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Chaotic instantons and ground quasienergy

splitting in time periodic perturbed systems
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Chaotic instanton approach is developed to describe dynamical tunneling in double
well system with single and double kick perturbations. Averaged time-independent
Hamiltonian for time periodic perturbed systems in framework of chaotic instanton
approach is used for derivation of the ground quasienergy splitting dependence on
perturbation strength. Numerical calculations are performed to check the validity of
the obtained formula. Results of these calculations are in good agreement with the
derived analytical formula both for single and double kicked systems.

1. Introduction

Investigation of the influence of small perturbation on the behavior of the nonlinear dy-

namical systems attracts permanent interest for the several last decades [1–3]. The connection

between the semiclassical properties of perturbed nonlinear systems and purely quantum pro-

cesses such as tunneling is a reach rapidly developing field of research nowadays [2, 4]. Our

insight in some novel phenomena in this field was extended during the last decades. The most

intriguing among them are the chaos assisted tunneling (CAT) and the closely related coherent

destruction of tunneling (CDT).

The former in particular is an enhancement of tunneling in the perturbed low-dimensional

systems at small external field strengths and driving frequencies [5]. This phenomenon takes

place when levels of the regular doublet undergo an avoided crossing with the chaotic state [6].

The latter, CDT phenomenon, is a suppression of tunneling which occurs due to the exact

crossing of two states with different symmetries from the tunneling doublet [7]. In this case the

tunneling time diverges which means the total localization of quantum state on the initial torus.

The most common methods which are used to investigate the interplay between semiclassical

properties of perturbed nonlinear systems and quantum processes are numerical methods based

on Floquet theory [4, 8, 9] and Random Matrix Theory [10]. Among other approaches we would

like to mention the scattering approach for billiard systems [11] and approach based upon the

presence of a conspicuous tree structure hidden in a complicated set of tunneling branches [12].

In this paper we will consider the original analytical approach based on instanton technique.

Enhancement of tunneling in system with external force in framework of this approach occurs

due chaotic instantons which appear in perturbed case. This approach was proposed in Refs. [13]
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and used in Ref. [14]. Chaotic instanton approach will be developed further here using averaged

time-independent Hamiltonian and exploited for description of the enhancement of tunneling in

the kicked double well system. The main purpose of the present study is to prove the ability of

developed chaotic instanton approach to give quantitative analytical description of tunneling well

agreed with independent numerical calculations based on Floquet theory. It will give additional

support and pulse for the further development of analytical methods to investigate tunneling

phenomenon in quantum systems with mixed classical dynamics. Alternative approach based

on quantum instantons which are defined using an introduced notion of quantum action was

suggested in Refs. [15]. Analytical approach to describe tunneling in perturbed systems based

on nonlinear resonances consideration was developed in Refs. [16]. A theory for dynamical

tunneling process using fictitious integrable system was recently given in Ref. [17].

Double well potential is a special toy model. It is convenient to use this model for tunneling

analysis. This system is well studied in the nonperturbed case, e.g. on the base of instanton

technique [18, 19] or WKB method [20]. Double well potential is often used for description

of processes which occurred in wide range of real physical systems: such as flipping of the

ammonia molecule [21] and transfer of protons along hydrogen bonds in benzoic-acid dimers at

low temperatures [22]. Perturbation in this paper is regarded in the form of the periodic kicks.

One of the attractive features of this type of perturbation is the extensively-investigated simple

quantum map which stroboscobically evolves the system from kick n to kick n + 1.

The paper is divided into several sections. Chaotic instantons are analyzed using averaged

time-independent Hamiltonian of the kicked system in section 2. Results obtained by means of

the averaged Hamiltonian are used in section 3 to derive analytical formula for lowest quasienergy

doublet splitting dependence on perturbation parameter in single kicked system. Numerical

calculations are performed to check the validity of this formula in the section 4. Chaotic instanton

approach for multikick perturbation is considered in section 5.

2. Chaotic instantons in kicked double-well potential

Hamiltonian of the particle in the double-well potential can be written down in the following

form:

H0 =
p2

2m
+ a0 x4 − a2 x2, (1)

where m - mass of the particle, a0, a2 - parameters of the potential. We consider the perturbation

of the kick-type and choose it as follows:

Vper = ε T x2

+∞∑
n=−∞

δ(t− nT ), (2)

where ε and T are perturbation strength and period, respectively, t - time. Dependence of the

perturbation on coordinate was chosen in the form of x2 in order to preserve spatial symmetry
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in the perturbed system. Hamiltonian of this system is

H = H0 + Vper. (3)

Now we implement Wick rotation (t → −iτ) and define Euclidean Hamiltonian

HE =
p2

2m
− a0 x4 + a2 x2 − ε T x2

+∞∑
n=−∞

δ(τ − nT ). (4)

Euclidean equations of motion of the particle in the nonperturbed double-well potential

(ε = 0) have a well known solution - instanton. This solution is used for calculation of the ground

energy splitting in the system without perturbation [18, 19] and explains the rate of the tunneling

process in it. Another solutions of the Euclidean equations of motion besides ordinary instanton

are required to explain dynamical tunneling in perturbed system. Perturbation destroys the

separatrix and some trajectories in its vicinity go to infinity. Narrow stochastic layer is formed

nearby the nonperturbed separatrix due to the perturbation. “Chaotic instanton” is appeared

in this layer. Chaotic instanton is the closest to the destroyed nonperturbed separatrix trapped

trajectory (see figure 1). Thus it plays a dominant role in tunneling in perturbed system.

Now lets construct the averaged time-independent Hamiltonian for the double well system

with the perturbation of the kick-type. It can be written down in the following form:

HE
eff =

1

T

∫ T

0

HEdt =
p2

2m
− a0x

4 + (a2 − ε) x2. (5)

This Hamiltonian is coincided with nonperturbed Euclidean Hamiltonian when parameter a2 is

replaced by ã2(ε) = a2 − ε. In contrast to the kicked system (4) averaged Hamiltonian (5) is

time-independent. Since the form of the potential is changing, there should be restriction for

the perturbation strength variation. This restriction follows from our assumption that ordinary

instanton approach should be valid for the averaged potential. Condition for ordinary instanton

approach applicability [19] can be written down for instanton action in averaged potential

Seff =
2ã

3/2
2

3a0

& 6.

Thus, for restriction considered we obtain

ε . εmax = a2 − 3
3
√

3 a
2/3
0 . (6)

Figure 1 shows a possibility to describe properties of the classical motion in the kicked

double well system in Euclidean time using averaged system (5). This Hamiltonian was used to

analyze the perturbed system phase space in Euclidean time and to construct an approximation

for chaotic instanton solution. Using this approximation we obtain the formula for energy range

of the chaotic instanton

∆HE
ch.inst. ≈

εa2

2a0

. (7)
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Expression (7) will be used in the following section in order to obtain analytical formula for

the lowest quasienergy doublet splitting dependence on the perturbation strength in the kicked

system.

3. Ground doublet quasienergy splitting formula

The lowest doublet energy splitting in two loop approximation in the nonperturbed double

well potential is the following (see [23] and review [19]):

∆E0 = 2 ω0

√
6

π

√
Sinst exp

(
−Sinst − 71

72

1

Sinst

)
, (8)

where ω0 - oscillation frequency near the bottom of the wells, Sinst = 2
√

ma
3/2
2 /(3 a0) - nonper-

turbed instanton action.

Ground doublet quasienergy splitting (∆η) in the kicked system in the framework of our

approach is expressed in terms of chaotic instanton action (Sch) through the formula which is
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FIG. 1. Phase space of the system with averaged Hamiltonian with perturbation parameter ε = 0.02.
Separatrix in this system (thick solid line) and in the nonperturbed system (dashed line) are shown in
the figure. Comparison of the particle classical motion on one period of the perturbation in averaged
(thick solid lines) and kicked (thin solid lines) systems from the set of initial conditions (thick points)
are shown in the inset (a). Inset (b) shows chaotic trajectory of the kicked particle near the turning

point of the separatrix in averaged system.

Proceedings of the F&ANS-2010 Conference-School, 2010



Chaotic instantons and ground quasienergy . . . 143

similarly to (8):

∆η = 2 ω0

√
6

π

√
Sch exp

(
−Sch − 71

72

1

Sch

)
, (9)

where chaotic instanton action can be calculated by averaging the nonperturbed trajectory

action (S(E)) over energy from minimum to maximum for the chaotic instanton energy (Emin

and Emax, respectively):

Sch =
1

∆HE
ch.inst.

∫ Emax

Emin

S(E)dE =

=
1

∆HE
ch.inst.

∫ ∆HE
ch.inst.

0

S(ξ)d ξ,

where we have made a transformation to the integral over the energy difference ξ = Einst−E in

last expression. Using nonperturbed trajectory action expansion near the separatrix S[x(τ, ξ)] =

πJ(Einst−ξ) ≈ Sinst−α
√

m
a2

ξ (α = (1+18 ln 2)/6 - numerical coefficient) expression for chaotic

instanton action can be calculated directly. As a result we have the following expression:

Sch = S0 − α

2

√
m

a2

∆HE
ch.inst.. (10)

Now we can write down analytical formula for the ground quasienergy levels splitting using

expressions (7), (8), (9) and (10):

∆η(ε) = ∆E0 ek ε, (11)

where

k =
α
√

ma2

4 a0

. (12)

Tunneling period in the kicked double well potential is expressed in terms of ground

quasienergy levels splitting Ttun = 2π/(∆η). Increasing of the perturbation parameter gives ex-

ponential rise to ground quasienergy splitting and to the tunneling frequency (νtun(ε) = ∆ η(ε)).

The last exponential factor in the expression (11) is responsible for the tunneling enhancement

in the perturbed system. In nonperturbed case formula (11) coincides with the expression (8).

Formula (11) will be checked in numerical calculations in the next section.

4. Numerical calculations

For the computational purposes it is convenient to choose the eigenvectors of harmonic

oscillator as the basis vectors. In this representation matrices of the Hamiltonian (1) and the
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perturbation (2) are real and symmetric. They have the following forms (n ≥ m):

H0
m n = δm n

[
~ω

(
n +

1

2

)
+

g

2

(
3

2
g a0 (2m2 + 2m + 1)

− a′2(2m + 1))]

+ δm+2 n
g

2
(g a0(2m + 3)− a′2)

√
(m + 1)(m + 2)

+ δm+4 n
a0g

2

4

√
(m + 1)(m + 2)(m + 3)(m + 4),

(x2)m n =
g

2

(
δm+2 n

√
(m + 1)(m + 2) + δm n(2m + 1)

)
,

where g = ~/mω and a′2 = a2 + mω2/2, ~ is Planck constant which we put equal to 1, ω -

frequency of the basis harmonic oscillator which is arbitrary, and so may be adjusted to optimize

the computation. We use the value ω = 0.2 with parameters m = 1, a0 = 1/128, a2 = 1/4

in most of calculations which are chosen in such a way that nonperturbed instanton action is

large enough for energy splitting formula for nonperturbed system to be valid and not too big

in order to decrease errors of numerical calculations. The matrix size is chosen to be equal to

200× 200. Calculations with larger matrices give the same results.

We calculate eigenvalues of the one-period evolution operator (e−iĤ0T/2e−iεT x̂2
e−iĤ0T/2) and

obtain quasienergy levels (ηk) which are related with the evolution operator eigenvalues (λk)

through the expression ηk = i ln λk/T . Then we get ten levels with the lowest one-period average

energy. We obtain these levels using the formula 〈vi|H0 + V/T |vi〉 (|vi〉 are the eigenvectors of

the one-period evolution operator).

Performed numerical calculations give the dependence of the ground quasienergy splitting

on the strength of the perturbation for different values of model parameters a0 (fig.2(a)) and a2

(fig.2(b)). We fix parameter a2 = 1/4 for figure 2(a) and a0 = 1/128 for figure 2(b). Results

of numerical calculations are plotted in the figure 2 by points. Axis ∆η is shown in logarithmic

scale. Obtained dependencies are exponential as it was predicted by chaotic instanton approach

and obtained analytical formula (11).

Analytical results are plotted in the figures 2 (a) and (b) by straight solid lines. Numerical

points lie close to these lines. The agreement between numerical calculations and analytical

expression is good in the parametric region considered.

Now lets perform numerical simulations for the tunneling process in the kicked double well

system and check an applicability of the formula (11) for this process. For this purpose we

regard the double well potential (1) with parameters m = 1, a0 = 1/128, a2 = 1/4 and the

same basis vectors as for previous calculations. We take a symmetric superposition of two lowest

nonperturbed states as a initial wave packet. These packet is localized in left well of potential.

Numerical simulations we provide by multiplying initial wave function by one period evolution

operator. The results of numerical simulations for the two values of the perturbation strength

are shown in the figure 3. The dependence of the localization probability of the wave packet on
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FIG. 2. Quasienergy splitting as a function of the strength of the perturbation for different values of
model parameters a0 (a) and a2 (b). Lines - analytical formula (11), points - numerical results.

the coordinate and time is presented in figures. Tunneling between two wells in nonperturbed

system is demonstrated in the figure 3(a). Evolution of the initial wave packet in perturbed

case is shown in the figure 3(b). Perturbation parameters for these simulations are T = 2π/4

and ε = 1.9 · 10−2. They are chosen in such a way to speed up a tunneling in two times in

comparison with nonperturbed system. Figures 3(a) and 3(b) demonstrate this enhancement.
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FIG. 3. Quantum mechanical tunneling in kicked double well potential. Perturbation parameters: (a)
ε = 0, (b) T = 2π/4, ε = 1.9 · 10−2.

Fourier analysis of the dependence of the localization probability of the wave packet in left well

on time in perturbed case confirms analytical assumptions mentioned above.

In order to check applicability of the developed approach we carry out a series of the nu-

merical calculations for wide range of the perturbation parameters. Results of the analysis is

performed in figure 4. Region of quantitative agreement between analytical and numerical re-
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FIG. 4. Comparison error of the analytical formula (11) with results of numerical calculations in
percents.

sults is shown by black color in the figure. There are two restrictions of the developed approach

applicability. The first one is that model parameters should be far away from the exact (avoided)

level crossings. Thus we have the restriction for the perturbation period (T ¿ 2π/ω0, where ω0

- oscillation frequency near the bottom of the wells). Another restriction for analytical predic-

tions is a condition for ordinary instanton approach applicability which imply the maximum for

perturbation strength (6). This maximum is shown in the figure by dashed line.Two restrictions

mentioned above explain accurately the figure 4.

5. Multikick perturbation

Lets consider double-well system with multikick perturbation. Hamiltonian of this system

is the following:

H =
p2

2m
+ a0x

4 − a2x
2 + ε1Tx2

+∞∑
n=−∞

δ(t− nT )

+ ε2Tx2

+∞∑
n=−∞

δ(t + ∆T − nT ), (13)

where ε1 and ε2 are strength of two perturbations, ∆T - shift between the kicks. Perturbation

period T is the same for these perturbations.
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Averaged time-independent Hamiltonian for the system under investigation is given by

Heff =
1

T

∫ T

0

Hdt =
p2

2m
+ a0x

4 − (a2 − ε1 − ε2) x2. (14)

Using the last expression we can rewrite restriction for perturbation strength (6) in multikick

case

ε1 + ε2 . εmax = a2 − 3
3
√

3 a
2/3
0 . (15)
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FIG. 5. Quasienergy splitting as a function of the strength of the second perturbation for different
values of the first one. Perturbation period T = 1, kicks shift dT = 0.4. Lines - analytical formula,

points - numerical results.

Ground quasienergy splitting in the double kicked double well potential is expressed in

terms of perturbation strength values

∆η(ε) = ∆E0 ek (ε1+ε2), (16)

where coefficient k is defined using expression (12).

Obtained analytical formula (16) is checked in numerical calculations (see figures 5 and 6).

One period evolution in case considered has the following form:

U = e−
iĤ0(T−∆T )

2 e−iε1T x̂2

e−iĤ0∆T e−iε2T x̂2

e−
iĤ0(T−∆T )

2 . (17)

Figure 5 shows that formula (16) can be used for the description of the ground quasienergy

splitting dependence. The applicability parametric region of the formula is demonstrated on the

figure 6. Restriction (15) is shown by dashed line.
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Chaotic instanton approach applicability error in percents
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FIG. 6. Comparison error of the analytical formula (16) with results of numerical calculations in
percents. Perturbation period T = 1, perturbation strength ε1 = 0.01.

6. Conclusions

Chaotic instanton approach allows to describe analytically the influence of single and double

kick perturbation on quantum properties of nonlinear systems. The kicked double well system

is regarded as a toy model to compare quantitative analytical predictions with the results of

numerical calculations.

Chaotic instanton is the solution of the Euclidean equations of motion of the perturbed sys-

tem. This configuration is responsible for the enhancement of tunneling far away from the exact

(avoided) level crossings. Time-independent averaged system is used for regular approximation

of the chaotic instanton solution in order to take into account it’s contribution to the ground

quasienergy doublet splitting. Dynamical simulations for the perturbed system and averaged

system show that averaged time-independent Hamiltonian can be used for the description of the

perturbed system Euclidean phase space. The chaotic instanton approximation was constructed

and exploited to obtain the energy range for the chaotic instanton trajectory. Formula for ground

quasienergy levels splitting was evaluated averaging trajectory action in the chaotic instanton

energy range in the framework of chaotic instanton approach. This formula predicts exponential

dependence of the ground doublet splitting on value of the perturbation strength.

Numerical calculations for quasienergy levels dependence on value of the perturbation

strength and simulations for tunneling dynamics are performed to check the validity of the

obtained analytical formula. Results of numerical calculations for the quasienergy spectrum
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confirm the exponential dependence of the ground splitting on the perturbation strength. They

are in good agreement with the derived analytical formulas (11) and (16). Simulations of the

tunneling dynamics in the kicked double well system demonstrate exponential tunneling enhance-

ment as well. Applicability of chaotic instanton approach was tested in a series of numerical

calculations. Sufficiently wide range of perturbation parameters was found suitable for developed

approach application both for single and double kick perturbation. Future goal of research will

be an extension of the chaotic instanton approach for aperiodic perturbations.
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