## ПЕРСПЕКТИВНЫЕ МИКРООРГАНИЗМЫ ДЛЯ ЗАЩИТЫ ОВОЩНЫХ КУЛЬТУР ОТ БОЛЕЗНЕЙ

## Купцов В.Н.<sup>1</sup>, Мандрик-Литвинкович М.Н.<sup>1</sup>, Шмыга Е.Ю.<sup>1</sup>, Коломиец Э.И.<sup>1</sup>, Sanchez I.<sup>2</sup>, Moran R.<sup>2</sup>

<sup>1</sup>Институт микробиологии НАНБ, Минск, kuptsov@hotmail.com <sup>2</sup>Center for Genetic Engineering and Biotechnology of Camaguey, Cuba

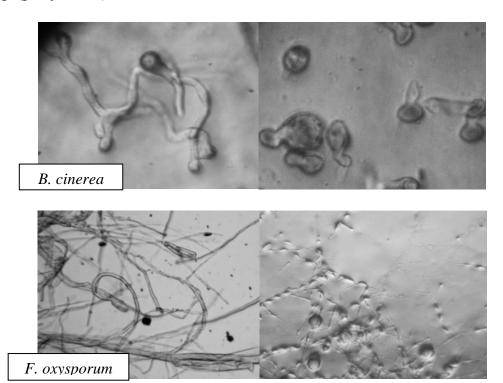
Учитывая тот факт, что распространение ряда заболеваний носит взрывной характер, а эпифитотии крайне тяжело поддаются контролю в промышленном растениеводстве проблема быстрой и своевременной обработки посевного материала, вегетирующих растений и продуктов растениеводства различными биопестицидами выдвигается на первый план. Существенную роль в биологическом контроле фитопатогенов играют микробные препараты. Благодаря избирательности действия и экологической безопасности они удачно вписываются в интегрированные системы защиты растений и обеспечивают возможность создания высокопродуктивных агроэкосистем с управляемыми популяционными отношениями фитопатогенов и их антагонистов.

Особый интерес представляют собой бактерии Bacillus, Pseudomonas Streptomyces, продуцирующие вторичные метаболиты И ферменты, пигменты), обеспечивающие антимикробную (антибиотики, активность в отношении возбудителей болезней сельскохозяйственных культур [1-3]. В связи с тем, что в настоящее время зарегистрированные в Республике Беларусь микробные препараты предназначены для контроля отдельных заболеваний овощных культур, представляется целесообразным разработка комплексного биопрепарата с широким спектром фитозащитного действия.

В лаборатории молекулярной диагностики и биологического контроля фитопатогенных микроорганизмов Института микробиологии НАН Беларуси в опытах *in vitro* установлено, что штаммы микроорганизмов, выделенные на территории Беларуси и Кубы, различались как по спектру действия, так и по степени подавления фитопатогенных грибов *Botrytis cinerea*, *Fusarium oxysporum*, *Rhizoctonia solani* и бактерий *Clavibacter michiganensis*, *Pseudomonas syringae*, *Xanthomonas campestris* – возбудителей болезней овощных культур (таблица 1).

В результате проведенного скрининга отобран изолят К-1, проявляющий наибольшую комплексную ингибирующую активность в отношении грибных (зона задержки роста мицелия составляла 16-35 мм) и бактериальных (зона отсутствия роста клеток достигала 25-35 мм) патогенов. На основании изучения морфологических, культуральных и физиолого-биохимических признаков бактериальный изолят К-1 был отнесен к роду *Bacillus*. Для уточнения идентификации бактерий использовали метод времяпролетной массспектрометрии MALDI-TOF MS. Сравнительный анализ полученных белковых

спектров с эталонными спектрами из базы данных Bruker Database Version 3.3.1.0 показал, что штамм бактерий с высокой вероятностью относится к виду *Bacillus mojavensis*. По результатам исследований, проведенных в Институте экспериментальной ветеринарии им. С.Н. Вышелесского, штамм бактерий *B. mojavensis* К-1 не является патогенным, токсичным и токсигенным и может использоваться в микробиологическом производстве в качестве основы микробного препарата для защиты овощных культур от комплекса болезней.


Таблица 1 – Антимикробное действие штаммов микроорганизмов в отношении

фитопатогенов овощных культур

|                                                                   | Диаметр зоны ингибирования роста фитопатогенов, мм |                       |                     |                             |                           |                              |
|-------------------------------------------------------------------|----------------------------------------------------|-----------------------|---------------------|-----------------------------|---------------------------|------------------------------|
| Штаммы<br>микроорганизмов                                         | Rhizoctonia<br>solani                              | Fusarium<br>oxysporum | Botrytis<br>cinerea | Pseudomonas<br>syringae     | Xanthomonas<br>campestris | Clavibacter<br>michiganensis |
| Brevibacterium celere<br>C924 (Kyбa)                              | 15±0,2 <sup>1</sup>                                | 0                     | 23±0,3 <sup>1</sup> | 0                           | 0                         | 0                            |
| Sphingobacterium sp. CIGBTb (Kyбa)                                | 14±0,1 <sup>1</sup>                                | 0                     | 18±0,2 <sup>1</sup> | 0                           | 0                         | $15\pm0,2^2$                 |
| Pseudomonas<br>fluorescens C1Y5<br>(Kyбa)                         | 12±0,1 <sup>1</sup>                                | 0                     | 0                   | 0                           | 16±0,2 <sup>1</sup>       | 18±0,3 <sup>1</sup>          |
| Candida magnolia<br>C1K6 (Kyбa)                                   | 20±0,3 <sup>2</sup>                                | 12±0,1 <sup>1</sup>   | 21±0,3 <sup>1</sup> | 24±0,4 <sup>2</sup>         | $15\pm0,2^2$              | 20±0,3 <sup>2</sup>          |
| Pseudomonas<br>fluorescens C1Y7<br>(Kyбa)                         | $16\pm0.2^2$                                       | $17\pm0,3^2$          | 0                   | 0                           | 18±0,3 <sup>1</sup>       | 18±0,2 <sup>1</sup>          |
| Bacillus subtilis<br>БИМ В-262 (РБ)                               | $18\pm0,2^{1}/32\pm0,5^{2}$                        | 18±0,3 <sup>1</sup>   | $30\pm0,4^{2}$      | $14\pm0,1^{1}/28\pm0,3^{2}$ | 34±0,6 <sup>1</sup>       | 28±0,4 <sup>1</sup>          |
| Bacillus<br>amyloliquefaciens<br>БИМ В-858 (РБ)                   | $18\pm0,3^{1}/50\pm0,7^{2}$                        | 20±0,2 <sup>1</sup>   | $30\pm0,4^2$        | $15\pm0,1^{1}/28\pm0,3^{2}$ | 35±0,5 <sup>1</sup>       | 26±0,4 <sup>1</sup>          |
| Bacillus mojavensis<br>K-1 (РБ)                                   | $16\pm0,2^{1}/35\pm0,7^{2}$                        | 20±0,3 <sup>1</sup>   | $32\pm0,5^2$        | 25±0,3 <sup>1</sup>         | 35±0,4 <sup>1</sup>       | 35±0,6 <sup>1</sup>          |
| Bacillus subtilis 9/6<br>(РБ)                                     | $18\pm0,3^{1}/45\pm0,7^{2}$                        | 18±0,3 <sup>1</sup>   | $30\pm0,5^2$        | 27±0,4 <sup>1</sup>         | 35±0,6 <sup>1</sup>       | 30±0,3 <sup>1</sup>          |
| Bacillus subtilis<br>10/19 (РБ)                                   | $16\pm0,1^{1}/40\pm0,5^{2}$                        | 18±0,2 <sup>1</sup>   | $30\pm0,4^{2}$      | $15\pm0,2^{1}/28\pm0,3^{2}$ | 33±0,5 <sup>1</sup>       | 27±0,4 <sup>1</sup>          |
| Примечание: 1 – полное ингибирование; 2 – частичное ингибирование |                                                    |                       |                     |                             |                           |                              |

Микроскопические наблюдения, проведенные с использованием метода агаровых пластинок, выявили ингибирование прорастания спор и развития мицелия фитопатогенных грибов под действием метаболитов исследуемого штамма бактерий. Установлено, что под воздействием бактерий происходит

разрыв клеточных стенок и вакуолизация гиф мицелия, деформация спор и ростовых трубок грибов, сопровождающаяся появлением опухолеобразных структур (рисунок 1).



**Рисунок 1** — И нгибирование прорастания спор B. cinerea и образование шаровидных вздутий на гифах мицелия F. oxysporum под действием метаболитов бактерий (слева — контроль без антагониста, справа — гриб под воздействием антагониста)

Ингибирование прорастания спор варьирует от 80 до 100%, задержка развития субстратного и воздушного мицелия патогенов составляет 40 - 100% (таблица 2). Показано, что метаболиты бактерий-антагонистов способны оказывать бактерицидное действие на фитопатогенные бактерии. Так, высев на питательный агар фитопатогенных бактерий из зон задержки роста, полученных методом лунок, выявил отсутствие роста бактерий *P. syringae*, *C. michiganensis*, *X. campestris*.

Таким образом, бактериальная культура *B. mojavensis* K-1 оказывает ингибирующее влияние на рост и развитие возбудителей фитопатогенов овощных культур, что может быть использовано в дальнейшем для снижения инфицирования растений и контроля развития болезней.

Проведена оценка фитотоксичности культуральной жидкости (КЖ) бактерий *В. mojavensis* К-1, основы микробного препарата для защиты овощных культур от болезней, в отношении растений редиса. Установлено, что всхожесть семян редиса, обработанных 5% КЖ бактерий, не отличалась от контрольных семян, обработанных водой. Длина 7-ми дневных проростков, выросших из бактеризованных семян, превышала контрольные показатели на

15%. На основании полученных данных, следует, что бактерии *B. mojavensis* К-1 не обладают фитотоксичностью и оказывают ростстимулирующий эффект.

Таблица 2 – Влияние метаболитов бактерий *В. mojavensis* К-1 на рост мицелия и

прорастание спор фитопатогенных грибов

| Наименование гриба          | Ингибирование радиального | Ингибирование       |  |
|-----------------------------|---------------------------|---------------------|--|
|                             | роста мицелия, %          | прорастания спор, % |  |
| Alternaria alternata        | 70                        | 80                  |  |
| Alternaria brassicae        | 73                        | 85                  |  |
| Botrytis aclada             | 90                        | 95                  |  |
| Botrytis cinerea            | 100                       | 100                 |  |
| Colletotrichum coccodes     | 82                        | 100                 |  |
| Didymella bryoniae          | 80                        | -                   |  |
| Plectosphaerella cucumerina | 65                        | 90                  |  |
| Rhizoctonia solani          | 40                        | -                   |  |
| Fusarium oxysporum          | 55                        | 83                  |  |
| Fusarium solani             | 57                        | 85                  |  |

Фитозащитное действие бактерий изучали на 2-х недельных проростках огурца и капусты, выращенных во влажных камерах из семян, предварительно обработанных 10% КЖ бактерий B. mojavensis К-1 с последующим искусственным инфицированием споровой суспензией фитопатогенного гриба  $Fusarium\ oxysporum\ (1\times10^6\ cпор/мл)$ . Согласно полученным результатам, бактериальная обработка семян снижает поражение фузариозной гнилью проростков огурца на 52%, а проростков капусты — на 49%. Таким образом, бактерии B. mojavensis К-1 способны оказывать фитозащитное действие в отношении одного из наиболее распространенных возбудителей болезней овощных культур.

Полученные данные свидетельствуют о потенциальной ценности бактерий *B. mojavensis* K-1 в качестве основы биопрепарата для стимуляции роста и защиты овощных культур от болезней.

Кубинскими исследователями установлена нематоцидная активность штаммов *Brevibacterium celere* C924, *Sphingobacterium sp.* CIGBTb в отношении вредителей *Meloidogyne* spp., *Radopholus similis, Pratylenchus* spp. на огурце, томате и салате. Совместно с кубинскими партнерами планируется создание консорциума штаммов, обладающих комплексной антимикробной и нематоцидной активностью.

Данная работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (договор № Б18КУБГ-001).

## Литература

- 1. Protection of cucumber against *Pythium* root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis / M. Ongena [et al.] // Plant Pathology. 1999. Vol. 48. P. 66–76.
- 2. Formulation of a *Streptomyces* Biocontrol Agent for the Suppression of Rhizoctonia Damping-off in Tomato Transplants / Siva Sabaratnam, James A. Traquair // Biological Control. 2002. Vol. 23, Issue 3. P. 245-253.
- 3. Szczech, M. Biocontrol of *Rhizoctonia* damping-off of tomato by *Bacillus subtilis* combined with *Burkholderia cepacia* / M. Szczech, M. Shoda // J. Phytopathology. -2004. N 152. P. 549–556.