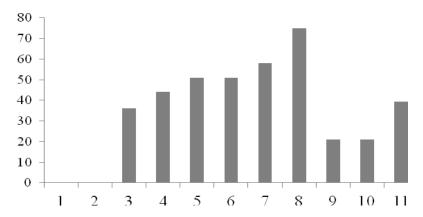
АКТИВНОСТЬ ФОСФОЛИПАЗЫ A₂ В ПРИСУТСТВИИ МОДИФИЦИРОВАННЫХ АНАЛОГОВ НУКЛЕОЗИДОВ

Лях А.В.¹, Литвинко Н.М.², Михайлопуло И.А.², Зинченко А.И.³, Герловский Д.О.^{1,2}

¹Белорусский государственный университет, Минск, annaliakh91@gmail.com
²Институт биоорганической химии НАН Беларуси
³Институт микробиологии НАН Беларуси


Модифицированные нуклеозиды — одна из наиболее важных групп лекарственных препаратов в онкологии. Однако использование таких препаратов имеет ряд побочных эффектов, например, действие на здоровые быстро делящиеся клетки, что обуславливает высокую токсичность и ограничения в использовании данных соединений. Для устранения названных недостатков было предложено использовать модифицированные нуклеозиды, конъюгированные с фосфолипидами, активация которых происходит непосредственно в очаге патологии и, таким образом, снижается токсичность по отношению к клеткам других органов и тканей [1].

В Институте биоорганической химии НАН Беларуси были синтезированы пуриновых пиримидиновых нуклеозидов, соединения И аналоги (таблица 1). Часть из синтезированных соединений чужеродны для организма и могут являться эффекторами по отношению к ферментам метаболизма, и, в первую очередь, липолиза, поскольку в дальнейшем планируются использованию в составе модифицированных фосфолипидов [2, 3]. Ранее нами показано, что конъюгаты фосфатидилхолина и фосфатидилэтаноламина с подвергаются модифицированных нуклеозидов, фосфолипазой А₂ (ФЛА₂, КФ 3.1.1.4) в разной степени. Обнаружено, что субстратные свойства таких коньюгатов по отношению к ФЛА2 зависят от нуклеозидной составляющей [4].

Целью настоящей работы являлось изучение эффекторного действия модифицированных аналогов нуклеозидов, используемых качестве лекарственных препаратов, по отношению к ферменту метаболизма ФЛА2, для подходящих установления структур, ДЛЯ использования фосфолипидами. Для биоконъюгатов c достижения указанной цели использовался метод диффузии фермента в агарозный гель после преинкубации модифицированными нуклеозидами и их природными используемыми в качестве лекарственных препаратов (таблица 1). Среди исследованных соединений найдены ингибиторы реакции липолиза с участием Φ ЛА₂ (рисунок 1).

Таблица 1 — Аналоги пуриновых и пиримидиновых нуклеозидов синтезированные для дальнейшего включения в состав молекулы фосфолипида

		Количе-	10111	in b cociub monekynih фосф	Количе-
Модифицированные нуклеозиды, используемые в качестве лекарственных препаратов		ство,	Природные аналоги		ство,
		мкмоль/			мкмоль/
		лунку			лунку
1	Контроль				
2	2-FU (2'-фторуридин)	15	<u>12</u>	2'-d Ado (2'-	15
				дезоксиаденозин)	
<u>3</u>	BVDU (бривудин)	15	<u>13</u>	Ado (аденозин)	15
<u>4</u>	6GTD (6-тио-2'-дезокси-	4	<u>14</u>	2'-dGuo (2'-	15
	гуанозин)			дезоксигуанозин)	
<u>5</u>	Кинетин	4	<u>15</u>	Guo (гуанозин)	15
6	Флударабин	4	<u>16</u>	2'-dCyd (2'-дезоксицитидин)	15
7	Неларабин	4	17	Cyd (цитидин)	15
8	5-BrU (5-бром-уридин)	15	18	Thd (тимидин)	15
9	Кладрибин	15	19	Ribo-Thd (2'-	15
				гидрокситимидин)	
<u>10</u>	2Fado (2-фтор-аденозин)	15	<u>20</u>	2-dUrd (2'-дезоксиуридин)	15
11	2ClAdo (2-хлор-аденозин)	15	21	Urd (уридин)	15
			22	Іпо (инозин)	15

Условия реакции: агарозная пластинка с желтковой эмульсией, объем лунки = 70 мкл, $C(\Phi \Pi A_2) = 5$ мкг на лунку, соединения $2 \cdot 11 = 4 \cdot 15$ мкмоль на лунку, преинкубация фермента с эффектором 24 часа, $[Ca^{2+}] = 0,2$ мкмоль/мг $\Phi \Pi A2, 0,05$ М Трис-HCl-буферный раствор, рН 8,0, инкубация в течение 24 ч при $t^\circ = 50$ °C.

Рисунок 1 — Действие модифицированных нуклеозидов на Φ ЛА₂, (% ингибирования) при диффузии в липид-содержащий гель.

Диффузия фермента в агарозный гель в присутствии природных аналогов модифицированных нуклеозидов $\underline{12}$ - $\underline{22}$ не обнаружила значительного ингибирующего эффекта по отношению к липолизу с участием $\Phi \Pi A_2$. Наибольший ингибирующий эффект оказало соединение 5-BrU ($\underline{8}$), менее выраженное действие оказали соединения кинетин ($\underline{5}$), флударабин ($\underline{6}$),

(7) (75,51. 51. 57 % неларабин снижение активности фермента, соответственно), которые могут быть отобраны дальнейшей ДЛЯ биоконъюгации с фосфолипидами и исследований метаболизма в составе конъюгированных препаратов.

Работа выполнена в рамках отдельного проекта фундаментальных и прикладных научных исследований НАН Беларуси, ПБП № 116-12-03-2019.

Литература

- 1. Gandhi, V. Clofarabine and nelarabine: two new purine nucleoside analogs / V. Gandhi, W.Plunkett // CurrOpinOncol. 2006, №6, P. 580-590.
- 2. Mikhailopulo, I. New Trends in Nucleoside Biotechnology / I.A. Mikhailopulo, I. Miroshnikov // ActaNaturae. 2010, №2, P. 39-56.
- 3. Opitz, P. Modified Nucleosides Molecular Markers Suitable for Small-volume Cancer /P. Opitz, O. Herbarth, A. Seidel Anticancer Reseach. 2018, №38, P. 613-619.
- 4. Литвинко Н.М., Кучуро С.В., Рахуба Г.Н., Скоростецкая Л.А., Калиниченко Е.Н., Жерносек Е.В. Действие фосфолипаз на химерные субстраты, созданные на основе фосфолипидов и компонентов нуклеиновых кислот // ДАН Беларуси.- 2005. Т.49, № 4, С.70-73.