—— — ЛИТОГРАФИЯ ——

УЛК 621.315

ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ В ИМПЛАНТИРОВАННОМ ИОНАМИ Р⁺ ПОЗИТИВНОМ ФОТОРЕЗИСТЕ

© 2020 г. А. Н. Олешкевич^{а, *}, Н. М. Лапчук^а, В. Б. Оджаев^{а, **}, И. А. Карпович^а, В. С. Просолович^а, Д. И. Бринкевич^а, С. Д. Бринкевич^а

^aБелорусский государственный университет, пр. Независимости, 4, Минск, 220030 Беларусь
*e-mail: Oleshkevich@bsu.by

**e-mail: Odzaev@bsu.by
Поступила в редакцию 17.05.2019 г.

После доработки 22.05.2019 г. Принята к публикации 04.06.2019 г.

Методами измерения удельной электропроводности и электронного парамагнитного резонанса (ЭПР) исследованы имплантированные ионами бора и фосфора пленки позитивного фоторезиста ФП-9120 толщиной 1.8 мкм, нанесенные на поверхность пластин монокристаллического кремния марки КДБ-10 с ориентацией (111) методом центрифугирования. Показано, что в результате имплантации ионов P^+ формируется слой с электронной проводимостью порядка 10^{-9} Ом $^{-1}$ · см $^{-1}$. При дозе имплантации фосфора 6×10^{15} см $^{-2}$ в спектре ЭПР наблюдается узкая, изотропная линия с g-фактором 2.00654 и шириной 3.83 Гс, связанная, вероятнее всего, с образованием феноксильных радикалов. При увеличении дозы имплантации до 1.2×10^{16} см $^{-2}$ в спектре ЭПР регистрируется линия с g-фактором равным 2.00264 и шириной 3.96 Гс, обусловленная неспаренными электронами, делокализованными по π -полисопряженной системе.

Ключевые слова: фоторезист, имплантация, электронная проводимость, ЭПР, феноксильные радикалы **DOI:** 10.31857/S0544126919060073

ВВЕДЕНИЕ

Для защиты от внешних воздействий изделий электронной техники, как в дискретном, так и интегральном исполнении широко применяются полимеры. Они, как правило, обладают хорошими изоляционными свойствами, в результате чего при воздействии электромагнитного излучения и проникающей радиации в полимере происходит накопление электрического заряда. При достижении его критической величины возможен электрический пробой, который может приводить к сбою в работе, как отдельных узлов электронных схем, так и изделия в целом [1, 2]. При выборе материалов для компенсации наведенных зарядов нужно учесть, что большинство полимерных материалов (полиимид, политетрафторэтилен, полистирол и т.д.) являются дырочными диэлектриками, а для стока зарядов предпочтительны материалы с электронной проводимостью. В таких материалах существует возможность возникновения инжекционных токов [3], которые позволяют эффективно стекать зарядам из диэлектрика на металлические элементы (выходы).

Сокращения: электронный парамагнитный резонанс — ЭПР; электропроводящая серебряная паста — ЭСП.

Ионная имплантация является одним из основных методов формирования приборных структур. Она позволяет создавать как приповерхностные, так и заглубленные слои с различной величиной удельной проводимости [4, 5]. Исходя из того, что в процессе создания изделий электронной техники широко используются полимерные фоторезисты и основным материалом для изготовления полупроводниковых приборов является кремний, то для установления возможности использования метода ионной имплантации для создания слоев с электронной проводимостью были выбраны пленки промышленного фоторезиста ФП-9120, нанесенные методом центрифугирования на пластины кремния. Важно отметить, что данный фоторезист изготавливается на основе фенолформальдегидных смол, обладающих высокой радиационной стойкостью [6].

Целью работы являлось исследование возможности создания ионной имплантацией в диазохинонноволачном фоторезисте ФП-9120 слоя с управляемой величиной электронной проводимости.