

Hamiltonians are the same. Therefore neglecting the mass term the cost function

f = 2
∑2
i=1 |=m Ei|. For the non-zero mass case, we assume the same form of the

function f due to smallness of the mass correction.

Topological defect pushes out a charge carrier from its location. The operator

of this non-zero displacement presents a projected position operator PrP with the

projection operator P =
∑N
n=1 |ψn,k〉 〈ψn,k| for the occupied subspace of states

ψn,k(r). Here N is a number of occupied bands, k is a momentum. Eigenvalues of

PrP are called Zak phase.22 The Zak phase coincides with a phase

γmn = i

∫
C(k)

〈ψm,k |∇k|ψn,k〉 · dk, n,m = 1, . . . , N (19)

of a Wilson loop Wmn = T exp(iγmn) being a path-ordered (T) exponential with

the integral over a closed contour C(k).23

3. High-Energy k · p-Hamiltonian for Twisted Bilayer Graphene

Let us write down a non-Abelian connection A which determines the topologically

non-trivial non-Abelian Zak phase (19). Matrix elements Amn of A in a momentum

space are given by the the integrand of the entering (19):

Amn(k) = 〈um(k)|∇k|um(k)〉 (20)

where um(k) are eigenfunctions of charge carriers in m-th hole or electron band,

n,m = 1, 2. A hopping at non-zero non-Abelian gauge fields has been considered

at neglecting of the Majorana-like mass term MAB(MBA). The eigen problem has

been solved for the following Hamiltonian in momentum representation:

ΣBA(q)(σ · q)Σ−1BA(−q) , (21)

where origin for the wavevectors q is the Dirac point K(K ′), the operators of

relativistic exchange ΣBA depend explicitly on q and upon the introduced gauge

fields α± providing the realness of eigenvectors of the Hamiltonian.
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Since the van-der-Waals interaction between the monolayers is small in compar-

ison with an impact of topological charge density defects of the charge carriers, it

has been assumed that a bilayer-graphene Hamiltonian can be represented as an

unperturbed Hamiltonian of two graphene sheets with an addition term Vt. The

last is an operator of potential energy of charge carriers of one monolayer in an

external field of topological defects of another monolayer.

A change of the flux at parallel transport of a graphene charge carrier gives

a topological phase of a wave function for the carrier. For small angles of twist a

Hamiltonian of bilayer graphene is the unperturbed Hamiltonian of two monolayers

with correction on a perturbation of charge carrier density of one monolayer in an

external non-Abelian gauge field acting from the another monolayer.

Let us choose a center of cell of hexagon in the graphene hexagonal lattice as

a center of rotation. At rotation on an angle θ points in the Brillouin zone are

rotated by the same angle relative to the Γ point. Therefore, the transformation

of an arbitrary wave vector q has the following form: q′ = M(θ)(q + KA) −KA,

where M is an orthogonal matrix of two-dimensional rotation on angle θ, KA is the

wavevector of the Dirac point. Then, the hopping Vt of second-monolayer charge

carriers in the non-Abelian field of first monolayer is presented though minimal

coupling of gauge fields as

Vt = −κΣBA(q) (σ ·A(q′)) Σ−1BA(−q) , (22)

where κ is a coupling constant for the non-Abelian gauge field. The perturbed

Hamiltonian Hb of our bilayer graphene model:

Hb = ΣBA(q) [σ · q− κσ ·A(q′)] Σ−1BA(−q) (23)

is similar to a Hamiltonian describing a production of electron-holes pairs in a

rotating electrical field. We solve the eigen problem for the Hamiltonian Hb of

the monolayer graphene in external field for the values of wave numbers near of the

Dirac touching. Since q → 0, matrix elements of (22), constructed on eigenfunctions

of the unperturbed graphene Hamiltonian are matrix elements of the first-order

perturbation-theory corrections to non-perturbed energy bands of bilayer graphene.

4. Numerical Results and Comparison with Experiment for

Majorana Quasi-Particle Excitations in Bilayer Graphene

The energy-band contribution of the changes in the external gauge-field flux has

been simulated numerically for three values of the angles θ = 1.0◦, 1.05◦, 1.08◦. The

corrections (22) calculated and presented in Fig. 1 are added to positive eigenvalues

of the non-perturbed Hamiltonian.

The rotation of the gauge field produces three Majorana resonances as

Figs. 1(a, c, e) demonstrates. Three wide Majorana resonances under the field ac-

tion at the twist angle θ = 1.05◦ are observed near the Dirac point of graphene
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Corrections to energy band owing to acting Zak connection as a vector-potential for
different rotation angles θ between monolayers of bilayer graphene: θ = 1.0◦ (a, b), 1.05◦ (c, d),

1.08◦ (e, f). Figures (b, d, f) show the corrections near Dirac point. Arrows indicate Majorana

resonances.
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Brillouin zone as Figs. 1(c, d) demonstrate. These Majorana resonances are sharply

narrowed and move far away of the Dirac point for θ = 1.0, 1.08◦ (Figs. 1(a, b, e, f)).

The degree of narrowing for the Majorana peaks is larger at 1.0◦ than at 1.08◦.

Besides, the height of the peaks decreases sharply at 1.0◦.

The Dirac touching and the Dirac band at small q remain that they are nested

as subgap states in the perturbed bilayer-graphene bands (Figs. 1(b, d, f)). This gap

is negligibly small for θ = 1.0, 1.08◦ because the resonances in the vicinity of Dirac

point are absent (Figs. 1(b, f)).

Wide Majorana resonances hold in the neighborhood of Dirac point at θ = 1.05◦

(Fig. 1(c, d)). The presence of these wide Majorana resonances leads to very large

energy band gap signifying that there are Cooper pairs and accordingly the bilayer

is in a superconducting state. Since a statistics of the charge carriers is non-Abelian

this superconductivity phenomenon is a unconventional superconductivity one at

θ = 1.05◦.

The physical meaning of the resonances found is a creation of additional dipole

moment in such a way that the resulting dipole moment of the second monolayer is

aligned along the dipole moment of the first monolayer. Majorana resonances remain

sufficiently intensive ones at high θ (∼ 1.08◦) and form an energy “superlattice

gap”. Closing superlattice gap stems from vanishingly small Majorana peaks at θ

(∼ 1.0◦).

5. Conclusion

To summarize our findings. An approach based on high-energy k · p Hamiltonian

for a quasi-relativistic graphene model has been extended for the bilayer graphene

description. To account of a monolayer-graphene twist, an unperturbed Hamil-

tonian of every monolayer gains a perturbation in such a way that at a given

point of the Brillouin zone there exists an external non-Abelian gauge field of an-

other monolayer. Corrections to the energy bands stipulated by the interactions

with non-abelian gauge fields have been simulated numerically for several twist an-

gles. Majorana-like resonances in energy bands corrections have been revealed and

their appearance is discussed in the context of unconventional superconductivity in

magic-angle graphene superlattices.
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