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During the last decades the whispering gallery mode based sensors have become a prominent solution for label-free 
sensing of various physical and chemical parameters. At the same time, the widespread utilization of the approach is
hindered by the restricted applicability of the known configurations for ambient variations quantification outside the
laboratory conditions and their low affordability, where necessity on the spectrally-resolved data collection is among the 
main limiting factors. In this paper we demonstrate the first realization of an affordable whispering gallery mode sensor
powered by deep learning and multi-resonator imaging at a fixed frequency. It has been shown that the approach
enables refractive index unit (RIU) prediction with an absolute error at 3×10-6 level for dynamic range of the RIU 
variations from 0 to 2×10-3 with temporal resolution of several milliseconds and instrument-driven detection limit of 
3×10−5. High sensing accuracy together with instrumental affordability and production simplicity places the reported 
detector among the most cost-effective realizations of the whispering gallery mode approach. The proposed solution is
expected to have a great impact on the shift of the whole sensing paradigm away from the model-based and to the 
flexible self-learning solutions. 
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Introduction 

Optical resonance in the dielectric circular microcavities 
referred to as the effect of whispering gallery modes 
(WGM) has drawn a great attention as a highly sensitive 
and label-free instrument for biochemical components 
detection1–4. Confinement and guiding of the optical ray 
along the microcavity’s periphery, which meets the reso-
nance conditions when the returning light wave starts to 
interfere with itself, form a WGM that is characterized by 
high quality (Q)-factors5,6. Various microcavity geome-
tries that may support WMGs have been reported so far 

(e.g., spheres, disks, toroids, capillaries, etc.) together with 
different methods for their fabrication where the lithog-
raphy technique prevails7–10. The efficient light coupling 
into the cavity is realized via the evanescent field, where 
among others the prism-based method yields to the ta-
pered fiber one (most widely employed) in efficiency, but 
excels in robustness and affordability11. The sensing 
mechanism of a WGM instrument is based on the re-
sponse of the mode field to the variations in the ambient 
environment via the evanescent wave. Based on the na-
ture of the external stimuli, one can distinguish between 
the monitoring of the resonance frequency shift (used for 
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detection of the refractive index variations and analytes 
adsorption), and of the linewidth broadening as well as 
mode splitting (for single nanoparticle or biomolecule 
detection)12. Among the frequent methods for detection 
limit (LOD) enhancement are the local field amplification 
initiated by single metallic nanoparticles13,14, and doping 
of the microresonator material with gain material to ena-
ble lasing15,16. Recently the mode-splitting enhancement 
in the lasing resonators at so-called exceptional points has 
been demonstrated17. 

In order to measure a WGM signal, a narrow linewidth 
frequency sweeping source or high resolution spectro-
scopic units together with spectral data processing 
methods are commonly utilized. In addition, the com-
mon instrument configuration is restricted to the single 
microresonator interrogation and is based on transmitted 
(unmodified) or scattered (doped with fluorescence label) 
intensity collection with a photodiode to trace the reso-
nance position in the acquired spectrum. This limits the 
sensor performance in terms of temporal and/or spectral 
resolution and restricts the utilization of the WGM in-
strument outside the laboratory. In contrast, an intensi-
ty-based signal detection captured at a fixed laser fre-
quency greatly simplifies the detector and increases its 
integrability and portability18. For active (doped with flu-
orescent label) microcavities, a fixed wavelength pulsed 
laser source together with spectrally-resolving instru-
ments are commonly used to observe WGM variations. 
At the same time, the necessity of microcavity doping 
limits the range of the host materials and complicates the 
fabrication process19. The use of the alternative WGM 
coupling/detection schemes such as self-heterodyned 
microlasing15, mode locking20, or ring-up spectroscopy21 
implies complication of the interrogation and signal pro-
cessing procedures. 

The demand on microcavity-based sensing solutions 
applicable for real-live tasks outside the laboratory is con-
tinuously increasing22–24. An option for practical applica-
tions might be the instrument configuration that is based 
on imaging of the WGM signal enabled with a CCD 
camera in the optical prism or parallel plate-based excita-
tion scheme that inherently supports the scalability 
without changes in the instrument arrangement25–30. The 
signal collection for this configuration has been originally 
based on detection of the variations of the radiated WGM 
energy while sweeping the wavelength of the laser 
source26. Later on, the signal collection in the form of the 
excited fluorescence of the dyes attached to the micro-

spheres surface during laser wavelength sweeping has 
been reported27. Recently, the reusable biochemical sen-
sor in the form of an array of randomly allocated unmod-
ified glass microspheres with radiated WGM signal im-
aging in prism excitation scheme has been demonstrat-
ed29,30. Relatively simple sensor fabrication, reusability, 
and possibility for multicavity signal collection makes this 
platform especially attractive. The multidimensional na-
ture of the captured signal in this case complicates the 
interpretation of the external variations utilizing the ana-
lytical descriptions and can be addressed by self-learning 
algorithms. Only a few examples of application of the 
machine learning approaches together with the optical 
microresonators have been shown so far. Among them are 
the demonstration of the classification of different bio-
chemical solutions based on WGM spectral changes31 and 
a recent application of the multiple resonant modes of a 
single microresonator for two-parameter estimations32. 
Both solutions imply the preliminary WGM spectrum 
collection followed by the spectral features extraction that 
acts as the input variables for machine learning algo-
rithms. Other recent examples report on the application 
of the machine learning methods to the optical sensing 
for the attenuated total reflectance technique used for 
humidity detection33 and for the localized surface plas-
mon resonance used for refractive index prediction34. 

In this paper, we report the novel self-learning whis-
pering gallery mode sensor that utilizes mul-
ti-microcavity imaging scheme guaranteed by a 
cost-effective laser operating at a fixed frequency. The 
prospects of the deep-learning based quantification of the 
external variations have been demonstrated on example 
of the refractive index detection. 

Materials and methods 

Samples 

A microresonator-based sensor has been fabricated in a 
form of numerous glass microspheres (Cospheric LLC) 
with the mean diameter of 100 μm. The microcavities 
have been first ultrasonically cleaned to remove possible 
surface contaminations and then randomly allocated on 
the glass cover slip by free fall. Immobilization of the mi-
crospheres is achieved with a thin adhesive layer of the 
water-matched refractive index (MyPolymer MY-133MC)  
deposited in advance onto the cover slip surface29. The 
individual microresonators are distant from others in 
average on 1.06 mm with the minimal distance to the 
nearest neighbor of 156 μm. The homogeneity of the 
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adhesive layer has been ensured by the spin coating 
procedure (SPS-Europe Spin 150) of the 10 μl drop whose 
parameters (rotation at 6000 min−1 for 60 s) have been 
experimentally optimized to meet a trade-off between the 
microresonators loaded quality factors, their sensitivity 
and layer durability. The average fixation layer thickness 
is measured on the level of 540 nm. Finally, the coverslip 
with microcavities is integrated into the fluidic cell with 
measurement chamber for analyte.  

Instrument 

The WGM excitation is performed via optical prism and 
the scattered light is collected in the WGM imaging 
scheme by a conventional monochrome CCD camera that 
allows signal acquisition from several hundreds of reso-
nators simultaneously (Fig. 1). The optical prism with 
antireflection coatings on the side facets has been selected 
to reduce parasitic background signal caused by the 
back-reflections inside the prism. 

A vertical-cavity surface-emitting laser (VCSEL) oper-
ating at 850 nm (Thorlabs L850VG1) and collimated with 
an aspheric lens has been selected for WGM signal ob-
servation at a fixed wavelength. A VCSEL benefits for 
WGM application with both spatial and spectral single 
mode lasing, Gaussian-like profile, high energy efficiency 
with a threshold current at several mA, and affordability. 
The laser diode is stabilized by current (Thorlabs 
LDC200CV) and temperature (Thorlabs TED200C) con-
trollers. The parameters of the laser diode controllers 
have been set to 3.9 mA and 24°C for all experiments 
discussed in this paper. The long-term stability of the 
lasing properties over more than three hours is charac-
terized by relative power variability below 10−4 and the 
wavelength shift measured with a wavemeter (EXFO 
WA-1500) is below 0.4 pm with no hops observed. A 
tunable diode laser (New Focus, 680 nm) has been uti-

lized for WGM spectra collection via frequency sweeping 
with a speed of 0.1 nm/s for comparison reasons. 

Signal features 
The temporal consistency of the WGM spectra in the 
constant ambient conditions and the loaded Q-factors of 
microspheres of 103–105 29 together with laser illumina-
tion stability enable intensity-based detection. The cap-
tured signal represents a set of intensities that are modu-
lated by the spectral properties of each microcavity with 
respect to the spectral position and the width of the laser 
line (Fig. 2(a)). The signal for a single microsphere is de-
fined as a sum of intensities for cavity-related camera 
pixels that are determined according to the previously 
established localization procedure35. The WGM spectra of 
the microcavities have a unique form caused by the shape, 
surface quality, and coupling efficiency variations (Fig. 
2(b)). Different allocation with respect to the illumination 
profile and possibility of multimode excitation enable the 
captured signal to possess numerous degrees of freedom. 
This allows multi-parameter analysis of small ambient 
disturbances. 

Results and discussion 
Several experiments have been performed in order to 
analyze the performance of the fixed frequency 
interrogation imaging scheme for sensing with passive 
microcavity-based sensors. The first study was intended 
to compare this approach with conventional resonance 
frequency tracking method. The second study is focused 
on processing the signals measured under constant 
frequency illumination with deep-learning methods for 

Fig. 1 | Overview of the instrument configuration: 1 - laser diode;

2 - collimation lens; 3 - camera; 4 - beam dump; 5 - right angle optical

prism; 6 - adhesive thin layer; 7 - microresonator. 
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Fig. 2 | Overview of the WGM signal. (a) Radiated intensities for a 

set of four spherical microcavities (red circles show the cavity-related 

pixels). (b) Definition of the captured signal in terms of the WGM 

spectrum (black dash line marks the illumination wavelength). 
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quantification of the ambient variations. 
 
Comparison study 
A set of spectral shift variations represented in Fig. 3(a) 
shows the sensor response measured in the frequency 
sweeping scheme on the external refractive index change 
on 2.3×10−3. The step-like change is observed where the 
difference in the absolute values is regulated by the indi-
vidual microresonator sensing properties. The same ex-
ternal impact measured at the fixed frequency is demon-
strated in Fig. 3(b). For a represented set of more than 
140 microcavities, a step-like change of the radiated in-
tensities similar to the spectral shift variations is observed 
for majority of the resonators. In contrast to the frequen-
cy sweeping scheme where spectral shift is observed for 
each microresonator, the data collected in the constant 
frequency illumination scheme represents a complex 
non-linear modulation of the external perturbations with 
unique spectral features of each microresonator. Conse-
quently, the resonators with resonance frequency close to 
the one chosen for interrogation and more prominent 
resonance peaks show major variations whereas the oth-
ers show minor contrast or almost no changes. 

Intensity sets for different wavelengths with a step of 1 
pm over the whole sweeping range (1.5 nm) have been 
extracted from the tunable laser data and compared with 
the generalized spectral shift to study the impact of the 
chosen illumination wavelength and the resonators 

number on accordance of the measured variations for 
both sensing schemes. The generalized dynamics for a 
sensor as a whole for sweeping and constant frequency 
have been calculated via principle component analysis 
where time points act as the objects. Statistics on correla-
tion of the temporal variations of the scaled values of the 
first principle component for different illumination 
wavelengths as a function of the number of the 
microcavities is represented in Fig. 3(c). The accordance 
between the datasets improves as the number of resona-
tors increases where starting from 100 resonators in the 
scope the correlation value exceeds 0.98 being only 
slightly affected by the wavelength selection. 

The temporal variations of the scaled values of the 
main principle component for sweeping (Fig. 3(a), dots) 
and constant (Fig. 3(b), solid line) frequency results are 
represented in Fig. 3(d). The accordance of the extracted 
dynamics is characterized by the mean square error (MSE) 
value below 2×10−3 where the constant frequency illumi-
nation scheme allows to improve the temporal resolution 
by several orders of magnitude being only limited by the 
camera framerate (several tens of ms). This enables the 
analysis of the intermediate sensing states during the 
changes in the ambient medium. 

Thus, the fixed frequency interrogation approach is a 
promising affordable alternative to frequency sweeping 
technique offering the enhanced temporal resolution and 
being unaffected by the choice of the laser frequency 

Fig. 3 | Comparison of the experimental data collected in the laser frequency sweeping and the fixed frequency schemes for the same

sensor sample under changing ambient refractive index. (a) Dynamics of the spectral shift in the frequency sweeping scheme. (b) Overview

of the radiated intensities collected in the fixed frequency regime. (c) Statistics on the correlation values between the dynamics measured in both

configurations (frequency sweeping and fixed frequency) with respect to the number of the microcavities in the scope. (d) Correlation between

the scaled variations calculated in both configurations with respect to the number of the microcavities in the scope (solid line - fixed frequency,

dots - sweeping frequency). 
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when more than a hundred of microresonators are con-
sidered simultaneously. Principle component analysis for 
data processing has demonstrated excellent correlation of 
the scaled temporal features, however, the description of 
the measured response in terms of the external impact 
still requires the knowledge on the spectral features of 
particular microcavities. The complex response of the set 
of microresonators cannot be generalized for the sensor 
as a whole using the analytical approaches. Thus, the re-
gression problem for estimation of the ambient parame-
ters can be addressed with the self-learning solutions. 
 
Deep-learning analysis 

A set of sensor responses representing different external 
refractive indexes under illumination with a constant 
frequency has been captured for the multiresonator im-
aging signal interpretation. The ambient variations are 
provided by different ethanol concentrations dissolved in 
the deionized water (from 0% to 4.2%) that correspond to 
the refractive index changes with maximum value of 
2.3×10−3 and minimum change of 3×10−4. The analysis of 
the sensor performance on water/ethanol mixtures is a 
common technique where the RIU variations can be 
found in the literature. The collected signal for the sample 
with 112 microresonators which consists of 3888 intensity 
values grouped into 9 data sets representing different re-
fractive index states is shown in Fig. 4. These results ex-
hibit the step-like variations of the radiated intensities by 
the individual microcavities when the change of the en-
vironmental conditions occurs. The data also clearly 
shows the non-linear character of captured intensities 
variations where some resonators show continuous en-
hancement or descent of the radiated intensity, the others 

show non-permanent dynamics, and the rest remains 
“silent” to the external variations. 

Despite the overall non-linear character of the captured 
intensity variations, the difference between the two 
slightly different RIU states may be described with the 
linear function for each particular resonator inde-
pendently. Taking into account the complex multidimen-
sional nature of the collected signal the LOD of the 
multicavity sensor will be described by the best LOD val-
ue derived for a single element. In order to estimate the 
LOD, we have extracted the first ambient state (water 
solution) as a blank sample whose measurement has been 
repeated 360 times and the second state (0.5% ethanol) 
repeated 311 times (Fig. 4). Primarily the sensitivity on 
radiated intensity vs. RIU change (ri) and the standard 
deviation of the radiated intensities for the 0.5% of etha-
nol (si) has been calculated for each resonator (i = 1:112) 
in the scope. Then a set of LODs has been calculated as 
LODi = tsi/ri, where t is the 95th percentile of the Student’s 
t-distribution with 310 degrees of freedom36,37. Hereby the 
LOD of the multiresonator sensor interrogated at the 
fixed frequency has been determined on the level of 
4×10−5 that is comparable for the previously reported 
results for interrogation with a sweeping source29. 

We have tested several methods and algorithms to 
solve the regression problem for the measured data: deep 
neural network (dNN), linear regression (LR), random 
forest (RF), general regression neural network (GRNN), 
gradient boosting (GB) and support vector regression 
(SVR). The algorithms have been realized with Python 
using tensorflow, keras, and sklearn libraries. Tensorflow 
and keras libraries have been used for dNN processing 
whereas sklearn library was employed for other methods. 

Fig. 4 | Sensor response on the refractive index changes. Following ambient states are represented: water (1), ethanol solution in water of

0.5% (2), 1.1% (3), 1.64% (4), 2.17% (5), 2.7% (6), 3.2% (7), 3.7% (8), 4.3% (9). 
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The values have been preliminary processed so that the 
resonators that show absence of the resonance behaviour 
(constant zero value over time) have been excluded from 
the analysis and the temporal variations for other resona-
tors have been scaled to the [0:1] range. The structure of 
the dNN is specified by 32 neurons in the input layer, 3 
hidden layers with 64 neurons, tanh activation function, 
and Adam optimization. The detailed study on the impact 
of the dNN parameters is given onwards. The coefficients 
for linear regression are solved via non-parametric in-
verse matrix notation. The RF method is based on 100 
decision trees with a random state parameter of 42 for 
providing randomness of the bootstrapping of the sam-
ples. The number of the decision trees has been opti-
mized in the range [50:150] with the step of 25 to achieve 
the maximum accuracy on testing phase without 
overfitting. In order to determine the depth of the tree, 
the nodes were expanded until all leaves contained less 
than two samples (minimum number of samples required 
to split an internal node). The standard deviation param-
eter for GRNN method has been set to 0.1. This value has 
been set as nominal and has not been optimized since this 
selection commonly ensures the best algorithm efficiency 
for the scaled data in the [0:1] range. Since the GB algo-
rithm is in general robust to overfitting, the optimal 
number of the boosting stages has been determined by 
increasing them from 100 (default) with a step of 50 until 
the testing accuracy evaluated with MSE metrics (Fried-
man MSE) started to decrease. Optimization of other 
parameters of the GB algorithm has been determined to 
have minor impact on the training process and testing 
results, so they have been selected as following: 4 maxi-
mum depth nodes in the tree, 5 samples to split an inter-
nal node, learning rate of 0.01, 2 minimum samples split, 
3 maximum depth of the individual regression estimators. 
SVR method is based on the radial basis functions kernel 
with the 0.001 tolerance (used as a stopping criterion). 

The results for the absolute error between the meas-
ured and the predicted data for different processing 
methods are represented in Fig. 5(a). GRNN, RF, and 
dNN enable better than other methods sensing data pre-
dictions where the mean error value does not exceed 
5×10−7 RIU. In contrast to the dNN algorithm that gener-
ates more minor spread of the error values than other 
methods, GRNN and RF methods show extremely low 
error values. At the same time, these methods may gener-
ate outliers with the values comparable to the measure-
ment points in the experimental dataset (∼ 10−4) whereas 

for the dNN it does not exceed (7×10−6). Moreover, the 
GRNN method that produces the best mean error value is 
well suitable to generalize the experimental features to the 
outputs whereas its performance substantially drops 
when it is used for the non-pre-trained features. Finally, 
the dNN method is characterized by a wide range of pa-
rameters that can be optimized to the best fit of the ex-
perimental data and, thus, it has been selected for further 
study. 

We performed three different tests on Nvidia Tesla K80 
GPU in order to analyze the performance of the dNN for 
prediction of the RIU values from the known 
microcavities intensities measured at a fixed laser fre-
quency. The training process implies maximum 1500 
epochs and terminates when the relative change of the 
mean squared error averaged over the last 30 epochs for 
both training and validation datasets holds below 5×10−4 
during the last 10 training iterations. 

In the first test the impact of the optimization method 
(Adam, RMSprop, Nadam, Adagrad, and Adadelta) and 
activation function (tanh, sigmoid, relu, selu, linear, and 
softplus) has been studied. In contrast to the standard 
gradient descent methods used in the back-propagation 
algorithm, the tested optimization methods are supple-
mented by the momentum and adaptive learning rates 
that commonly provide faster training speed and higher 
accuracy, especially for a deep neural network. The wide 
range of the tested activation functions is dictated by the 
unique nature of the collected data. The dNN architecture 
is kept same as discussed previously (Fig. 5(a)): input 
layer with 32 neurons and 3 hidden layers with 64 neu-
rons. Figure 5(b) represents the results for all combina-
tions of the activation functions and optimization meth-
ods where five training repetitions have been performed 
for each combination. For each of the training repetitions, 
the experimental dataset has been split into training 
(70%), validation (15%), and test (15%) parts where the 
values have been randomly selected and the ratio between 
the parts was kept constant for all output values. The re-
sults show that the linear activation function which is 
independent on the optimization method delivers the 
largest error value. The following combinations of the 
activation functions with optimization methods as tanh + 
Adam, relu + Adam, and sigmoid + Nadam show the me-
dian error value below 3×10−7 RIU for predicted data. 
Among them, only the tanh + Adam combination enables 
both the lowest median error value and the minimum 
amount of the outliers whose value does not exceed 
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3×10−6 RIU. 
The second test is intended to study the influence of 

the dNN architecture on the predicted data error where 
the number of neurons in the input layer (n = 16, 32, 48, 
56, 64, 80, 96, 112, 128, 256, 512, 1024) and the number of 
the hidden layers (3, 4, 5, 6) with 2n neurons have been 
varied. The results of this study where hyperparameters 
tuning for each particular dNN configuration has been 
repeated five times as well and the splitting proportion 
has been held as discussed previously (70%:15%:15%) as 
is shown in Fig. 6(a). The dNN architecture with 16 neu-
rons in the input layer shows a poor match of the pre-
dicted results to the experimental data with ≈ 1.5×10−5 
RIU error. The other results show the implicit correlation 
of the number of layers and neurons on the predicted 
error. This is mostly caused by the training termination 
criterion as well as limited training repetitions and thus 
variability among the training, validation, and test da-
tasets. Nevertheless, the dNN architecture out of 3 hidden 
layers dominates among the best results and allows to 

reach median error value below 1×10−7 RIU. On the other 
hand, the dNN with 6 hidden layers has the highest me-
dian error values. The best result has been calculated for 
the dNN with 3 hidden layers with 48 neurons in the in-
put layer with the median error of 3×10−8 RIU and the 
outliers that may reach maximum 1×10−6 RIU. 

Due to the limited set of the measured RIU states used 
for dNN training which is always the case for the experi-
ment, we may face a classification problem instead of the 
regression one. For that reason, a complete set of experi-
mental data that represents the sensor response on spe-
cific RIU value (sensing phase in Fig. 4) have been ex-
cluded from the training process. In contrast to the pre-
viously performed tests where the whole set of the meas-
ured RIU responses has been used for dNN training, this 
test checks the prediction correctness for the unknown 
output RIU state and thus shows the accuracy of the re-
gression problem solution. 

The results for these calculations represented in Fig. 
6(b) show clear correlation of the error values with the 

Fig. 5 | (a) Distribution of the absolute error values between the measured refractive indexes and the values predicted with different processing 

approaches: deep neural network (dNN), linear regression (LR), random forest (RF), general regression neural network (GRNN), gradient boost-

ing (GB), and support vector regression (SVR). (b) Statistics on the performance of the refractive index prediction with dNN approach with differ-

ent combinations of weights optimization methods (Adam, RMSprop, Nadam, Adagrad, and Adadelta) and activation functions (tanh, sigmoid, 

relu, selu, linear, and softplus). 
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Fig. 6 | Statistics on the refractive index prediction accuracy represented as absolute error values for different dNN configurations

with varying number of neurons (N) in the input layer (n = 16, 32, 48, 56, 64, 80, 96, 112, 128, 256, 512, 1024) and hidden layers (L)

number (3, 4, 5, 6) with 2n neurons. (a) The results for the case when the dataset including all RIU output states has been used in training. (b)

The results for the experimental data set when a particular RIU output state has been excluded. 
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number of neurons in the layers. The statistics summa-
rizes the results for the RIU prediction accuracy where 
each output RIU class (except of the extremum values of 
the first and the last sensing states) from the experimental 
dataset has been initially completely excluded from the 
hyperparameters tuning procedure and then has been 
analyzed with the dNN. For the data used in the dNN 
optimization procedure, the proportions among the test, 
training, and validation parts were kept same as it was 
mentioned previously. It has been found out that the 
number of the hidden layers insufficiently impacts the 
prediction error. For neuron numbers 64 and 80, the er-
ror value may reach ∼10−4 that corresponds to the meas-
urement step in the acquired experimental data. The er-
ror median values for smaller neuron number in the lay-
ers (16, 32, and 48) lie below 5×10−6 where the outliers do 
not exceed the value of 3×10−5. The observed result is 
explained by switching from the regression to the classi-
fication problem when the complexity of the dNN archi-
tecture increases. 

Summing up the results for all tests together, the opti-
mal dNN architecture for this task is expected to be 3 
hidden layers with 32 neurons in the input layer and 64 
neurons in the hidden layers, with tanh activation func-
tion and Adam optimization method. This configuration 
enables to keep the prediction error for RIU below 1×10−5 
with median value of 3×10−6 for the unknown experi-
mental results. 

Conclusions 

In this work we have demonstrated the first example of an 
affordable self-learning whispering gallery mode sensor 
and analyzed its performance on refractive index varia-
tions detection. A cost- and energy-effective laser source 
operating at the fixed frequency, multi-cavity interroga-
tion imaging scheme and deep-learning analysis are the 
key distinguishing features that enable high resolution 
sensing data quantification where preliminary infor-
mation or procedures are redundant. The comparison 
with the commonly utilized method for tracking the 
spectral position of the resonance frequency shows the 
improvement in the temporal resolution by at least two 
orders of magnitude. It has been shown that the selected 
instrument configuration provides the detection limit for 
the refractive index variations estimations of at least 
4×10−5. The study on several architectures of the deep 
neural networks for RIU detection shows possibility to 
keep the absolute error between the measured RIU values 

and the values predicted by the dNN at 3×10−6 level for 
the dynamic range of RIU variations from 0 to 2×10−3. 

The reported results demonstrate the possibility for 
construction of the self-learning sensing solutions with 
the affordable instrument configuration, reduced com-
plexity and device size for the first time, and are expected 
to significantly contribute to the change of the sensing 
paradigm from model-based to machine learning in-
spired approach. The proposed sensor supplemented by 
the essential set of training data that can be automatically 
collected may be utilized in the wide range of the prac-
tice-oriented sensing tasks where prior data about the 
response model is redundant. The trained NN is well ap-
plicable for any other solutions that can be dissolved in 
the deionized water at different concentrations resulting 
in the bulk refractive index change in the range from 0 to 
2×10-3 relative to the nominal one (water) where no in-
teraction of the sensed solution with the microresonator 
material is observed. Moreover, the proposed approach is 
easily expandable for the detection of several physi-
cal/chemical parameters simultaneously. In this case the 
extended experimental dataset representing different ex-
ternal conditions has to be gathered whereas the detector 
as instrument remains unchanged. In addition, this 
method is expected to be applicable for the case of the 
targeted biochemical molecules’ detection with prelimi-
nary microresonator surface processing with corre-
sponding receptor and will be addressed in the follow-up 
research. 
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17. Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L. Excep-

tional points enhance sensing in an optical microcavity. Nature 

548, 192–196 (2017).  

18. Zhou X, Zhang L, Pang W. Performance and noise analysis of 

optical microresonator-based biochemical sensors using inten-

sity detection. Opt Express 24, 18197–18208 (2016).  

19. Reynolds T, Riesen N, Meldrum A, Fan X D, Hall J M M et al. Flu-

orescent and lasing whispering gallery mode microresonators 

for sensing applications. Laser Photonics Rev 11, 1600265 

(2017).  

20. Swaim J D, Knittel J, Bowen W P. Detection of nanoparticles 

with a frequency locked whispering gallery mode 

microresonator. Appl Phys Lett 102, 183106 (2013).  

21. Rosenblum S, Lovsky Y, Arazi L, Vollmer F, Dayan B. Cavity 

ring-up spectroscopy for ultrafast sensing with optical 

microresonators. Nat Commun 6, 6788 (2015).  

22. Righini G C, Soria S. Biosensing by wgm microspherical res-

onators. Sensors 16, 905 (2016).  

23. Su J. Label-free biological and chemical sensing using whis-

pering gallery mode optical resonators: past, present, and fu-

ture. Sensors 17, 540 (2017).  

24. Cai L, Pan J Y, Zhao Y, Wang J, Xiao S. Whispering gallery 

mode optical microresonators: structures and sensing applica-

tions. Phys Status Solidi A 217, 1900825 (2020).  

25. Schweiger G, Nett R, Weigel T. Microresonator array for 

high-resolution spectroscopy. Opt Lett 32, 2644–2646 (2007).  

26. Saetchnikov V A, Tcherniavskaia E A. Using optical resonance 

of whispering gallery modes in microspheres for real-time de-

tection and identification of biological compounds. J Appl 

Spectrosc 77, 714–721 (2010).  

27. Huckabay H A, Wildgen S M, Dunn R C. Label-free detection of 

ovarian cancer biomarkers using whispering gallery mode im-

aging. Biosens Bioelectron 45, 223–229 (2013).  

28. Petermann A B, Varkentin A, Roth B, Morgner U, 

Meinhardt-Wollweber M. All-polymer whispering gallery mode 

sensor system. Opt Express 24, 6052–6062 (2016).  

29. Saetchnikov A V, Tcherniavskaia E A, Skakun V V, Saetchnikov 

V A, Ostendorf A. Reusable dispersed resonators-based bio-

chemical sensor for parallel probing. IEEE Sens J 19, 

7644–7651 (2019).  

30. Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V, Ostendorf 

A. Design and application of distributed microresonator-based 

systems for biochemical sensing. In Proceedings Volume 

11354, Optical Sensing and Detection VI 1135427 (SPIE, 

2020); https://doi.org/10.1117/12.2555391. 

31. Tcherniavskaia E A, Saetchnikov V A. Application of neural 

networks for classification of biological compounds from the 

characteristics of whispering-gallery-mode optical resonance. J 

Appl Spectrosc 78, 457–460 (2011).  

32. Hu D, Zou C L, Ren H L, Lu J, Le Z C, et al. Multi-parameter 

sensing in a multimode self-interference micro-ring resonator 

by machine learning. Sensors 20, 709 (2020).  

33. Kornienko V V, Nechepurenko I A, Tananaev P N, Chubchev E 

D, Baburin A S, et al. Machine learning for optical gas sensing: 

a leaky-mode humidity sensor as example. IEEE Sens J 20, 

6954–6963 (2020).  

34. Ballard Z S, Shir D, Bhardwaj A, Bazargan S, Sathianathan S, 

et al. Computational sensing using low-cost and mobile 

plasmonic readers designed by machine learning. ACS nano 

11, 2266–2274 (2017).  

35. Saetchnikov A, Tcherniavskaia E, Saetchnikov V, Ostendorf A. 

Mapping of the detecting units of the resonator-based multi-

plexed sensor. In Proceedings Volume 10678, Optical Micro- 

and Nanometrology VII 106780W (SPIE, 2018); 

http://doi.org/10.1117/12.2309660.  

36. Harris D C. Quantitative Chemical Analysis 6th ed (W. H. 

Freeman, New York, 2003).  

37. Loock H P, Wentzell P D. Detection limits of chemical sensors: 

applications and misapplications. Sens Actuators B Chem 173, 

157–163 (2012).  

Author contributions 
A. Saetchnikov conceived the work, conducted the experiments, wrote the 
paper. A. Saetchnikov and E. Tcherniavskaia conducted the deep-learning 
data processing. V. Saetchnikov supervised the experiments. A. Ostendorf 
supervised and directed the research. All authors discussed the results and 
commented on the manuscript. 

Competing interests 
The authors declare no competing financial interests. 
 
 

 


	03 oea-2020-0048 Anton V. Saetchnikov Cover
	03 oea-2020-0048 Anton V. Saetchnikov-V5 Z

