
c© 2008 Proceedings of the ”Foundations & Advances in Nonlinear Science” Conference-School

The Lorentz Group, Noncommutative Space-Time, and

Nonlinear Electrodynamics in Majorana-Oppenheimer
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Non-linear electrodynamics arising in the frames of field theories in non-commutative
space-time is examined on the base of the Riemann-Zilberstein-Majorana-Oppenheimer for-
malism. The problem of form-invariance of the non-linear constitutive relations governed
by six non-commutative parameters θkl ∼ K = n + im is explored in detail on the base of
the complex orthogonal group theory SO(3.C). Two Abelian 2-parametric small groups, iso-
morphic to each other in abstract sense, and leaving unchangeable the extended constitutive
relations at arbitrary six parameters θkl of effective media have been found, their realization
depends explicitly on invariant length K2. In the case of non-vanishing length a special
reference frame in which the small group has the structure SO(2)⊗SO(1, 1) has been found.
In isotropic case no such reference frame exists. The way to interpret both Abelian small
groups in physical terms consists in factorizing corresponding Lorentz transformations into
Euclidean rotations and boosts.

In the context of general study of various dual symmetries in non-commutative field theory,
it is demonstrated explicitly that the non-linear constitutive equations in non-commutative
electrodynamics are not invariant under continuous dual rotations, instead only invariance
under discrete dual transformation exists.

Keywords: Non-commutative electrodynamics, Majorana Oppenheimer approach, non-linear con-
stitutive relations, Lorentz symmetry

1. Introduction

As known [9], [15], [7], interest in field theory models in a non-commutative space-time has been
grown notably after creating in [15] a general algorithm to relate usual Yang-Mills gauge models to their
non-commutative counterparts. There appears a great deal of new physical problems to investigate,
besides the question of the hypothetic coordinate non-commutativity has become of practically testable
nature. Noticeable progress in describing symmetry of non-commutative spaces was achieved on the
base of twisted Poincare group [7], [2], [11], [8].

For instance, the mapping by Seiberg – Witten refers the non-commutative extension of electro-
dynamics to the usual microscopic Maxwell theory with special non-linear constitutive relations. Exam-
ining all possible symmetries of these new constitutive relations seems to be a significant point in order
to discern the effects of the space-time non-commutativity in observable electromagnetic non-linear
effects.

The problem of form-invariance of the non-commutativity structural equations (see below) was
considered in [2],[8]. Several simple non-commutative parameters were listed which alow for existence
of some residual Lorentz symmetry – the later is recognized to have the structure SO(2) ⊗ SO(1, 1).
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In was claimed in [2] that in the case of an arbitrary non-commutative matrix no residual Lorentz
symmetry exists.

The aim of the present article is to establish subgroups of the Lorentz group leaving form-invariant
the commutator of space-time coordinates with arbitrary noncommutative antisymmetric matrix. The
starting commutative relationship transform with respect to Lorentz group according to

[L a
k xa, L

b
l xb]− = i L a

k L b
l θab = iθ′kl . (1)

There exist several different views [3] on the transforms of the matrix θµν . Evidently, we aim at
extension of Lorentz invariant models in ordinary Minkowski space-time to models in non-commutative
space-time.

We might consider skew-symmetric object θµν just as a tensor under the Lorentz group, without
any physically preferable reference frame. Therefore, six parameters involved in θµν-entity depend on
the choice of the reference frame, they behave like all other tensor os spinor objects in physics. Within
that approach any field model in non-commutative space-time must involve only Lorentz covariant
constructs. Similar line of argument was used by Herman Minkowski when creating microscopic elec-
trodynamics in moving medium. As known, according to Minkowski constitutive equations, Euclidean
rotations do not chance parameters of the uniform medium, ε and µ , whereas all boost transform
them into new ones depending on the velocity vector ~V of the reference frame. Differently, it sounds
as follows: small Lorentz group leaving invariant parameters of an uniform media coincides with real
orthogonal group SO(3.R). Below we consider a similar problem in the frames of a non-commutative
electrodynamics.

The most radical attitude to the transforms of θµν-entity may be formulated as follows: six
parameters involved in θµν-entity provide us with new six fundamental constants. However, immediately
one questions may be posed: in with reference frame me must take these fundamental constants. And
then what are symmetry transformations (small Lorentz group) leaving invariant these six parameters.
In a sense, in this point we turn back to the old question on existence of a fundamental ether. No
solution for ether problem has found till now, so it is hardly reasonable to reanimate the old unsolved
puzzle in new embodiment.

Evidently, presented below simple mathematical treatment is of value in any case, irrespective
of the choice between two mentioned views. As mentioned, several particular examples of such small
(or stability) subgroups were noticed in the literature, so our analysis extends and completes previous
considerations. In a sense, the problem may be straightforwardly solved with the help of old and well
elaborated technique in the theory of the Lorentz group [12], [5]. A basic tool used in this article is
the theory of complex rotation group SO(3.C), isomorphic to the Lorentz group, and the theory of the
special linear group SL(2.C), spinor covering for Lorentz group. So to deal with the non-linear Maxwell
theory we employ the known Riemann-Zilberstein-Majorana-Oppenheimer approach – for more detail
see [6].

In the context of general study of various dual symmetries in non-commutative field theory [4],
[10], [14], one other problem will be considered: it is demonstrated explicitly that the known non-linear
constitutive equations arising from non-commutative electrodynamics in the first order approximation
are not invariant under continuous dual rotations, instead only invariance under discrete dual transfor-
mation exists, which contrasts with claim of the paper [4].

Proceedings of the F&ANS-2008 Conference-School, 2008



Red’kov V., Tolkachev E.: The Lorentz Group, Noncommutative Space-Time, and . . . 3

2. Basic facts in the Lorentz group, notation

Let us recall basic facts in the theory of the Lorentz group and related to it, focusing on its
parametrization [12], [5]. Let us start with the real rotation group SO(3.R) and its covering SU(2):

B(n) = n0 − in ~σ = cos
α

2
− i sin

α

2
e ~σ , n2

0 + n2 = 1 ,

O(n) = I + 2 [ n0 n× + (n×)2 ] , (n×)il = −εilj nj ,

O(n) =

∣∣∣∣∣∣
1− 2(n2

2 + n2
3) −2n0n3 + 2n1n2 +2n0n2 + 2n1n3

+2n0n3 + 2n1n2 1− 2(n2
3 + n2

1) −2n0k1 + 2n2n3

−2n0n2 + 2n1n3 +2n0n1 + 2n2n3 1− 2(n2
1 + n2

2)

∣∣∣∣∣∣ . (2)

The composition rule in the unitary group is

n′′0 = n′0n0 − n′n , n′′ = n′0n + n0n′ + n′ × n ; (3)

transition to explicit parametrization of the rotation group is achieved by the introduction of the Gibbs’
3-vector (for more details see in [12]):

c =
n
n0

= tg
α

2
e , c′′ =

c′ + c + c′ × c
1− c′c

, O(c) = I + 2
c× + (c×)2

1 + c2

=
1

1 + c2

∣∣∣∣∣∣
1 + c2 − 2(c22 + c23) −2c3 + 2c1c2 +2c2 + 2c1c3
+2c3 + 2c1c2 1 + c2 − 2(c23 + c21) −2c1 + 2c2c3
−2c2 + 2c1c3 +2c1 + 2c2c3 1 + c2 − 2(c21 + c22)

∣∣∣∣∣∣ .
One should note the peculiarity: if n0 = 0 (when α = π), then

B(n) = −i n ~σ , c =∞ e , O(∞ e) = I + 2 (e×)2 .

Rotation matrices (2) cab be written differently through (α, e).

O(α, e) =

∣∣∣∣∣∣
1− F (e22 + e23) − sinα e3 + Fe1e2 sinα e2 + Fe1e3

sinα e3 + Fe1e2 1− F (e23 + e21) − sinα e1 + Fe2e3
− sinα e2 + Fe1e3 sinα e1 + Fe2e3 1− F (e21 + e22)

∣∣∣∣∣∣ , (4)

where F = (1− cosα); at α = π it reads

O =

∣∣∣∣∣∣
1− 2(e22 + e23) +2e1e2 2e1e3

+2e1e2 1− 2(e23 + e21) +2e2e3
+2e1e3 2e2e3 1− 2(e21 + e22)

∣∣∣∣∣∣ = I + 2 (e×)2 .

Extension to the special linear group SL(2.C), spinor covering for the (proper orthochronous)
Lorentz group L↑+, is achieved by formal change (n0,−in) to any complex (k0,k):

B(k0,k) = k0 + kj σj = (n0 + im0) + (−inj +mj)σj ,
det B = k2

0 − k2 = n2
0 + n2 −m2

0 −m2 + 2i(n0m0 + nm) = 1 (5)

with the following composition rule

k′′0 = k′0k0 − k′k , k′′ = k′0k + k0k′ + ik′ × k
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which coincides with (3) when restricting to subgroup SU(2).
The complex orthogonal group SO(3.C) may be defined as 2 → 1 mapping from SL(2.C), its

elements are

O(k) = I + 2 [ k0 k× + (k×)2 ] =

∣∣∣∣∣∣
1 + 2(k2

2 + k2
3) −2ik0k3 − 2k1k2 +2ik0k2 − 2k1k3

+2ik0k3 − 2k1k2 1 + 2(k2
3 + k2

1) −2ik0k1 − 2k2k3

−2ik0k2 − 2k1k3 +2ik0k1 − 2k2k3 1 + 2(k2
1 + k2

2)

∣∣∣∣∣∣ . (6)

Euclidean rotations are specified by

k0 = n0 , kj = −inj , n0 = cos
α

2
, n = sin

α

2
e ;

note identities

[O(n)]∗ = O(n) , [O(n)]−1 = O(n̄) = [O(n)]tr .

Lorentz boosts are specified by

k0 = n0 , k = m , n0 = ch
β

2
, m = sh

β

2
e ,

O =

∣∣∣∣∣∣
1− (1− chβ)(e22 + e23) −i shβ e3 +Ge1e2 i shβ e2 +Ge1e3

i shβ e3 + (1− chβ)e1e2 1−G(e23 + e21) −i shβ e1 +Ge2n3

−i shβ e2 +Ge1e3 i shβ e1 +Ge2e3 1−G(e21 + e22)

∣∣∣∣∣∣
where G = (1− ch β); note identities

[O(n0,m)]∗ = [O(n0,m)]−1 = O(n0,−m) = [O(n0,m)]tr .

Let us write down the real Lorentz transformation over 4-vectors:

L =

∣∣∣∣∣∣∣∣
k0k
∗
0 (−k∗0k1 − k0k

∗
1) −k∗0k2 − k0k

∗
2 −k∗0k3 − k0k

∗
3

−k∗0k1 − k0k
∗
1 k0k

∗
0 −ik∗0k3 + ik0k

∗
3 +ik∗0k2 − ik0k

∗
2

−k∗0k2 − k0k
∗
2 ik∗0k3 − ik0k

∗
3 k0k

∗
0 −ik∗0k1 + ik0k

∗
1

−k∗0k3 − k0k
∗
3 −ik∗0k2 + ik0k

∗
2 +ik∗0k1 − ik0k

∗
1 k0k

∗
0

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
D0 i(+k2k

∗
3 − k3k

∗
2) i(−k1k

∗
3 + k3k

∗
1) i(k1k

∗
2 − k2k

∗
1)

−i(+k2k
∗
3 − k3k

∗
2) D1 k1k

∗
2 + k2k

∗
1 k1k

∗
3 + k3k

∗
1

−i(−k1k
∗
3 + k3k

∗
1) k1k

∗
2 + k2k

∗
1 D2 k2k

∗
3 + k3k

∗
2

−i(+k1k
∗
2 − k2k

∗
1) +k1k

∗
3 + k3k

∗
1 +k2k

∗
3 + k3k

∗
2 D3

∣∣∣∣∣∣∣∣
where

D0 = kjk
∗
j , D1 = k1k

∗
1 − k2k

∗
2 − k3k

∗
3 , D2 = k2k

∗
2 − k1k

∗
1 − k3k

∗
3 , D3 = k3k

∗
3 − k1k

∗
1 − k2k

∗
2

or taking into account ka = −ina +ma:

L = 2

∣∣∣∣∣∣∣∣
(n2

0 +m2
0)/2 n1m0 − n0m1 n2m0 − n0m2 n3m0 − n0m3

n1m0 − n0m1 (n2
0 +m2

0)/2 −n0n3 −m0m3 n0n2 +m0m2

n2m0 − n0m2 n0n3 +m0m3 (n2
0 +m2

0)/2 −n0n1 −m0m1

n3m0 − n0m3 −n0n2 −m0m2 2n0n1 +m0m1 (n2
0 +m2

0)/2

∣∣∣∣∣∣∣∣
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+2

∣∣∣∣∣∣∣∣
D0/2 n2m3 − n3m2 n3m1 − n1m3 n1m2 − n2m1

−n2m3 + n3m2 D1/2 n1n2 +m1m2 n1n3 +m1m3

−n3m1 + n1m3 n1n2 +m1m2 D2/2 n2n3 +m2m3

−n1m2 + n2m1 n1n3 +m1m3 n2n3 +m2m3 D3/2

∣∣∣∣∣∣∣∣
where

D0 = n2
1 +m2

1 + n2
2 +m2

2 + n2
3 +m2

3 , D1 = n2
1 +m2

1 − n2
2 −m2

2 − n2
3 −m2

3 ,

D2 = −n2
1 −m2

1 + n2
2 +m2

2 − n2
3 −m2

3 , D3 = −n2
1 −m2

1 − n2
2 −m2

2 + n2
3 +m2

3 .

Let us verify these formulas for Lorentz boosts: n0 = chβ2 , m = shβ2 e , e2 = 1 ; the matrix L reads

L =

∣∣∣∣∣∣∣∣
ch β −sh β e1 −sh β e2 −sh β e3
−sh β e1 1 + (ch β − 1)e21 (ch β − 1)e1e2 (ch β − 1)e1e3
−sh β e2 (ch β − 1)e1e2 1 + (ch β − 1)e22 (ch β − 1)e2e3
−sh β e3 (ch β − 1)e1e3 (ch β − 1)e2e3 1 + (ch β − 1)e23

∣∣∣∣∣∣∣∣ , (7)

which in terms of space-time transformation coincides with the standard form

t′ = ch β t− sh β (ex) , x′ = −sh β e t+ [ x + (ch β − 1) e (ex) ] .

3. The problem of a small group in SO(3.C), non-isotropic case

Let return to eq. (5) and note that the whole set of element of SL(2.C) can be divided into two
subsets depending on k with vanishing or not length. In this Section we consider the non-isotropic
case, k2 6= 0. Here, one may introduce a (γ,∆)-parametrization of that subset as follows:

B(k) = sin
γ

2
− i sin

γ

2
∆ , γ = α+ iβ ,

∆ = N + iM, ∆2 = (N2 −M2) + 2iNM = 1 .
(8)

Now, Euclidean rotation and Lorentzian boost are specified respectively by conditions:

β = 0 , M = 0 , and α = 0 , M = 0 .

One can express the Lorentz matrix L in terms of the variable (γ,∆)

γ = α+ i β , ∆ = N + i M ;

it suffices to allow for the identities

n0 = cos
α

2
ch

β

2
, m0 = − sin

α

2
sh

β

2

n = sin
α

2
ch

β

2
N− cos

α

2
sh

β

2
M

m = cos
α

2
sh

β

2
N + sin

α

2
ch

β

2
M .

(9)
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The set of spinor matrices (8) at any fixed vector ∆, ∆2 = 1 consists of a 2-parametric subgroup
with Abelian group multiplication law:

γ′′

2
=
γ′

2
+
γ

2
. (10)

Complex rotation matrices O in (γ,∆)-parametrization look

O(γ,∆) =

∣∣∣∣∣∣
1− F (∆2

2 + ∆2
3) −2 sin γ∆3 + F∆1∆2 +2 sin γ∆2 + F∆1∆3

+2 sin γ∆3 + F∆1∆2 1− F (∆2
3 + ∆2

1) −2 sin γ∆1 + F∆2∆3

−2 sin γ∆2 + F∆1∆3 +2 sin γ∆1 + F∆2∆3 1− F (∆2
1 + ∆2

2)

∣∣∣∣∣∣
where F = 1− cos γ. We need one simple property of these 2-parametric subgroups (10) an any fixed
∆ – each of them leaves invariant a definite complex non-isotropic 3-vector, fixed up to any non-zero
complex factor λ (equation (11) is verified by direct calculation)

∆2 = 1, O(γ,∆) λ ∆ = λ ∆ ; (11)
(12)

O1j ∆j = [ ∆1 − F (∆2
2 + ∆2

3)∆1 − sin γ ∆3∆2 + F∆1∆2
2 + sin γ ∆2∆3 + F∆1∆2

3 ] = ∆1,

O2j ∆j = [ sin γ ∆3∆1 + F∆2
1∆2 + ∆2 − F (∆2

3 + ∆2
1)∆2 − sin γ ∆1∆3 + F∆2∆2

3 ] = ∆2,

O3j∆j = [ − sin γ∆2∆1 + F∆2
1∆3 + sin γ ∆1∆2 + (1− cos γ)∆2

2∆3

+∆3 − (1− cos γ)(∆2
1 + ∆2

2)∆3 = ∆3.

Given arbitrary non-isotropic complex vector K, to construct a corresponding small subgroup in
SO(3.C), it suffices to have found a corresponding vector ∆ normalized on +1. Let us detail this task:

K = n + i m = K ∆ , ∆ = N + iM ,

∆2 = 1 , N2 −M2 = 1 , 2i N M = 0 ,
K2 = (n2 −m2) + 2i n m = I1 + iI2 , I1, I2 = inv ,

that is

K = n + i m = K ∆ = ±
√

(n2 −m2) + 2i n m (N + iM) . (13)

Complex invariant K2 may be presented differently

K2 = (n2 −m2) + 2i n m = I (cos 2µ+ i sin 2µ) ,
I = +

√
(n2 −m2)2 + 4(n m)2 ,

cos 2µ =
I1√
I2
1 + I2

2

=
n2 −m2√

(n2 −m2)2 + 4(n m)2
,

sin 2µ =
I2√
I2
1 + I2

2

=
2n m√

(n2 −m2)2 + 4(n m)2
. (14)

Therefore, the complex K may be written in the form

K = n + i m =
√
I e2iµ (N + iM) = [ (n2 −m2)2 + 4(n m)2 ]1/4 eiµ (N + iM) ;
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from whence one obtains an expression for N + iM:

N + iM =
e−iµ (n + i m)

[(n2 −m2)2 + 4(n m)2 ]1/4
. (15)

In two particular cases, these formulas are much simplified:

(I1 6= 0 , I2 = 0)

I(a) n2 > m2 , µ = 0 ,

n + i m =
√

n2 −m2
n + im√
n2 −m2

≡
√

n2 −m2 (N + iM) ,

(16)

I(b) n2 < m2 , µ =
π

2
,

n + i m =
√

n2 −m2
(−i)(n + im)√
−(n2 −m2)

≡
√

n2 −m2 (N + iM) , (17)

(I1 = 0 , I2 6= 0) , cos 2µ = 0 , sin 2µ =
n m√
(n m)2

,

II(a) n m > 0 , µ =
π

4
,

n + i m =
√

+2(nm)
e−iπ/4 (n + im)√

+2(nm)
≡
√

+2(nm) (N + iM) , (18)

II(b) n m > 0 , µ =
π

4
,

n + i m =
√

2(nm)
e−i3π/4 (n + im)√

−2(nm)
≡
√

2(nm) (N + iM) . (19)

Turning back to the main relationship

K2 6= 0 , K = K ∆ , ∆2 = 1 ,
O(γ,∆) K∆ = K∆ , ∆2 = 1 . (20)

and note two special cases when the sense of the parameter γ = α+ iβ is evident in physical terms:

the first

∆ = (N + iM) e , γ = α ,

B = cosα− i sinα e ~σ ,

O(α, e) (N + iM)e = (N + iM) e ,

O(α, e) ∈ SO(2) ; (21)

the second

∆ = (N + iM) e , γ = i β ,

B = ch β + sh β e ~σ ,

O(iβ, e) (N + iM) e = (N + iM)e ,
O(α, e) ∈ SO(1, 1) . (22)
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In particular, the above variants I(a), I(b) are of that type:

I(a) m = 0 , K = n =
√

+n2
n√
+n2

,

I(b) n = 0 , K = i m =
√
−m2

m√
m2

.

4. On reduction of a complex non-isotropic vector to a real form

Let us demonstrate that the case of an arbitrary complex vector ∆, ∆2 = 1 always can be
reduced to a real form by means of an appropriate Lorentz transformation. To this end, let start with
any complex vector of unit length:

∆ = N + iM , N2 −M2 = 1 , N M = 0 ,
N = ch ρ N0 , N2

0 = 1 ,
M = sh ρ M0 , M2

0 = 1 , N0 M0 = 0 ;
(23)

and find a matrix S ∈ SO(3.C) satisfying equation

S(N + iM) = e + i0 , e2 = +1 . (24)

Eq. (24) can be written differently

S + S∗

2
(N + iM) +

S − S∗

2
(N + iM) = e + i0.

With the notation

S + S∗

2
= R ,

S − S∗

2
= −i J , S = R− iJ

we get two equations

R N + J M = K0 , R M− J N = 0 ;

they can be written as

R ch ρ N0 + J sh ρ M0 = e ,

R sh ρ M0 = +J ch ρ N0 . (25)

Second relation in (25) is equivalent to

J−1R th ρ M0 = + N0 . (26)

However, an orthogonal rotation O1 = O(c1), changing a unite length vector M0 into another vector
unit length vector N0 is well known [12]

J−1R th ρ = O1 ,

O1 M0 = N0 , c1 =
M0 ×N0

1 + M0 N0
. (27)
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Substituting this into the first equation in (25) we get

sh ρ (R J−1R+ J) M0 = e . (28)

Rotation transforming the vector M0 into e (note it as O2 ) is

sh ρ (R J−1R+ J) = O2 ,

O2 M0 = e, c2 =
M0 × e

1 + M0 e
. (29)

Therefore, we know expressions for two matrices O1 and O2 – see (27) and (29), in terms of which two
other R and J are given:

J−1R =
O1

th ρ
, R J−1R+ J =

O2

sh ρ
. (30)

Solving eqs. (30) is quite elementary:

R =
J O1

th ρ
;

and substitution this R into second equation in (30) we get

J O1

th ρ
J−1J O1

th ρ
+ J =

O2

sh ρ
,

J (ch2ρ O2
1 + sh2ρ) = sh ρ O2 . (31)

Thus J and R have been found:

J = sh ρ O2 (ch2ρ O2
1 + sh2ρ)−1 ,

R = ch ρ O2 (ch2ρ O2
1 + sh2ρ)−1 O1 ; (32)

correspondingly, the the S transformation we need is

S = R− iJ ∈ SO(3.C) ,
S = O2 (ch2ρ O2

1 + sh2ρ)−1 [ch ρ O1 − i sh ρ ].
(33)

One may note one special case to choose the vector e. Indeed, let it be e = N0, O2 = O1 which
leads to

J = sh ρ O1 (ch2ρ O2
1 + sh2ρ)−1 ,

R = ch ρ O1 (ch2ρ Π2 + sh2ρ)−1 O1 . (34)

Besides, one may choose the variant e = M0, O2 = I, then we arrive at

J = sh ρ (ch2ρ O2
1 + sh2ρ)−1 ,

R = ch ρ (ch2ρ O2
1 + sh2ρ)−1 O1 . (35)
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Let us turn again to the stationary subgroup problem:

K = n + i m = K ∆ , ∆2 = 1 ,
K =

√
I1 + iI2 , I1 = n2 −m2 , I2 = 2i nm

O(γ,∆)
√
I1 + iI2 ∆ =

√
I1 + iI2 ∆ , =⇒

O(γ,N + iN) (n + im) = (n + im)
(36)

where

n + im =
√
I1 + iI2 (N + i M) , (37)

Therefore, the main stationary equation in an arbitrary non-isotropic case may be written as

O(γ,∆ =
n + im√
I1 + iI2

(n + im) = (n + im). (38)

In turn, with the help of additional Lorentz transformation S according to (24), one may reduce
equation (38) to the form

SO(γ,∆)S−1K S ∆ = K S∆ = K (e + i 0)

and further, with the use of the known identity in the theory of the rotation group [12], we arrive at
the basic relationship with clear interpretation for γ – see (21)-(22):

O(γ, e)
√
I1 + iI2e =

√
I1 + iI2e , e2 = 1 . (39)

In particular, the vector e may be taken as e = N0 or e = M0. So, the values of invariants, I1 and
I2, govern the possible most simple form for commutative parameters n′ and m′ in different reference
frames.

[xa, xb]− = i θab , θab ∼ (n + im) ,
[x′a, x

′
b]− = i θ′ab ,

θ′ab ∼ (n′ + im′) =
√
I1 + iI2 e . (40)

5. On physical meaning of 2-parametric subgroup O(γ = α+iβ,∆) at arbitrary
reference frame

To have interpreted the complex parameter γ = α + iβ of the subgroup O(γ = α + iβ,∆) at
arbitrary reference frame, let us decompose the corresponding spinor elements into product of Euclidean
rotation and Lorentz boost:

cos
α+ iβ

2
− i sin

α+ iβ

2
(N + iM) ~σ

= (cos
a

2
− i sin

a

2
a ~σ) (ch

b

2
+ sh

b

2
b ~σ) ; (41)
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it suffices to solve the problem (it is a spinor variant of the well-known problem of factorization of any
Lorentz matrix into rotation and boost – see, for instance, in [12]):

k0 + k ~σ = (a0 − ia ~σ)(b0 + b ~σ)
= (a0b0 − i a b) + ( a0 b + a× b− i b0 a ) ~σ ,

k∗0 + k∗~σ = (a0 + ia~σ)(b0 + b~σ)
= (a0b0 + i a b) + ( a0 b + a× b + i b0 a ) ~σ ;

which is equivalent to the system

k0 = (a0b0 − i a b) ,
k∗0 = (a0b0 + i a b) ,

k = ( a0 b + a× b− i b0 a ) ,
k∗ = ( a0 b + a× b + i b0 a ) ,

or

k0 + k∗0
2

= a0b0 ,
k0 − k∗0

2i
= − a b ,

k + k∗

2
= a0 b + a× b ,

ik− ik∗

2
= b0a . (42)

With additional restrictions:

a2
0 + a2 = +1 , a0 = ±

√
1− a2 ,

b20 − b2 = +1 , b0 = +
√

1 + b2 ≥ +1 (43)

eqs. (42) take the form

n0 = ±
√

1− a2
√

1 + b2 , m0 = − a b ,

m = ±
√

1− a2 b + a× b , n =
√

1 + b2 a .

From whence it follows

n0 = ±
√

1− a2
√

1 + b2 , m0 = − a b ,

m
n0

=
b√

1 + b2
+

a
±
√

1− a2
× b√

1 + b2
,

n
n0

=
a

±
√

1− a2
.

(44)

With the help of variables A,B:

b√
1 + b2

= B , b0 =
√

1 + b2 =
1√

1−B2
, b =

B√
1−B2

,

a
±
√

1− a2
= ±A , a0 = ±

√
1− a2 =

1
±
√

1 + A2
, a =

A√
1 + A2

,

Proceedings of the F&ANS-2008 Conference-School, 2008



Red’kov V., Tolkachev E.: The Lorentz Group, Noncommutative Space-Time, and . . . 12

we get

n0 = ± 1√
1 + A2

1√
1−B2

, m0 = − A√
1 + A2

B√
1−B2

,

m
n0

= B + A×B ,
n
n0

= A . (45)

The vector B may be resolved into a linear combination B = ν n + µ m + σ n×m which must obey
m
n0

= ν n + µ m + σ n×m +
n
n0
× (ν n + µ m + σ n×m)

or
m
n0

= ν n + µ m + σ n×m +
µ

n0
n×m +

σ

n0
(nm) n− σ

n0
(n2) m .

Therefore, we have the system

ν +
σ

n0
(nm) = 0 ,

1
n0

= µ− σ (n2)
n0

, σ +
µ

n0
= 0

with evident solution

σ = − 1
n2

0 + n2
, µ =

n0

n2
0 + n2

, ν =
(nm)
n0

1
n2

0 + n2
= −m0

1
n2

0 + n2
.

Thus, the factorization we need is found:

k0 + k ~σ = (
n0 − in ~σ√
n2

0 + n2
) (

1√
1−B2

+
B ~σ√
1−B2

) , B =
n0 m−m0 n + m× n

n2
0 + n2

. (46)

The problem of factorization may be solved easily with opposite order:

k0 + k ~σ = (b0 + b ~σ)(a0 − ia ~σ) = (a0b0 − i a b) + ( a0 b− a× b− i b0 a ) ~σ ,
k∗0 + k∗~σ = (b0 + b~σ)(a0 + ia~σ) = (a0b0 + i a b) + ( a0 b− a× b + i b0 a ) ~σ ; (47)

it reduces to the system (in comparison with (42) only the sign at the vector product has been changed
on opposite)

k0 = (a0b0 − i a b) , k∗0 = (a0b0 + i a b) ,
k = ( a0 b− a× b− i b0 a ) , k∗ = ( a0 b− a× b + i b0 a ) ,

or

n0 = a0b0 , m0 = − a b , m = ( a0 b− a× b) , n = b0 a . (48)

Further analysis is the same, the final result is

k0 + k ~σ = (
1√

1−B2
+

B ~σ√
1−B2

) (
n0 − in ~σ√
n2

0 + n2
) , B =

n0 m−m0 n− m× n
n2

0 + n2
. (49)

The factorizations produced can be translated to parameters (γ/2,∆):

B = k0 + k ~σ = cos
α+ iβ

2
− i sin

α+ iβ

2
∆ , ∆ = N + iM

with the help of the formulas (9).

Proceedings of the F&ANS-2008 Conference-School, 2008



Red’kov V., Tolkachev E.: The Lorentz Group, Noncommutative Space-Time, and . . . 13

6. The problem of a small group in SO(3, C), isotropic case

Let us consider transformations of the group SL(2.C) with isotropic vector k:

k0 = ±1 , B = ± (I + k ~σ) , k2 = 0 , I1 = n2 −m2 = 0 , I2 = +2 nm = 0 . (50)

Evidently, vectors k are fixed within arbitrary complex numerical factor k′ = z ∆, ∆2 = 0,
therefore one may construct the following 2-parametric subgroups in SL(2.C); bellow we are interested
mainly in corresponding elements in the SO(3.C) group when the factor δ = ±1, has no effect:

δ′(I + z′ k ~σ) δ(I + z k ~σ) = δ′δ [ I + (z′ + z) k ~σ ] (51)

and correspondingly O(zk) k = k , k2 = 0 where

O(zk) =

∣∣∣∣∣∣
1 + 2z2(k2

2 + k2
3) −2zik3 − 2z2k1∆2 +2zik2 − 2z2k1∆3

+2zik3 − 2z2k1k2 1 + 2z2(k2
3 + k2

1) −2zik1 − 2z2k2k3

−2zik2 − 2z2k1k3 +2zik1 − 2z2k2k3 1 + 2z2(k2
1 + k2

2)

∣∣∣∣∣∣ .
Formulas are much simplified in particular cases:

k = (k1, k2, 0) , k2
1 + k2

2 = 0 ,∣∣∣∣∣∣
1 + 2z2k2

2 −2z2k1k2 +2zik2

−2z2k1k2 1 + 2z2k2
1 −2izk1

−2izk2 +2izk1 1 + 2z2(k2
1 + k2

2)

∣∣∣∣∣∣
∣∣∣∣∣∣
k1

k2

0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k1

k2

0

∣∣∣∣∣∣ ,
k = (0, k2, k3) , k1

1 + k2
2 = 0 ,∣∣∣∣∣∣

1 + 2z2(k2
2 + k2

3) −2izk3 +2izk2

+2izk3 1 + 2z2k2
3 −2z2k2k3

−2izk2 −2z2k2k3 1 + 2z2k2
2

∣∣∣∣∣∣
∣∣∣∣∣∣

0
k2

k3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0
k2

k3

∣∣∣∣∣∣ ,
k = (k1, 0, k3) , k2

1 + k2
3 = 0 ,∣∣∣∣∣∣

1 + 2z2k2
3 −2izk3 −2z2k1k3

+2izk3 1 + 2z2(k2
3 + k2

1) −2izk1

−2z2k1k3 +2izk1 1 + 2z2k2
1

∣∣∣∣∣∣
∣∣∣∣∣∣
k1

0
k3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k1

0
k3

∣∣∣∣∣∣ . (52)

To reach some base to interpret the complex parameter z in physical terms, we should use the
corresponding 4×4 Lorentz matrices L(±(1,−in+m)). The z = λeiσ - freedom in vector k is described
by relation k′ = λ eiσ k :

(−in′ + m′) = λ (cosσ + i sinσ) (−in + m) ,
n′ = λ (cosσ n− sinσ m) , m′ = λ(sinσ n + cosσ m) ,

n
′2 = λ2 n2 , m

′2 = λ2 m2 ,

n′ m′ = 0 , n′ ×m′ = λ2 n×m . (53)
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To have additional ground to interpret physically the parameter z, let us factorized spinor matrix
B(±(1,−in + m)) into the product of rotation and boost

a2
0 + a2 = 1 , b20 − b2 = 1 ,

± [ I + (−in + m) ~σ ] = (a0 − i a ~σ) (b0 + b ~σ) ,
= a0b0 + a0 b ~σ − ib0 a ~σ − i [ ab + i (a× b) ~σ ] . (54)

The problem is reduced to the system

a b = 0 , a0 b0 = ± 1 ,
± n = b0 a , =⇒ a = a0 n ,

±m = a0 b + (a× b) , =⇒ b0 m = b + n× b . (55)

One can resolve the vector b into the linear combination b = b0 [ α n+β m+γ (n×m) ], from whence
it follows

m = α n + β m + γ (n×m) + β n×m− γ n2 m ,

that is

b = b0
(m− n×m)

1 + n2
. (56)

Thus, the factorization has been found:

± [ I − i(n + i m) ~σ ] = (a0 − i a0 n ~σ) ( b0 + b0
(m− n×m)

1 + n2
~σ ) ,

a2
0 + a2

0 n
2 = 1 , =⇒ a0 = ± 1√

1 + n2
,

b20 − b20
(m− n×m)2

(1 + n2)2
= 1 , =⇒ b0 =

√
1 + n2 . (57)

In the same manner, one solves the problem with opposite order:

± [ I − i(n + i m) ~σ ] = (b0 + b ~σ) (a0 − i a ~σ) ,
= a0b0 + a0 b ~σ − ib0 a ~σ − i [ ab− i (a× b) ~σ ] , (58)

which results in

± [ I − i(n + i m) ~σ ] = (a0 − i a0 n ~σ) ( b0 + b0
(m + n×m)

1 + n2
~σ ) ,

a2
0 + a2

0 n
2 = 1 , =⇒ a0 = ± 1√

1 + n2
,

b20 − b20
(m + n×m)2

(1 + n2)2
= 1 , =⇒ b0 =

√
1 + n2 . (59)

The z = λeiσ – freedom in k plays essential role in the factorizations:

±[I + (−in′ + m′) ~σ ] = (a′0 − ia′0n′ ~σ) (b′0 + b′0
(m′ − n′ ×m′)

1 + n′2
~σ) ,

a′0 = ± 1√
1 + λ2 n2

, b′0 =
1√

1 + λ2 n2
, n′ ×m′ = λ2 n×m ;

(60)
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and

±[ I + (−in′ + m)′~σ ] = (a′0 − ia′0n′~σ) (b′0 + b′0
(m′ + n′ ×m′)

1 + n′2
~σ) ,

a′0 = ± 1√
1 + λ2 n2

, b′0 =
1√

1 + λ2 n2
, n′ ×m′ = λ2 n×m .

(61)

7. Behavior of the non-linear constitutive relations under the Lorentz group

As noted above, in the frame of field theory in non-commutative space-time, extended electrody-
namic equations minimally modified by the first order terms of non-commutativity θab were constructed
– those are usual Maxwell equations with special non-linear constitutive equations)

D
ε0

= E + [ (nE)− (mcB) ] E + [ (mE) + (ncB) ] cB + (EcB) m +
1
2

(E2 − c2B2) n ,

H
cε0

= cB + [ (nE)− (mcB) ] cB− [ (mE) + (ncB) ] E− (EcB) n +
1
2

(E2 − c2B2) m ,

(62)

and inverse relations

E = D/ε0 + [mH/cε0 − nD/ε0; ]D/ε0 − [mD/ε0 + nH/cε0]H/cε0 −

−(DHc/ε20)m +
1
2

(H2/c2ε20 −D2/ε20) n ,

cB = H/cε0 + [mH/cε0 − nD/ε0]H/cε0 + [mD/ε0 + nH/cε0]D/ε0

+(DHc/ε20)n +
1
2

(H2/c2ε20 −D2/ε20)m .

(63)

In the used system SI, the dimensions of the quantities involved obey relations:

[E] = [
D

ε0
] = [cB] =

H

cε0
] = [

1
n

] = [
1
m

] .

Let us translate these formulas to Riemann-Zilberstein-Majorana-Oppenheimer basis (more details
and references see in [6]). Correspondingly, in the variables with simple transformation properties under
the complex orthogonal group SO(3.C), isomorphic to the Lorentz group L↑+. To this end, it suffices to
use the following variables

f = E + icB , h =
1
ε0

(D + iH/c) , n + im = K ; (64)

the constitutive equations read

h = [ 1 + (f∗K∗) ] f +
(f∗f∗)

2
K , f = [ 1− (h∗K∗) ] h− h∗h∗

2
K . (65)
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These relations are inverse to each other within the accuracy of the first order terms in K. With respect
to the Lorentz group the constitutive equations behave themselves as follows:

h′ = Oh , f ′ = Of , f
′∗ = O∗f∗ , K′ = OK , K

′∗ = O∗K∗ ,

h′ = O[1 + ((O∗)−1f
′∗(O∗)−1K

′∗)]O−1f ′ +O
(O∗)−1f

′∗(O∗)−1f
′∗)

2
O−1K′ ,

f ′ = O[1− ((O∗)−1h
′∗(O∗)−1K

′∗)]O−1h′ −O (O∗)−1h
′∗(O∗)−1h

′∗)
2

O−1K′ .

Allowing for orthogonality property of the elements of SO(3.C) we arrive at

h′ = [ 1 + (f
′∗K

′∗) ] f ′ +
f
′∗f
′∗

2
K′, f ′ = [ 1− (h

′∗K
′∗) ] h′ − h

′∗h
′∗

2
K′ . (66)

This means that the constitutive relations are explicitly covariant under the complex orthogonal
group SO(3.C). Evidently, above described 2-parametric small subgroups in SO(3.C) leaving invariant
non-commutativity parameters, complex 3-vectors K and K∗, provide us with subgroup in the Lorentz
group, leaving invariant the nonlinear constitutive equations:

non-isotropic case

K = n + im = K k , ∆2 = 1 , ∆ = N + iM ,

K′ = O(γ,∆) K = K , K
′∗ = O∗(γ,∆) K∗ = K∗ ,

subgroup O(γ,∆) , γ′′ = γ′ + γ ,

h′ = [ 1 + (f
′∗K∗) ] f ′ +

f
′∗f
′∗

2
K ,

f ′ = [ 1− (h
′∗K∗) ] h′ − h

′∗h
′∗

2
K , (67)

isotropic case

K = n + im = ∆ , ∆2 = 0 ,
K′ = O(z∆) K = K , K

′∗ = O∗(γ,∆) K∗ = K∗ ,

subgroup O(z ∆) , z′′ = z′ + z ,

h′ = [ 1 + (f
′∗K∗) ] f ′ +

f
′∗f∗

2
K′ ,

f ′ = [ 1− (h
′∗K∗) ] h′ − h

′∗h
′∗

2
K . (68)

8. On constitutive relations and discrete dual symmetry

In absence of sources, Maxwell equations in media

div B = 0 , rot E = −∂cB
∂ct

, div D = 0 , rot
H
c

=
∂D
∂ct

(69)

can be combined into complex ones

div (
D
ε0

+ i cB) = 0 , −i∂0(
D
ε0

+ icB) + rot (E + i
H/c

ε0
) = 0 . (70)
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Variables with simple transformation properties under SO(3.C) are f = E + icB , h = 1
ε0

(D + iH/c) .
Eqs. (70) may be translated into

div (
h + h∗

2
+

f − f∗

2
) = 0 , −i∂0(

h + h∗

2
+

f − f∗

2
) + rot (

f + f∗

2
+

h− h∗

2
) = 0 . (71)

It has sense to introduce new variables

G =
h + f

2
, R =

h∗ − f∗

2
, (72)

they are vectors of different type under SO(3.C) group: G′ = O G , R′ = O∗ R . Accordingly,
Maxwell equations read

div G + div R = 0 , −i∂0G + rot G− i∂0R− rot R = 0 , (73)

these are invariant under dual rotations: eiχ G = G′ , eiχ R = R′ . which can be translated to
variables h, f :

h′ = cosχ h + i sinχ f , f ′ = i sinχ h + cosχ f .

Following to [4], the dual rotations for K is taken in the form K′ = eiχ K . Let us consider behavior of
the constitutive relations with respect to the dual rotation (for brevity, let ε0 = 1, c = 1):

h = [ 1 + (f∗K∗) ] f +
(f∗f∗)

2
K , f = [ 1− (h∗K∗) ] h− h∗h∗

2
K .

We immediately note three discrete operations leaving invariant the constitutive relations:

(1) χ =
π

2
, h′ = i f , f ′ = i h , K′ = i K ,

f ′ = [ 1− (h
′∗K

′∗) ] h′ − h
′∗h
′∗

2
K′ , h′ = [ 1 + (f

′∗K
′∗) ] f ′ +

(f
′∗f
′∗)

2
K′ ,

(2) χ = π , f ′ = − f , h′ = − h , K′ = − K ,

h′ = [ 1 + (f
′∗K

′∗) ] f ′ +
(f
′∗f
′∗)

2
K′ , f ′ = [ 1− (h

′∗K
′∗) ] h′ − h

′∗h
′∗

2
K′ ,

(3) χ =
3π
2
, h′ = −i f , f ′ = −i h , K′ = −i K , f ′ = [ 1− (h

′∗K
′∗) ] h′ − h

′∗h
′∗

2
K′ ,

h′ = [ 1 + (f
′∗K

′∗) ] f ′ +
(f
′∗f
′∗)

2
K′ .

(74)

Together with the unit transform

(4) χ = 0 , f ′ = + f , h′ = + h , K′ = + K

we have the discrete group of four element with simple structure: { 1,−1,+i, −i } .
Let us consider action of continuous dual rotations on constitutive equations. It is convenient to

use the variables G,R:

G + R∗ = h , G∗ + R = h∗ , G−R∗ = f , G∗ −R = f∗ , (75)
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then

G + R∗ = [ 1 + (G∗ −R)K∗) ] (G−R∗) +
(G∗ −R)(G∗ −R)

2
K ,

G−R∗ = [ 1− (G∗ + R)K∗) ] (G + R∗)− (G∗ + R)(G∗ + R)
2

K ,

from whence it follows

2(G∗R) K + (G∗K∗) R∗ + (RK∗) G = 0 ,

2R∗ = (G∗K∗) G + (RK∗) R∗ +
1
2

( G∗G∗ + RR ) K . (76)

When K = 0, eq. (76) gives 0 = 0 , R = 0, =⇒ h = f , which coincides with constitutive relations in
vacuum. With respect to the dual rotation

eiχ G = G′ , e−iχ G∗ = G
′∗ , eiχ R = R′ , e−iχ R∗ = R

′∗ , eiχ K = K′ , e−iχ K∗ = K
′∗

eqs. (76) transform into

2 (eiχG
′∗ e−iχR′) e−iχK′ + (eiχG

′∗ eiχK
′∗) eiχR

′∗ + (e−iχR′ eiχK
′∗) e−iχG′ = 0 ,

2 eiχR
′∗ = (eiχG

′∗ eiχK
′∗) e−iχG′ + (e−iχR′ eiχK

′∗) eiχR
′∗

+
1
2

[ eiχG
′∗ eiχG

′∗ + e−iχR′ e−iχR′ ] e−iχK′ .

Requiring invariance of these equations we arrive at two simple equations with evident solution

e−iχ = e+3iχ , e+iχ = e−3iχ , e+4iχ = 1 , eiχ = 1,−1,+i,−i . (77)

Therefore, only discrete dual transformation leaves invariant the non-linear constitutive equations,
it corresponds to eiχ = ±i. Thus, the dual symmetry status in non-commutative electrodynamics
differs with that in ordinary linear Maxwell theory in commutative space, this fact is to be interpreted
in physical terms.
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