БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРКТАЮ
Пруректор до теблой работе
и образова и при Муновациям
О.Н.Здрок
« 2020 г.
Регистрационный № УД-8849/уч.

Статистические методы экономики

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 01 Математика (по направлениям)
Направление специальности
1-31 03 01-03Математика (экономическая деятельность)

Учебная программа составлена на основе ОСВО 1-31 03 01-2013 и учебного плана, № G31-139/уч. от 30.05.2013 по специальности 1-31 03 01 Математика (по направлениям) направление специальности 1-31 03 01-03 Математика (экономическая деятельность)

СОСТАВИТЕЛИ:

Бахтин Виктор Иванович, профессор кафедры функционального анализа и аналитической экономики механико-математического факультета Белорусского государственного университета, доктор физико-математических наук, профессор.

РЕЦЕНЗЕНТЫ:

Пыжкова Ольга Николаевна, заведующий кафедрой высшей математики Учреждения образования «Белорусский государственный технологический университет», кандидат физико-математических наук, доцент

Вениамин Григорьевич Кротов, заведующий кафедрой теории функций механико-математического факультета Белорусского государственного университета, доктор физико-математических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой функционального анализа и аналитической экономики (протокол № 12 от 04.06.2020);

Научно-методическим Советом БГУ (протокол № 5 от 17.06.2020)

Зав. кафедрой ФАиАЭ, профессор _______ А.В. Лебеден

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — повышение уровня профессиональной компетентности в применении современных статистических методов анализа конкретных экономических данных в практической деятельности, в том числе изучение основных статистических методов решения экономических задач, а также расширение математического кругозора.

Задачи учебной дисциплины:

- 1. Ознакомление с основными понятиями и методами математической статистики.
- 2. Усвоение навыков построения статистических моделей экономических задач.
- 3. Усвоение навыков исследования с помощью статистических моделей зависимостей между экономическими переменными и построения прогнозов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к циклу специальных дисциплин государственного компонента.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Изучение дисциплины базируется на знаниях дисциплин «Математический анализ», «Линейная алгебра», «Теория вероятностей».

Требования к компетенциям

Освоение учебной дисциплины «Статистические методы экономики» должно обеспечить формирование следующих академических, социальноличностных и профессиональных компетенций:

академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.

социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-4. Владеть навыками здоровьесбережения.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

профессиональные компетенции:

- ПК-3. Применять методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности и в областях знаний, непосредственно не связанных со сферой деятельности.
- ПК-5. Заниматься аналитической и научно-исследовательской деятельностью в области математики и информационных технологий.
- ПК-27. Реализовывать инновационные проекты в профессиональной деятельности.

В результате освоения учебной дисциплины студент должен:

знать:

- постановку основных задач математической статистики и эконометрики;
- способы построения точечных и интервальных статистических оценок;
- основные методы проверки гипотез;
- свойства многомерного нормального расрпеделения;
- методы линейной регрессии;
- основные методы многомерного статистического анализа;
- основные понятия и методы анализа временных рядов;

уметь:

- использовать основные закономерности случайных явлений;
- применять методы математической статистики на практике;

владеть:

- прикладными методами математической статистики.

Структура учебной дисциплины

Дисциплина изучается в 6,7 семестрах. Всего на изучение учебной дисциплины «Статистические методы экономики» отведено:

- для очной формы получения высшего образования— 292 часов, в том числе 140 аудиторных часов, из них: лекции 70 часов, лабораторные занятия 58 часов, управляемая самостоятельная работа 12 часов.
- в 6 семестре 116 часов, в том числе аудиторных занятий 68 часов, из них лекции 34 часа, лабораторные занятия 28 часов, УСР 6 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы Форма текущей аттестации по учебной дисциплине – зачет;

- в 7 семестре 176 часов, в том числе аудиторных занятий - 72 часа, из них лекции - 36 часов, лабораторные занятия - 30 часов, УСР - 6 часов.

Трудоемкость учебной дисциплины составляет 5 зачетных единиц. Форма текущей аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Статистическое оценивание параметров

- Тема 1.1. Предмет математической статистики и эконометрики
- Тема 1.2. Основные понятия математической статистики
- Тема 1.3. Эмпирические распределения и выборочные оценки
- **Tema 1.4.** Квантили и *p*-уровни
- Тема 1.5. Метод моментов для построения оценок
- **Тема 1.6.** Неравенство Рао–Крамера
- Тема 1.7. Эффективные и асимптотически эффективные оценки
- Тема 1.8. Метод максимального правдоподобия
- Тема 1.9. Условные математические ожидания.
- Тема 1.10. Условные распределения.
- Тема 1.11. Байесовские оценки
- Тема 1.12. Достаточные статистики.
- Тема 1.13. Интервальное оценивание параметров

Раздел 2. Статистическая проверка гипотез

- Тема 2.1. Основные понятия статистической проверки гипотез
- Тема 2.2. Решающее правило Неймана-Пирсона
- Тема 2.3. Проверка простой гипотезы против сложной альтернативы
- **Тема 2.4**. Критерии согласия.
- Тема 2.5. Критерий отношения правдоподобия для сложных гипотез
- Тема 2.6. Байесовские решающие правила

Раздел 3. Многомерное нормальное распределение

- Тема 3.1. Определения и свойства многомерного нормального распределения
- Тема 3.2. Метрика Махаланобиса
- Тема 3.3. Условное нормальное распределение
- Тема 3.4. Вращения и проекции нормальных распределений
- **Тема 3.5**. Выборочное среднее и ковариации многомерного нормального распределения
- **Тема 3.6.** Оценки максимального правдоподобия для параметров нормальных распределений
- Тема 3.7. Выборочные корреляции

Раздел 4. Линейная регрессия

- Тема 4.1. Линейная регрессия случайных величин
- Тема 4.2. Множественная и частная корреляции
- Тема 4.3. Многомерные выборочные оценки
- Тема 4.4. Метод наименьших квадратов
- Тема 4.5. Модель множественной линейной регрессии

Раздел 5. Некоторые задачи многомерного статистического анализа

- Тема 5.1. Метод главных компонент
- Тема 5.2. Дискриминантный и кластерный анализ
- **Тема 5.3**. T^2 -статистика Хотеллинга
- Тема 5.4. Сравнение математических ожиданий

Раздел 6. Временные ряды

- Тема 6.1. Временные ряды
- Тема 6.2. Оценки параметров временных рядов
- Тема 6.3. Временные ряды авторегрессии
- Тема 6.4. Временные ряды скользящего среднего
- **Тема 6.5**. Временные ряды авторегрессии и проинтегрированного скользящего среднего
- Тема 6.6. Временные ряды с трендом

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования

гемы	Название раздела, темы		Количество аудиторных				В	H
Номер раздела, те			Практические занятия	Семинарские во во занятия	Лабораторные занятия	Иное	Количество часов	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Статистическое оценивание параметров	22			16		4	
1.1	Предмет математической статистики и эконометрики.	1			1			
	Основные задачи математической статистики. Эконометрика как							
	приложение статистических методов в экономике							
1.2	Основные понятия математической статистики. Семейства	1			1			
	распределений, выборки, статистики, оценки. Состоятельность и несмещенность оценок. Матрицы вариаций и ковариаций для оценок							
1.3	Эмпирические распределения и выборочные оценки.	1			1			
1.5	Выборочные моменты и функции распределения, их состоятельность и	_			-			
	асимптотическая нормальность. Выборочная плотность (гистограмма)							
1.4	Квантили и <i>p</i>-уровни. Равномерное распределение <i>p</i> -уровня.	1			1		2	проверка
	Состоятельность выборочных квантилей. Вариационный ряд							индивидуальных
								заданий
1.5	Метод моментов для построения оценок. Его состоятельность. Метод	2			1			
	обобщенных моментов							
1.6	Неравенство Рао-Крамера. Количество информации по Фишеру.	2			1			
	Неравенство информации как принцип неопределенности	_						
1.7	Эффективные и асимптотически эффективные оценки.	2			1			
	Критерий эффективности							

1.8	Метод максимального правдоподобия.	2	1	2	устный опрос,
	Правдоподобность эффективных оценок и алгоритм нахождения				проверка
	эффективных оценок. Регулярные семейства плотностей, их свойства.				индивидуальных
	Состоятельность, асимптотическая нормальность и асимптотическая				заданий
	эффективность оценок максимального правдоподобия				
1.9	Условные математические ожидания. Их свойства. Представление	2	1		
	условного математического ожидания одной случайной				
	величины по отношению к другой в виде функции от последней				
1.10	Условные распределения. Простейшие примеры. Формула	2	1		
	Байеса. Проблема существования условных распределений.				
	Критерий независимости случайных величин				
1.11	Байесовские оценки. Априорное распределение, функционал риска.	2	2		
	Построение байесовских оценок для квадратичной функции потерь				
1.12	Достаточные статистики. Теорема Колмогорова-Блекуэлла-Рао. Критерий	2	2	2	контрольная
	факторизации Неймана-Фишера. Экспоненциальные семейства				работа
	распределений				
1.13	Интервальное оценивание параметров.	2	2		
	Доверительные интервалы. Универсальный метод построения				
	доверительных интервалов и его частные случаи: метод обратной функции,				
	метод Стьюдента, построение асимптотических доверительных интервалов.				
	T -статистика Стьюдента и статистика χ^2				
2	Статистическая проверка гипотез	12	12		
2.1	Основные понятия статистической проверки гипотез.	2	2		
	Простые и сложные гипотезы. Нерандомизированные и рандомизированные				
	решающие правила. Критические функции. Нулевая гипотеза и				
	альтернатива. Ошибки первого и второго рода. Уровень значимости и				
	мощность теста. Принцип оптимальности решающего правила.				
	Состоятельность решающего правила				
2.2	Решающее правило Неймана-Пирсона. Отношение правдоподобия.	2	2		
	Оптимальность решающего правила Неймана-Пирсона				
2.3	Проверка простой гипотезы против сложной альтернативы. Решающие правила на основе <i>p</i> -уровня	2	2		

2.4	Критерии согласия. χ ² -критерий Пирсона. Критерий	2		2		
	Колмогорова					
2.5	Критерий отношения правдоподобия для сложных гипотез.	2		2		
	Оценка его уровня значимости					
2.6	Байесовские решающие правила. Функция потерь и функционал риска.	2		2		отчет по
	Принцип оптимальности Байеса. Апостериорный риск. По-строение					лабораторной
	байесовской критической функции					работе
	Всего за семестр	34		28	6	
3	Многомерное нормальное распределение	7		7		
3.1	Определение и свойства многомерного нормального распределения.	1		1		
	Моменты нормального распределения. Линейные преобразования					
	нормальных распределений. Плотность нормального распределения.					
	Критерий независимости нормально распределенных случайных векторов	_		_		
3.2	Метрика Махаланобиса. Распределение χ ²	1		1		
3.3	Условное нормальное распределение. Вычисление его	1		1		
	параметров	_				
3.4	Вращения и проекции нормальных распределений.	1				
	Независимость взаимно ортогональных проекций и распределение их длин.					
	Распределение Фишера. Распределение Уишарта. Статистика Уилкса. Лемма					
2.5	Андерсона.	1		1		
3.5	Выборочное среднее и ковариации многомерного нормального	1		1		
	распределения. Оценивание математического ожидания и ковариаций многомерного нормального распределения. Независимость выборочного					
	среднего и выборочной матрицы ковариаций. Состоятельность выборочных					
	средних и ковариаций					
3.6	Оценки максимального правдоподобия для параметров нормальных	1		1		
	распределений.	_		-		
3.7	Выборочные корреляции. Z-статистика Фишера и доверительные	1		1		
	интервалы для корреляций					
4	Линейная регрессия	9		5		

4.1	Линейная регрессия случайных величин. Экстремальное свойство линейной регрессии. Линейная регрессия для нормальных распределений. Матрица ковариаций для регрессии	1	1		
4.2	Множественная и частная корреляции. Матрица частных ковариаций. Частные и условные ковариации для нормальных распределений	2	1		
4.3	Многомерные выборочные оценки. Общие принципы построения многомерных выборочных оценок. Примеры	2	1		
4.4	Метод наименьших квадратов. Матрица проекции на конечномерное подпространство. Выборочная множественная линейная регрессия. Остаточная, полная и объясненная сумма квадратов. Коэффициент детерминации	2	1		
4.5	Модель множественной линейной регрессии. Основная теорема о линейной регрессии. Статистики Фишера и Стьюдента. Проверка гипотез о параметрах линейной регрессии. Доверительные интервалы для параметров регрессии. Проверка гипотез о независимости	2	1	2	Отчет по лабораторной работе, проверка индивидуальных заданий
5	Некоторые задачи многомерного статистического анализа	8	6		
5.1	Метод главных компонент. Вариация случайного вектора, главные оси и главные компоненты, их некоррелированность. Проблема уменьшения размерности случайного вектора	2	1		
5.2	Дискриминантный и кластерный анализ. Модель Фишера. Линейный и квадратичный дискриминантный анализ. Метод <i>k</i> -средних кластеризации.	2	1		
5.3	<i>T</i> ² -статистика Хотеллинга. Ее распределение. Проверка гипотезы о значении математического ожидания при неизвестной дисперсии	2	2		
5.4	Сравнение математических ожиданий. Сравнение математических ожиданий разных выборок. Случаи одинаковых ковариационных матриц, выборок одинакового объема, произвольных выборок. Дисперсионный анализ	2	12	4	
6	Временные ряды	12	12	4	

6.1	Временные ряды. Отсчеты и реализации. Стационарность в	2	2		
	узком и широком смысле. Гауссовские временные ряды. Ковариационная				
	функция. Спектральная плотность				
6.2	Оценки параметров временных рядов.	2	2		
	Оценки для математического ожидания, ковариационной функции и				
	спектральной плотности временного ряда. Периодограмма и выборочные				
	спектральные плотности				
6.3	Временные ряды авторегрессии.	2	2		
	Характеристический многочлен. Условия устойчивости. Уравнение Юла-				
	Уокера. Автокорреляционная и частная автокорреляционная функции для				
	временных рядов авторегрессии. Оценивание параметров и прогнозирование				
	авторегрессии				
6.4	Временные ряды скользящего среднего. Характеристический многочлен.	2	2	2	Отчет по
	Условие обратимости. Поведение автокорреляционной и частной				лабораторной
	автокорреляционной функций				работе, проверка
					индивидуальных
					заданий
6.5	Временные ряды авторегрессии и проинтегрированного скользящего	2	2	2	Собеседование
	среднего. Модель случайных блужданий				
6.6	Временные ряды с трендом.	2	2		
	Типы трендов. Оценивание параметров и порядка тренда				
	Всего за семестр	36	30	6	
	Всего	70	58	12	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Бахтин В.И. Введение в прикладную статистику. Курс лекций. Ч. 1. Математическая статистика. Минск: Изд-во БГУ, 2011.
- 2. Бахтин В.И. Введение в прикладную статистику. Курс лекций. Ч. 2. Методы прикладной статистики. Минск: Изд-во БГУ, 2012.
- 3. Харин Ю.С., Жук Е.Е. Математическая и прикладная статистика. Минск: Изд-во БГУ, 2005.

Перечень дополнительной литературы

- 1. Боровков А.А. Математическая статистика. М.: Наука, 1984.
- 2. Лагутин М.Б. Наглядная математическая статистика. М.: Бином, 2007.
- 3. Мардас А.Н. Эконометрика. С.-Петербург, 2004.
- 4. Орлов А.И. Эконометрика. М.: Экзамен, 2004.
- 5. Мынбаев К., Лемас А. Эконометрика. Алматы, 2004.
- 6. Ковалёв Е. А., Медведев Г. А.Теория вероятностей и математическая статистика для экономистов. Москва: Юрайт, 2016.

Полный текст курса лекций доступен по адресу http://elib.bsu.by/handle/123456789/12993

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Формой текущей аттестации по дисциплине «Статистические методы экономики» учебным планом предусмотрены зачет и экзамен.

Контроль работы студентов проходит в форме устных опросов, ответов у доски, собеседования, контрольной работы в аудитории, домашних лабораторных работ с предоставлением отчетов и устной защитой.

Экзамен по дисциплине проходит в устной форме.

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

- ответы на семинарских занятиях -25 %;
- результат контрольной работы -25 %;
- отчет по лабораторных работ -50 %.

Итоговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов. Вес оценки по текущей успеваемости составляет $30\,\%$, экзаменационная оценка $-70\,\%$.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 1.4. *Квантили и р-уровни* Доказать состоятельность тестов из лабораторных работ 2–4. *Форма контроля – проверка индивидуальных заданий*

Тема 1.8. *Метод максимального правдоподобия* Найти общий вид рекуррентной последовательности n-го порядка. *Форма контроля* — *проверка индивидуальных заданий*

Тема 1.12. Достаточные статистики.

Теорема Колмогорова–Блекуэлла–Рао. Критерий факторизации Неймана– Фишера. Экспоненциальные семейства распределений Форма контроля – контрольная работа

Тема 4.5. Модель множественной линейной регрессии

Построить матрицу ортогонального проектора на линейную оболочку нескольких векторов в евклидовом пространстве.

Форма контроля – проверка индивидуальных заданий

Тема 6.4. Временные ряды скользящего среднего Характеристический многочлен. Условие обратимости. Поведение автокорреляционной и частной автокорреляционной функций Форма контроля – проверка индивидуальных заданий

Тема 6.5. Временные ряды авторегрессии и проинтегрированного скользящего среднего

Построить модель для ежедневных котировок акций кампании. *Форма контроля – собеседование*.

Примерный перечень заданий для контрольной работы

- 1. Найти эмпирическую функцию распределения по данному распределению выборки.
- 2. Найти методом моментов оценку параметра θ в заданном семействе плотностей распределений.
- 3. Методом максимального правдоподобия оценить параметры а и σ^2 распределения с заданной плотностью.
- 4. Найти эффективную оценку параметра в заданном семействе распределений.
 - 5. Построить гистограмму частот по данному распределению выборки.
- 6. Найти достаточную статистику для заданного семейства распределений.

Примерный перечень заданий для лабораторных работ

Примеры исходных файлов для выполнения лабораторных работ доступны по адресу http://elib.bsu.by/handle/123456789/12993.

ЛАБОРАТОРНАЯ РАБОТА № 2

Лабораторная работа состоит из пяти заданий. Первые два из них носят теоретический характер и выполняются вручную. Следующие три задания должны быть выполнены с помощью пакета прикладных программ STATISTICA. При оформлении отчета пишите, какие пункты меню используете на каждом шаге. Старайтесь писать отчет ясно и подробно, как объяснение для дилетантов.

Задание 1. В файле Conditional distributions.pdf взять плотность распределения p(x,y) из вашего варианта и с ее помощью вычислить плотность условного распределения p(y|x), а также условное математическое ожидание $E\{y|x\}$ и условную дисперсию $D\{y|x\}$.

Задание 2. Прилагается на отдельном листке, который нужно вклеить в отчет. Для него нужно написать подробное решение.

Задание 3. В файле Intervals.sta взять переменную VarN, где N — номер вашего варианта, и два раза щелкнуть мышкой по имени переменной. Появится описание переменной, в котором будет указан тип ее распределения, распределения, параметра ДЛЯ которого нужно доверительный интервал, и значение доверительной вероятности. По выборке найти границы доверительного интервала с указанной VarN нужно доверительной вероятностью. При выборки мощности меньше использовать точное распределение оценки параметра, а при мощности выборки больше 30 можно использовать нормальное приближение к распределению оценки. Все этапы решения нужно подробно описать: какая берется оценка для параметра, какое должно быть у нее распределение, какой доверительного метод построения интервала используется, выборочное значение оценки (или оценок) и все этапы вычисления границ доверительного интервала.

Задание 4. В файле Hypothesis.sta возьмите переменную VarN, где N— номер вашего варианта, и два раза щелкните мышкой по имени переменной. Появится описание переменной, в котором будет указан тип ее распределения и сформулирована гипотеза, которую следует проверить с уровнем значимости ε =0,1. Выпишите статистику, которую вы используете для проверки гипотезы, ее распределение, сформулируйте решающее правило (желательно на основе р-уровня) и проверьте его.

Задание 5. В файле **Distributions.sta** взять переменную VarN, где N— номер Вашего варианта, определить визуально по гистограмме тип ее распределения, проверить для этого распределения критерий согласия хиквадрат и найти параметры этого распределения (в случае, если распределение непрерывно, взять в критерии хи-квадрат число категорий равным 20). Выписать определение статистики хи-квадрат, её выборочное значение и руровень и объяснить, как с помощью этого р-уровня принимается или отвергается гипотеза о типе распределения.

ЛАБОРАТОРНАЯ РАБОТА № 3

В лабораторной работе следует использовать переменные x, y, z, u, v, w из файла **Lab3.sta**. Выбирайте переменные с номером Вашего варианта, который равен Вашему номеру в списке группы плюс 20. Не забудьте указать этот номер в начале отчета. Уровень значимости для проверки всех гипотез равен 5%.

Задание 1. С помощью Z-статистики Фишера проверить гипотезу о том, что $Corr\{x,y\} = 0.7$.

- **Задание 2.** Построить (с объяснением) критерий для проверки гипотезы о некоррелированности двух выборок одинаковой мощности на основе t\$-статистики.
- **Задание 3.** Проверить гипотезы о попарной некоррелированности переменных x, y, z, u, v.
- **Задание 4.** Построить (с объяснением) критерий для проверки гипотез о независимости каждой из пяти переменных x, y, z, u, v от совокупности четырех остальных.
- **Задание 5.** Проверить гипотезы о независимости каждой из пяти переменных x, y, z, u, v от совокупности остальных четырех.
- **Задание 6.** Построить линейную регрессию переменной v на совокупность x, y, z, u (оставив необходимое число независимых переменных). Объяснить выбор независимых переменных.
- Задание 7. Для построенной регрессии проверить гипотезу о нормальной распределенности остатков и оценить их дисперсию.
- **Задание 8.** Объяснить, как для регрессии $v = \theta_0 + \theta_1 x + \theta_2 y$ строится доверительный интервал для θ_1 с доверительной вероятностью 90% и построить его.
- **Задание 9.** Для линейной регрессии $v = \theta_0 + \theta_1 x + \theta_2 y$ построить (с объяснением) критерий для проверки гипотезы $\theta_1 = 2 \theta_2$.
 - **Задание 10.** Для регрессии $v = \theta_0 + \theta_1 x + \theta_2 y$ проверить гипотезу $\theta_1 = 2 \theta_2$.
- **Задание 11.** Считая, что среднеквадратическая погрешность измерения переменной и равна 0.5\$ построить критерий проверки (с объяснением) и проверить гипотезу о том, что и является (неоднородной) линейной функцией от x, y, z.
- **Задание 12.** В предположении независимости выборок x и y построить критерий проверки гипотезы о том, что Dx = 2Dy.
- **Задание 13.** Дать определение, описать способ вычисления и вычислить частную корреляцию $Corr\{u,v|x,y,z\}$.
- **Задание 14.** С помощью дисперсионного анализа построить (с объяснением) критерий проверки гипотезы о равенстве математических ожиданий для трех подвыборок (w_1, \ldots, w_{30}) , (w_{31}, \ldots, w_{60}) и $(w_{61}, \ldots, w_{100})$.

Задание 15. Проверить гипотезу о равенстве математических ожиданий для трех подвыборок (w_1, \ldots, w_{30}) , (w_{31}, \ldots, w_{60}) и $(w_{61}, \ldots, w_{100})$.

ЛАБОРАТОРНАЯ РАБОТА № 4

В файле **Principal Components.sta** выберите переменные с именами N-1, N-2, N-3, N-4, N-5, где N — номер Вашего варианта.

- Задание 1. Для выбранных пяти переменных найдите главные компоненты с помощью матрицы корреляций. Выпишите формулы для вычисления первых двух главных компонент через нормализованные и через исходные выборочные значения переменных.
- **Задание 2.** Найдите минимальное число главных компонент, объясняющих 99% дисперсии и 95% дисперсии. Напишите, какая здесь имеется в виду дисперсия: исходных переменных или нормализованных?
- **Задание 3.** Найдите вклад первой главной компоненты в дисперсию второй переменной, вычисленной для ненормализованных переменных.
- В файле **Classes.sta** выберите переменные с именами N-1, N-2, N-3, N-4, N-5, где N номер Вашего варианта.
- Задание 4. Визуально определите число классов, из которых состоит Ваша пятимерная выборка. Чтобы не ошибиться в выборе числа классов, посмотрите проекции выборки на разные пары исходных координат и на разные пары главных компонент.
- Задание 5. Проведите классификацию выборки методом \$k\$-средних. Определите число элементов и центр каждого класса.
- **Задание 6.** Для следующих трех векторов найдите апостериорные вероятности попадания в каждый из классов (априорные вероятности взять пропорциональными мощностям классов): (10,2,4,-2,6), (-2,25,17,5,0), (7,14,-6,1,31).
- В файле **ARMA.sta** выберите временной ряд x(t)N, где N номер Вашего варианта.
- **Задание 7.** С помощью выборочных автокорреляций и частных автокорреляций идентифицируйте временной ряд x(t)N (то есть определите р и q, при которых этот ряд является ARMA(p,q)).
- **Задание 8.** Найдите коэффициенты выбранной модели ARMA(p,q) и их p-уровни.

Задание 9. Докажите корректность выбранной Вами модели ARMA(p,q) (то есть что ее порядки не следует увеличивать).

Задание 10. Докажите, что остатки в построенной модели некоррелированы.

Задание 11. Определите закон распределения остатков, его параметры и р-уровень критерия согласия.

Задание 12. Найдите доверительные интервалы для следующих двух значений временного ряда с доверительной вероятностью 0,75.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса могут быть использованы следующие подходы и методы: эвристический подход, практикоориентированный подход, метод проектного обучения, метод учебной дискуссии, методы и приемы развития критического мышления, метод группового обучения. которые предполагают:

- осуществление студентами значимых открытий;
- демонстрацию многообразия решений большинства профессиональных задач;
- творческую самореализацию обучающихся в процессе создания образовательных продуктов;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;
 - освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций;
- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники;
- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

Все результаты и достижения группируются на основе основных видов деятельности студентов: учебной, научно-исследовательской и иной. Методы обеспечивают появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения. Также они представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления и являются организацией учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

Методические рекомендации по организации самостоятельной работы обучающихся, кроме подготовки к экзамену, подготовка к зачету

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск (подбор) и обзор литературы и электронных источников по изучаемой теме;
 - выполнение домашнего задания;
 - работы, предусматривающие решение задач и выполнение упражнений;
 - изучение материала, вынесенного на самостоятельную проработку;
 - подготовка к лабораторным, практическим семинарским занятиям;
 - научно-исследовательские работы;
- анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов;
- подготовка и написание рефератов, докладов, эссе и презентаций на заданные темы;
 - подготовка к участию в конференциях и конкурсах.

Примерный перечень вопросов к экзамену

- 1. Задача статистического оценивания параметров. Типы оценок.
- 2. Матрицы вариаций и ковариаций статистических оценок. Их свойства.
- 3. Построение выборочных оценок. Свойства выборочной функции распределения, выборочных моментов, гистограммы.
- 4. Квантили и р-уровни.
- 5. Количество информации по Фишеру и его свойства.
- 6. Неравенство Рао-Крамера.
- 7. Эффективные оценки, критерий эффективности.
- 8. Методы моментов и максимального правдоподобия.
- 9. Состоятельность и асимптотическая нормальность ОМП.
- 10. Условные математические ожидания.
- 11. Условные распределения.

- 12. Байесовские оценки.
- 13. Достаточные статистики. Теорема Колмогорова-Блэкуэлла-Рао.
- 14. Критерий факторизации Неймана-Фишера.
- 15. Интервальное оценивание параметров.
- 16. Примеры построения доверительных интервалов.
- 17. Задача статистической проверки гипотез. Решающие правила, ошибки первого и второго рода, принцип оптимальности.
- 18. Решающее правило Неймана–Пирсона, его оптимальность.
- 19. Проверка простой гипотезы против сложной альтернативы. Примеры.
- 20. Критерий согласия χ2 Пирсона.
- 21. Критерий согласия Колмогорова.
- 22. Критерий отношения правдоподобия для проверки сложных гипотез.
- 23. Байесовское решающее правило и его оптимальность.
- 24. Многомерное нормальное распределение. Его простейшие свойства.
- 25. Метрика Махаланобиса и распределение χ2.
- 26. Условные нормальные распределения.
- 27. Проекции и вращения нормальных распределений. Распределения Фишера и Уишарта.
- 28. Распределение выборочных среднего и ковариаций для многомерного нормального распределения.
- 29. ОМП для параметров многомерных нормальных распределений.
- 30. Линейная регрессия случайных величин. Ее свойства.
- 31. Множественная и частная корреляции.
- 32. Построение многомерных выборочных оценок. Выборочные множественные и частные корреляции.
- 33. Метод наименьших квадратов. Коэффициент детерминации.
- 34. Модель множественной линейной регрессии. Основная теорема о регрессии.
- 35. Проверка гипотез о значимости линейной регрессии, о независимости двух выборок одинакового объема, о значении коэффициента регрессии.
- 36. Метод главных компонент.
- 37. Дискриминантный анализ.
- 38. Кластерный анализ.
- 39. Статистика Т 2 Хотеллинга. Проверка гипотезы о значении вектора математического ожидания.
- 40. Сравнение математических ожиданий двух выборок.
- 41. Дисперсионный анализ.
- 42. Стационарные временные ряды и их характеристики.
- 43. Свойства выборочного среднего стационарного ВР.
- 44. Периодограмма и выборочная спектральная плотность.
- 45. Временные ряды авторегрессии. Существование устойчивой авторегрессии.
- 46. Уравнения Юла–Уокера. Поведение АКФ и ЧАКФ для временных рядов AR.
- 47. Оценивание параметров и прогнозирование AR.

- 48. Временные ряды скользящего среднего, их обратимость. Поведение АКФ и ЧАКФ для временных рядов МА.
- 49. Временные ряды ARIMA.
- 50. ВР с трендом. Способы выделения тренда. Оценивание тренда и его порядка методом Галёркина.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную программ
требуется		учреждения высшего	(с указанием даты и
согласование		образования по учебной	номера протокола)
		дисциплине	
1.Теория	Функциональн	нет	Вносить изменения
вероятностей	ого анализа		не требуется
И			(протокол № 12 от
математическ			12.06.2020)
ая статистика			
2.Функционал	Функциональн	нет	Вносить изменения
ьный анализ	ого анализа		не требуется
			(протокол № 12 от
			12.04.2020)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/_	учебный	ГОД
----	----	---------	-----

No	Дополнения и изменения	Основание
п/п		
Учебна	ия программа пересмотрена и одобрена н	на заседании кафедры
		№ от 201_ г.)
Заведу	ющий кафедрой	
	ЖДАЮ	
Декан	факультета	