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Spatial instabilities of singular light beams
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The problem of singular light beams interaction with nonlinear cavity has been studied
analytically and numerically. Steady-state and transient modes of optical bistability for sin-
gular light beams with different topological structure have been described, and the possibility
of realization and control over spatially localized and rotating diffractive optical patterns has
been revealed and discussed.
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1. Introduction

The singular light beams (optical vortices) are characterized by a presence of the screw dislocation
in their wave front structure [1]. Optical vortices can be observed in the light fields with complex spatial
structure [2], in laser cavities [3] or they can be obtained upon diffraction from computer-generated
holograms [4]. Among the potential applications of singular light beams one can indicate performing
of optical computing [5], development of optical tweezers [6], wave-guide technologies [7] etc.

Investigations of interaction processes between optical vortices and nonlinear medium are related
with the stability problems for topological and spatial structure [8], formation of localized vortex
beams [9], and development of the methods for transformation of their topological structure upon
nonlinear interaction of the light beams [10, 11]. However, interactions of optical vortices with nonlinear
interferometers as well as optical pattern formation with singular light beams are the open problems
for present stage of research in this area.

In this work the theoretical model of vortex light beams interaction with nonlinear interferometer is
proposed based on the mean-field limit for high-finesse optical cavity and some peculiarities of realization
of optical bistability and spatial instabilities in the field of vortex light beams are discussed. The work
is organized as follows: Section 2 presents the theoretical model of vortex light beam interaction with
nonlinear cavity; the mode of optical bistability is thoroughly studied in Section 3 based on the result of
numerical modelling; Sections 4 is devoted to the problem of diffractive patterns formation in conditions
of modulation instability of spatial structure of the singular light beams; and Section 5 is devoted to the
problem of diffractive patterns formation under two-wave mixing of counterpropagating light beams in
ring-cavity.

2. Theoretical model

The theoretical model for investigation of optical bistability and pattern formation processes in
spatially extended light beams interacting with a ring cavity filled with a nonlinear Kerr medium is
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based on the mean-filed limit. The dynamics of the light field passed though the cavity can be described
by the following equation for the dimensionless complex amplitude [12]:

∂E

∂t
= E0 −

[
1 + iη

(
∆0 − |E|2

)]
E + i∆⊥E (1)

Here, E0 is the input field, η∆0 is the cavity detuning, η = ±1 determines the type of nonlinearity
(+ corresponds to focusing, − corresponds to defocusing type), and ∆⊥ is the transverse Laplacian.
Time is scaled to the cavity response time τR = L/vT , where v = c/n0 is the light velocity in the
medium, L is the thickness of the cavity. Transverse variables are scaled to diffraction parameter√
β =

√
(λL/4πTx2

0). This model has been derived to describe high finesse cavities (transmission
coefficient of the cavity mirrors T << 1), and assumes that only one longitudinal mode is excited.

In the following we will consider the problems of optical bistability and pattern formation in the
field of the light beams with helical wave front (or with screw phase dislocation), the simples type of
which can be mathematically described by a complex input light field E0 in the form:

E0(ρ, ϕ) = A0[r/r0]|m| exp[−(r/
√

2r0)2 + imϕ] (2)

Here, ρ and ϕ are polar coordinates, parameter r0 is characterized the width of light beam, m =
±1,±2, ... is the so-called topological charge of optical vortex. Let us notice that m = 0 corresponds
to the case of Gaussian light beam.

Numerical modelling of Eq.(1) was performed using absolutely stable two-step (three-layer) explicit
method [13] that gives a possibility to calculate 2D spatial intensity and phase distribution of singular
light beams for considerable time intervals.

3. Optical bistability and transient dynamics of optical vortices in nonlinear
cavity

First, let us review the basic results for optical bistability mode in nonlinear interferometer driven
by plane-wave illumination. The relation between the output and input optical intensities in Eq. (1)
shows bistable behaviour for cavity detuning parameter ∆0 >

√
3 both for focusing (η = +1) and

defocusing (η = −1) type of nonlinearity [14]:

I0 = IOUT

{
1 + [3IOUT −∆0]2

}
(3)

Investigation of optical bistability mode in the field of singular light beams has been carry out by
means of numerical modelling of Eq.(1) with the initial conditions (2). The results are presented on
Figs.1-3.

The dependences of transmitted power of optical beams PT =
∫ ∫
|E(x, y)|2 dxdy versus input

power P0 =
∫ ∫
|E0(x, y)|2 dxdy are presented on Fig.1 for three types of input light beams: Gaussian

(m = 0, curve 1), first, and second order optical vortices (m = 1 curve 2, and m = 2 curve 3,
consequently).

For used set of parameters (cavity detuning ∆0 = 2.5, defocusing nonlinearity, η = −1) the
mode of optical bistability for Gaussian light beam takes place in very small range of input optical
power P0 ≈ 9.4÷ 10.4. Contrary to this situation, when using the singular light beams with the same
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FIG. 1. Stationary transmission function of nonlinear cavity m=0 (curve 1), 1(curve 2), 2(curve 3)

cavity detuning one can considerably enlarge the region of realization of optical bistability mode (see
curves 2 and 3). One can notice also that the range of input power, which leads to realization of
optical bistability, is increased with the increasing of topological charge of optical vortex m, and the
transmission of nonlinear cavity on the upper branch of bistable curve is increased comparing to the
case of Gaussian beam. Thus, one can suggest that optical vortices have an advantage in realization of
bistable devices with high values of transmission rate PT . However, the drawback, which must be taken
into account, is the considerable increasing of switching-on power P↑ with the transition from Gaussian
to vortex light beams, which is mainly due to increasing of effective transverse width of optical vortices
of the higher order comparing to Gaussian light beam.

Transient dynamics of output power of vortex light beams PT is calculated on Fig.2 for different
values of input power P0. When the value of input power is lower than value of switching-on power,
P0 < P↑ ≈ 27.6, the transmission of nonlinear cavity is stabilized on low level (curve 1). After the
power of input light beam is exceeding the switching-on threshold level (P0 > P↑, curve 2) the process
of formation of high transmission state of nonlinear interferometer is developing. It includes several
characteristic steps: first step (t < 3) can be associated with local increasing of intensity in the maximum
of vortex light beam, then (t = 3 ÷ 15) spatial enlargement of switching-on zone leads to formation
of stationary transmission characteristic. Let us notice that the velocity of switching wave depends
significantly on the input intensity (compare curves 2 and 3), and the steady-state can be reached for
several tenth of cavity build-up times.

The dynamics of spatial intensity and phase distribution in the mode of optical bistability is
presented on Fig.3, and it corresponds to results of Fig.2. One can see that spatial evolution of light
beam can be characterised by the following typical stages: (1) - switching-on of the intensive part of
optical vortex (Fig.3a-c) simultaneously leads to strong modulation of phase distribution, (2) - formation
of spatially-locked phase state with ring-type intensity distribution (Fig.3d), and, finally, (3) - radial
enlargement of switching-on area due to movement of switching wave till steady-state will be reached
(Fig.3e). The velocity of radial switching wave is directly proportional to the intensity of input singular
light beam.
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FIG. 2. Transient dynamics of nonlinear cavity switching in high transmission state P0 = 20 (curve 1), 30
(curve 2), 45 (curve 3)

4. Modulation instability and optical pattern formation with singular light
beams

Let us consider the stability of stationary solutions EOUT of Eq. (1) with respect to spatially
inhomogeneous perturbation of the light field E = EOUT + δE, where δE = Aq exp(λt) cos(qx). Lin-
earization procedure gives the following characteristic equation for the growth rate of spatially periodical
perturbations λ(q):

λ1,2(q) = −1±
√

4IOUT ∆q
0 − 3I2

OUT − (∆q
0)2 (4)

where ∆q
0 = ∆0 + ηβq2. Taking into account the stationary transmission function (3), one can analyze

the dependences of λ(q) on the input intensity I0 and detuning parameter ∆0. The positive value of
the growth rate (Re(λ(q) > 0) corresponds to increasing amplitude of the fluctuations Aq with spatial
frequency q, and leads to formation of spatial periodical structure. This type of instability can be
considered as an analogous of the Turing (modulation) instability for nonlinear optical system [12].
The physical reason of this instability is the concurrence of different transverse modes of nonlinear
interferometer.

For the case of focusing nonlinearity (η = +1) the expression for λ(q) reads as following:

λ1,2(q) = −1± (5)

±
√
−(IOUT −∆0 − βq2)(3IOUT −∆0 − βq2)

The dependences of λ1(q) for different value of the input intensity I0 and for initial detuning
∆0 = 0 are presented on Fig.4a. One can see that the value IOUT = 1 is the threshold level for arising
of modulation instability. For the considered example the condition IOUT > 1 leads to an exponential
increasing in time of periodical fluctuations with spatial frequency q, which can be determined from
Fig.4a.

Equalizing Re(λ(q) = 0 we can obtain the boundary region of the parameters where the modulation
instability of stationary solution takes place, see Fig.4b. The growth rate of periodical fluctuations
(Re(λ(q)) is positive for spatial frequencies from inside of the bounded domain.
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FIG. 3. Transient dynamics of spatial intensity (left row) and phase (right row) profiles in optical bistability
mode. t = 0(a), 1.5(b), 3(c), 6(d), 12(e), P0 = 20, η = −1, β = 0.01, ∆ = 2.5. Only the central part of

computational window is shown.

Summarizing the results of this task one can mention that in the self-focusing case of nonlinearity
(η = +1 ), a pattern forming instability takes place for values of the input intensity above a certain
threshold depending on the value of initial detuning parameter ∆0. For the defocusing type of nonlin-
earity (η = −1), a pattern forming instability threshold is ∆0 > 2, and it is always frustrated by the
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FIG. 4. a) - The growth rate of periodical fluctuation versus their spatial frequency, IOUT = 0.5(1), 1(2), 1.5(3);
b) - The region of modulation instability on the parameters plane IOUT − βq2. ∆0 = 0.

bistable switching of interferometer [15].
Taking into account the results of linear stability analysis a numerical modelling of Eq.(1) in the

mode of modulation instability was performed. To initialize the perturbations of spatial structure of
the singular light beams the following procedure was realized. The complex amplitude of initial light
beam was modulated with respect to radial and azimuthal perturbations with spatial frequency kr and
kϕ, consequently: E∗0 = E0 + δE0, where

δE0 = a0 exp(imϕ) exp(i(krr − kϕϕ)) (6)

Here, a0 � E0 is a small amplitude of initial perturbation. The typical results for realization
of modulation instability mode in the field of singular light beam corresponding to self-focusing case
of nonlinearity of intracavity material are presented on Fig.5. They were obtained for the beam with
topological charge m = +1, and using azimuthal initial perturbation with spatial frequency kϕ = 2.
The rest set of parameters is shown in figure caption.
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Let us notice that the transmission function of nonlinear interferometer IOUT (I0) is a single-valued
for discussed case of initial detuning ∆0 = 0 . When the intensity of input light beam is exceeded
the threshold value Ithr(kkr,ϕ) a small initial perturbation of initial complex amplitude E0 leads to
spontaneous formation of spatially periodical set of localized bright spots in a transverse intensity
profile of the output light beam.

FIG. 5. Transient dynamics of spatial intensity profiles in modulation instability mode.
t = 0(a), 5(b), 10(c), 20(d), 25(e), 30(f), 35(g), 40(h), I0 = 5, η = +1, β = 0.1, ∆ = 0. Only the central part of

computational window is shown.

Figure 5 demonstrates an example of transient dynamics of spontaneous pattern formation in the
field of singular light beam. One can see that after spatial intensity distribution has reached the quasi-
stationary state (Fig.5a-d), inhomogeneous perturbation with definite spatial frequency growth in time
and lead to formation of azimuthally periodical and counter clockwise rotating structure (Fig.5e-h).
The velocity and direction of rotation are determined by phase gradient in the initial singular light
beam, which depends in turn on the value of topological charge m. The number of localized peaks N
is determined by initial intensity of singular light beam I0 and its topological charge m. The results of
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numerical modelling show that for optical vortices with topological charge m = 1 the most probable
are the spatial structures with N = 5÷ 6.

5. Pattern formation under two-wave mixing of counterpropagating optical
vortices

In this section we will demonstrate that intracavity interaction of optical vortices in conditions of
symmetry breaking instability leads to formation of different periodical diffractive patterns, which can
be controlled by the change of topological charge of input light beams.

In the following, we analyze the problem of counterpropagating beams in a ring cavity [16]. When
two coherent light beams are directed on the input mirror of a ring cavity in a such a way, that they
are exactly counterpropagating inside an intracavity nonlinear medium, reflective grating of refractive
index and (or) absorption coefficient of the medium is formed due to interference of counterpropagating
beams. For theoretical description of this problem, we consider a passive ring resonator, filled by a
medium with Kerr-like nonlinearity. The light fields transmitted by the system are proportional to the
normalized functions E1, E2, which obey the following set of coupled-mode equations:

∂E1

∂t
= E10 + i∆⊥E1 +

E1

[
iη
(
|E1|2 + 2 |E2|2 −∆01

)
− 1
]

(7)

∂E2

∂t
= E20 + i∆⊥E2 +

E2

[
iη
(

2 |E1|2 + |E2|2 −∆02

)
− 1
]

(8)

where E10 and E20 are the complex amplitudes of the pump fields, which are determined by analogy with
Eq.(2), η∆01,02 are the cavity detuning parameters. The rest set of variables are the same as in Eq.(1).
This scheme of interaction, contrary to Eq.(1), includes not only the self-modulation effects (the term
∼ Ei |Ei|2 in the right part of coupled-mode Eqs.(7-8)) but also cross-modulation interaction between
two light waves (the term ∼ 2Ei |Ej |2), which are essentially due to dynamic grating of refractive index,
formed in the nonlinear layer. We focus our attention to the problem of two-wave mixing with equal
input amplitudes E10 = E20 = E0 and detunings ∆01 = ∆02 = ∆0 with the aim to study the special
bistable regimes, when expected equality of output amplitudes is broken. Moreover, we restrict ourself
to the case of defocusing nonlinearity (η = −1).

We consider the set of input parameters, which leads to formation of nonreciprocal spatial patterns
[16], and compare two types of interaction: (1) - interaction of oppositely charged optical vortices, and
(2) - interaction of the light beams with the same topological charge. The system of coupled-mode
Eqs.(7-8) has been solved numerically, and the formation and stability of optical patterns have been
studying with the use of small amount of numerical noise in input light beams.

The dynamics of spatial intensity distribution for first type of interaction is presented on Fig.6.
One can see that temporal evolution of intensity distribution passes the following typical stages: (1) -
switching-on in the mode of high transmission in upper branch of optical bistability curve (Fig.6a-c),
(2) - formation quasi-periodic patterns due to modulation instability of switching-on area (Fig.6d-e),
and (3) - formation of periodic patterns and their torsion in counter clockwise direction under gradient
of phase in the field of vortex light beams (Fig.6f). Let us notice that Fig.6 presents temporal evolution
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FIG. 6. Transient dynamics of spatial intensity profiles under formation of rotating periodical spatial structures.
t = 1(a), 12.5(b), 50(c), 375(d), 625(e), 1825(f), I10 = I20 = 3.8, η = −1, β = 0.01, ∆ = 2.5, m1 = +1, m2 = −1.

of intensity distribution in one of the interacting beams. Intensity distribution in second light beam
is complimentary to the first one, i.e. the maximums in its periodic structure are coincided with
the minimum in the field of the first beam, and vice versa. As it follows from numerical modelling,
interaction of counterpropagating optical vortices with the same topological charge (m1 = m2 = +1)
leads to formation of static periodical patterns in the switched-on area of light beams.

6. Conclusions

In this article, a model for studying of optical bistability and pattern formation under interaction
of singular light beams with nonlinear interferometer has been developed. The problem of singular light
beams illumination of nonlinear interferometer has been modelled based on absolutely stable two-step
(three-layer) explicit numerical method. It was shown that the mode of optical bistability for optical
vortices is characterized by the formation of ring-type intensity distribution in output light beam with
spatially-locked inhomogeneous phase distribution, which leads to increasing of threshold for bistable
mode, but gives the higher level of transmission on the upper bistable branch. In the problem of
modulation instability of light beams in nonlinear interferometer it was shown that inclusion of phase
singularity into the input light beams gives the possibility to obtain the set of spatial periodical and
rotating localized structures, that permits the realization of additional control over the symmetry prop-
erties of diffractive optical patterns. As it follows from theoretical and numerical analysis, interaction
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of counterpropagating singular light beams in coniditions of symmetry breaking instability leads to
formation of nonreciprocal static or rotating spatially periodical structures.
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