## А. В. БОРЗДОВ, В. О. ГАЛЕНЧИК, О. Г. ЖЕВНЯК

## САМОСОГЛАСОВАННЫЙ РАСЧЕТ ЭЛЕКТРОННЫХ СОСТОЯНИЙ В ГЕТЕРОСТРУКТУРЕ AlgaAs/GaAs

Известно, что в современной микроэлектронике основным полупроводниковым материалом является кремний. В то же время одним из наиболее перспективных материалов для производства интегральных микросхем считается GaAs. В качестве основной причины использования GaAs можно указать на гораздо меньшую величину эффективной массы электронов в GaAs, чем в Si и, как следствие, большую подвижность электронов в GaAs. А, как известно, чем выше подвижность носителей заряда, тем большим быстродействием обладает прибор (например, полевой транзистор). С этой точки зрения особый интерес представляют так называемые низкоразмерные системы, содержащие газ носителей заряда, в котором их движение ограничено потенциальными барьерами в одном или нескольких направлениях. Движение электрона можно считать ограниченным, если этот электрон локализован в области, ширина которой сравнима с его длиной волны де Бройля в данных условиях. В направлении, в котором движение носителя заряда ограничено, происходит квантование его энергии и, как следствие, уменьшение интенсивностей его рассеяния и увеличение подвижности.

Если движение электронов ограничено в одном измерении, а в двух других свободно, то такой электронный газ называется двухмерным. Двухмерный электронный газ образуется у границы раздела полупроводника и диэлектрика или на границе раздела двух полупроводников, т. е. в гетероструктуре. В рассматриваемом случае гетеропереход образуется при соединении таких материалов, как GaAs и  $Al_xGa_{1-x}As$ , причем свойства гетероперехода зависят от доли Al в слое  $Al_xGa_{1-x}As$ . В частности, от количества Al зависит величина разрыва зоны проводимости на границе гетероперехода, а также эффективная масса электрона и диэлектрическая проницаемость слоя  $Al_xGa_{1-x}As$ . Использование  $Al_xGa_{1-x}As$ обусловлено тем, что атомы Al, замещающие Ga, имеют почти такой же радиус, что и атомы Ga. Это обеспечивает высокое качество границы гетероперехода. Из-за разрыва дна зоны проводимости на границе гетероперехода для электронов со стороны GaAs образуется потенциальная яма, в которой и формируется двухмерный электронный газ.

В приближении эффективной массы движение электрона в таком газе можно описать волновой функцией

$$\Psi(z) = \Psi_n(z) \exp\left(-i\vec{k} \cdot \vec{r}\right),\tag{1}$$

где  $\vec{k}$  и  $\vec{r}$  – компоненты волнового вектора и радиуса-вектора в плоскости гетероперехода. Как видно из формулы (1), именно функция  $\Psi_n(z)$ определяет поведение функции  $\Psi(z)$ , а, следовательно, и величин интенсивностей рассеяния. Далее для краткости волновой функцией будем называть функцию  $\Psi_n(z)$ .

Для расчета электронных состояний в данной квантовой системе, т. е. для нахождения волновых функций и энергий электронов, необходимо решать систему уравнений Шредингера и Пуассона [1]:

$$\begin{cases} -\frac{\hbar^2}{2} \frac{d}{dz} \frac{1}{m_z(z)} \frac{d\Psi_n(z)}{dz} + (V(z) - E_n)\Psi_n(z) = 0, \\ \frac{d}{dz} \varepsilon_0 \varepsilon(z) \frac{d\Phi(z)}{dz} = e \sum_n N_n |\Psi_n(z)|^2 - \rho_{depl}, \end{cases}$$
(2)

где

$$N_n = \frac{m_z k_b T}{\pi \hbar^2} \ln \left[ 1 + \exp \frac{E_f - E_n}{k_b T} \right], \tag{3}$$

$$V(z) = -e\varphi(z) + V_h(z) + V_{xc}(z) + V_{im}(z).$$
(4)

В формулах (2) – (4)  $m_z$  – эффективная масса электрона,  $k_b$  – постоянная Больцмана, e – абсолютная величина заряда электрона,  $N_n$  – заселенность *n*-й подзоны, T – абсолютная температура,  $\rho_{depl}$  – плотность заряда обедненной области,  $E_f$  – энергия Ферми,  $E_n$  – энергия *n*-й подзоны,  $\varphi$  – электростатический потенциал,  $V_h$ ,  $V_{xc}$ ,  $V_{im}$  – потенциалы гетероструктуры, обменно-корреляционный и отображения соответственно [1, 2].

В качестве граничного условия для волновой функции бралось ее равенство нулю в глубине слоев GaAs и  $Al_xGa_{1-x}As$ . Электростатический потенциал полагался равным нулю на границе гетероперехода, а в глубине слоев GaAs и  $Al_xGa_{1-x}As$  бралась равной нулю величина электрического поля.

Для решения этой системы уравнений использовался самосогласованный расчет. При этом, вследствие конечной высоты потенциального барьера со стороны  $Al_xGa_{1-x}As$  для электронов зоны проводимости GaAs, который согласно [3] при изменении x от 0.35 до 0.7 лежит в пределах (0.27÷0.59) эВ соответственно, необходимо учитывать проникновение электронов в слой  $Al_xGa_{1-x}As$ . Следовательно, решая систему (2) – (4), необходимо учитывать изменение эффективной массы электрона, величины разрыва зоны проводимости и значения диэлектрической проницаемости на границе гетероперехода. Зависимости эффективной массы электрона, диэлектрической проницаемости и величины разрыва дна зоны проводимости от концентрации Al x в слое Al<sub>x</sub>Ga<sub>1-x</sub>As определялись в соответствии с результатами, полученными в [3, 4].

Если доля алюминия составляет менее 0.35, то высота потенциального барьера для электронов невелика, и квантовые эффекты в такой потенциальной яме выражены слабо. Использование доли алюминия более 0.7 нецелесообразно с технологической точки зрения, так как изготовление такой гетероструктуры является достаточно сложным. Кроме того, при увеличении доли алюминия ухудшается качество границы гетероперехода, что отрицательно сказывается на рабочих характеристиках приборов.

В настоящей работе была разработана процедура самосогласованного решения уравнений Шредингера и Пуассона в гетероструктуре  $Al_xGa_{1-x}As/GaAs$ , с помощью которой были рассчитаны электронные состояния в квантовой яме гетероструктуры  $Al_xGa_{1-x}As/GaAs$  для некоторых значений *x*, лежащих в диапазоне 0.35÷0.7. Зависимости уровней энергии пяти нижайших подзон и заселенностей этих подзон от концентрации Al представлены на рис. 1 и 2.

Расчеты были проведены для температуры 300 К, концентрации акцепторов в слое GaAs и  $Al_xGa_{1-x}As \ 1 \cdot 10^{21}$  и  $1 \cdot 10^{20} \text{ m}^{-3}$  соответственно, концентрации доноров в слое  $Al_xGa_{1-x}As \ 5 \cdot 10^{23} \text{ m}^{-3}$ , поверхностной кон-







*Рис. 2.* Зависимости относительных заселенностей подзон от доли алюминия *х.*  $N_s$  – поверхностная концентрация электронов двухмерного газа

центрации электронов двухмерного газа 5  $10^{15}$  м<sup>-2</sup> и толщины спейсера 10 нм. Результаты этих расчетов, в частности, показали, что изменение доли алюминия в указанном выше диапазоне относительно слабо влияет на уровни энергий и заселенности подзон. Как видно из рис. 1, величина самого высокого, а, следовательно, самого слабозаселенного уровня равна примерно 140 мэВ, в то время как глубина ямы, определяемая долей Al, составляет примерно 270÷570 мэВ. Это означает, что уровни с высокой заселенностью лежат значительно ниже края потенциальной ямы гетероструктуры, и, следовательно, величины энергетических уровней и их заселенности слабо зависят от глубины ямы.

## ЛИТЕРАТУРА

- 1. Stern F., Das Sarma S. Electron energy levels in GaAs–Ga<sub>1-x</sub>Al<sub>x</sub>As heterojunctions // Phys. Rev. 1984. Vol. 30B, № 2. P. 840–847.
- 2. Yokoyama K., Hess K. Monte Carlo study of electronic transport in Al<sub>1-x</sub>Ga<sub>x</sub>As/GaAs single-well heterostructures // Phys. Rev. 1986. Vol. 33B, № 8. P. 5595–5606.
- 3. *Ping E. X., Jiang H. X.* Resonant tunneling of double-barrier quantum wells affected by interface roughness // Phys. Rev. 1989. Vol. 40B, № 17. P. 11792–11798.
- 4. Influence of impurity and phonon scattering effects in resonant tunneling structures / Y. Fu, Q. Chen, M. Willander, H. Brugger, U. Meiners // J. Appl. Phys. 1993. Vol. 74, № 3. P. 1874–1878.