Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям О.Н.Здрок

(BO) MATTER.

2020 г.

Регистрационный № УД- 8563 /уч.

Физика ядра и элементарных частиц

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

> 1-31 04 01 Физика (по направлениям) направление специальности:

1-31 04 01-01 Физика (научно-исследовательская деятельность) 1-31 04 06 Ядерные физика и технологии 1-31 04 07 Физика наноматериалов и нанотехнологий

Учебная программа составлена на основе Образовательного стандарта ОСВО 1-31 04 01-2013, 1-31 04 06-2013, 1-31 04 07 — 2013, учебных планов: специальность 1-31 04 01 Физика (по направлениям), направление специальности 1-31 04 01-01 Физика (научно-исследовательская деятельность) №G31-214/уч. от 20.02.2018; специальность 1- 31 04 06 «Ядерные физика и технологии» №G31-229/уч. от 20.03.2019 и специальность 1-31 04 07 «Физика наноматериалов и нанотехнологий» №G31-218/уч. от 20.02.2018 и типовой учебной программы «Физика ядра и элементарных частиц» № ТД- G.553/тип. от 17.03.2016.

Составитель:

Дубовская И.Я. —доцент кафедры ядерной физики Белорусского государственного университета, кандидат физико-математических наук, доцент

Рецензенты:

В.В.Тихомиров - Институт ядерных проблем Белорусского государственного университета, доктор физико-математических наук, профессор

А.И.Киевицкая - заведующий кафедрой ядерной и радиационной безопасности Учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» БГУ, доктор физикоматематических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерной физики физического факультета Белорусского государственного университета (протокол № 11 от 21 мая 2020г.);

Научно-методическим советом БГУ 1 (протокол № 5 от 17.06.2020 г.)

Заведующий кафедрой

А.И.Тимощенко

ПОЯСНИТЕЛЬНГАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины - сформировать понятия и дать студентам основные положения и концепции в области ядерной физики и физики элементарных частиц, основных явлений и процессов в микрофизике, а также их роли в эволюции Вселенной. Дать представление о возможностях прикладного использования этих явлений и процессов.

Задачи учебной дисциплины:

- Дать основные фундаментальные представления о структуре материи и видах взаимодействий;
- Сформулировать основные закономерности ядерных реакций и радиоактивных распадов, показать их роль при решении прикладных задач, в частности при получении ядерной энергии;
- Дать основные представления о современной структуре Вселенной, этапах ее развития и связи эволюции Вселенной с процессами микрофизики;
- Способствовать развитию научного мировоззрения.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Дисциплина «Физика ядра и элементарных частиц» — последний раздел курса общей физики, который является одним из центральных при подготовке специалистов-физиков по всем направлениям. У студентов не предполагается предварительного знания квантовой механики, поэтому обучение ведется, в первую очередь, на основе анализа экспериментальных данных и их обобщения.

Учебная дисциплина относится к циклу общенаучных и общепрофессиональных дисциплин государственного компонента.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Учебная дисциплина «Физика ядра и элементарных частиц» основана на знаниях и представлениях, заложенных в следующих дисциплинах: «Физика атома и атомных явлений», «Квантовая механика», «Электродинамика», «Методы математической физики», «Астрономия». Учебная дисциплина дает базовые знания для следующих дисциплин: «Физика высоких энергий», «Взаимодействие излучения с веществом».

Требования к компетенциям

Освоение учебной дисциплины «Физика ядра и элементарных частиц» должно обеспечить формирование у специалиста следующих групп компетенций:

1-31 04 01 Физика (по направлениям) направление специальности 1-31 04 01-01 Физика (научно-исследовательская деятельность)

Академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-8. Иметь лингвистические навыки (устная и письменная коммуникация).
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-4. Владеть навыками здорового образа жизни.
- СЛК-5. Быть способным к критике и самокритике (критическое мышление).
- СЛК-6. Уметь работать в команде.

Профессиональные компетенции:

- ПК-1. Применять знания теоретических и экспериментальных основ физики наноматериалов и нанотехнологий, методов исследования физических объектов, методов измерения физических величин, методов автоматизации эксперимента, методов планирования, организации и ведения научно-производственной, научно-педагогической, производственнотехнической, опытно-конструкторской работы.
- ПК-2. Осуществлять на основе методов математического моделирования оценку эксплуатационных параметров функциональных наноматериалов и технологических процессов их получения.
- ПК-3. Пользоваться компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
 - ПК-4. Взаимодействовать со специалистами смежных профилей.
- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической и научно-педагогической работы.
- ПК-6. Использовать новейшие открытия в естествознании, методы научного анализа, информационные образовательные технологии, физиче-

ские основы современных технологических процессов, включая нанотехнологии.

ПК-11 - Владеть знаниями о структурной организации материи, о современных физических методах познания природы;

специальность 1-31 04 06 Ядерные физика и технологии

Академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-4. Владеть навыками здорового образа жизни.
- СЛК-5. Быть способным к критике и самокритике (критическое мышление).
- СЛК-6. Уметь работать в команде

Профессиональные компетенции

- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической и научно-педагогической работы;
- ПК-10. Реализовывать методы защиты производственного персонала и населения в условиях возникновения аварий, катастроф, стихийных бедствий и обеспечения радиационной безопасности при осуществлении научной, производственной и педагогической деятельность;

специальность 1-31 04 07 Физика наноматериалов и нанотехнологий

Академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
 - АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни

Социально-личностные компетенции:

СЛК-1. Обладать качествами гражданственности.

- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-4. Владеть навыками здорового образа жизни.
- СЛК-5. Быть способным к критике и самокритике (критическое мышление).
- СЛК-6. Уметь работать в команде;

Профессиональные компетенции:

- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической и научно-педагогической работы.
- ПК-8. Пользоваться государственными языками Республики Беларусь и иными иностранными языками как средством делового общения.

В результате освоения учебной дисциплины студент должен:

знать:

- свойства и модели атомных ядер;
- свойства ядерных сил;
- физические принципы ядерной энергетики;
- основные представления об элементарных частицах и взаимодействиях;

уметь:

- вычислять энергию связи ядер и энергетический выход ядерных реакций;
- использовать законы квантовой физики для объяснения ядерных процессов.

владеть:

-методами расчета энергии связи ядра, энерговыхода ядерной реакции, сечения ядерной реакции.

Структура учебной дисциплины

Дисциплина изучается на 3 курсе в 6-ом семестре. Всего на изучение учебной дисциплины «Физика ядра и элементарных частиц» отведено:

- для очной дневной формы получения высшего образования - 270 часов, в том числе 144 аудиторных часов, из них: лекции — 48 часов, практические занятия — 30 часов, лабораторные занятия — 60 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 7,5 зачетных единиц. Форма текущей аттестации – экзамен и два зачета.

Учитывая ограниченное число лекций непосредственно на лекциях рассматриваются наиболее существенные разделы ядерной физики. К ним относятся разделы, касающиеся структуры ядра, законов радиоактивных распадов и ядерных реакций, основных свойств элементарных частиц и

фундаментальных взаимодействий, роли явлений и закономерностей микромира в развитии Вселенной. Этим вопросам уделяется наибольшее внимание. Отдельные разделы курса изучаются на лабораторных и практических занятиях, а также для самостоятельного изучения студентами. К таким разделам относится, в первую очередь, прикладная ядерная физика: взаимодействие излучения с веществом, дозиметрия, физические принципы работы детекторов, спектрометрия и радиометрия.

При проведении практических занятий целесообразно существенное внимание уделять проведению численных расчетов. Это очень важно в области ядерной физики и, в частности, позволяет установить место и роль явлений ядерной физики и физики элементарных частиц в современной физике.

Организация проведения лабораторных занятий совмещает как работу студентов непосредственно на экспериментальной установке, так и работу с сопровождающим его on-line курсом. On-line курс "Физика ядра. Лабораторный практикум" создан на образовательной платформе STAR-NETLMS (система управления обучением региональной сети по образованию и подготовке специалистов в области ядерных технологий **STAR-NET**), которая реализована на программном обеспечении Moodle. С помощью ресурсов системы методическая поддержка Практикума, в которую входят описание экспериментальной установки и источников ионизирующего излучения, инструкция пользователя программы обработки данных "Спектр", методические материалы к лабораторным работам, выполнена в веб-формате (html), что позволяет работать с материалом с любого веб-браузера. Используются гипертекстовое и полиэкранное структурирование текста, элементы, предназначенные для контроля усвоения знаний, а также графические возможности системы. Все это обеспечит подготовку обучающихся к проведению эксперимента и защите лабораторных работ в интерактивной форме и автоматическом режиме с одновременным контролем со стороны преподавателя.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел.1 Введение

Основные этапы развития физики ядра и элементарных частиц. Масштабы явлений микромира. Амплитуда и сечение рассеяния.

Раздел.2. Основные свойства атомных ядер

Тема 2.1. Размер ядра.

Опыт Резерфорда по рассеянию α-частиц. Заряд и массовое число ядра. Размеры ядер. Формфакторы ядра и нуклонов. Амплитуда и эффективное сечение рассеяния.

Тема 2.2. Энергия связи ядра.

Полуэмпирическая формула для энергии связи ядра. Спин и магнитный момент ядра

Тема 2.3. Мультипольные моменты ядер.

Электрический квадрупольный момент ядра. Квантовомеханическое описание ядерных состояний. Четность волновой функции. Статистики ядер. Изотопический спин

Раздел 3. Нуклон-нуклонные взаимодействия

Тема 3.1. Теория дейтрона.

Дейтрон - связанное состояние в n-p -системе. Основные характеристики дейтрона. Магнитный и квадрупольный моменты дейтрона. Волновая функция дейтрона. Тензорный характер ядерных сил. Спин-спиновая зависимость нуклонных взаимодействий

Тема 3.2. Свойства двухнуклонного потенциала.

Спиновая и спин-орбитальная зависимости ядерных сил. Обменный характер ядерных сил. Зарядовая независимость ядерных сил и изотопическая инвариантность. Обобщенный принцип Паули. Мезонная теория ядерных сил.

Раздел 4. Взаимодействие излучения с веществом.

Тема 4.1 Взаимодействие заряженных частиц с веществом.

Сечение и амплитуда рассеяния. Потери энергии на ионизацию и возбуждение атомов. Тормозное излучение. Излучение Вавилова-Черенкова. Пробеги заряженных частиц.

Тема 4.2. Взаимодействие гамма-излучения с веществом.

Прохождение γ-излучения через вещество. Зависимость эффективных сечений основных механизмов взаимодействия γ-квантов от их энергии и свойств вещества.

Тема 4.3. Дозиметрия ионизирующих излучений.

Понятия об основных дозах радиации. Действие излучения на живую ткань. Основные методы радиометрии и спектрометрии ионизирующего излучения.

Раздел 5. Методы детектирования излучений.

Изучение работы и применения для решения спектрометрических и радиометрических задач сцинтилляционных и полупроводниковых детекторов.

Рездел 6. Модели атомных ядер.

Тема 6.1. Классификация моделей ядра.

Капельная модель ядра. Модель ферми-газа. Физическое обоснование оболочечной структуры ядра.

Тема 6.2. Оболочечная и обобщенная модели ядра.

Одночастичные состояния в усредненном ядерном потенциале. Объяснение спинов и четностей состояний ядер в модели оболочек. Остаточное взаимодействие. Коллективные свойства ядер. Деформированные ядра. Состояние движения нуклонов в деформированном ядре. Вращательные и колебательные состояния ядер. Связь одночастичных и коллективных движений.

Раздел 7. Радиоактивость.

Тема 7.1. Естественная и искусственная радиоактивность.

Статистический характер распада. Закон радиоактивного распада. Радиоактивные ряды. Вековое уравнение.

Тема 7.2. α-распад.

Энергетическое условие α -распада. Основные экспериментальные закономерности α -распада. Элементы теории α -распада. Правила отбора.

Тема 7.3. Виды и механизм β-распада.

Энергетические условия β-распадов. Спектры электронов. Характеристики нейтрино. Экспериментальное доказательство существования нейтрино. Элементы теории β-распада. Разрешенные и запрещенные β-переходы. Несохранение четности при β-распаде.

7.4. γ-излучение ядер.

Электрические и магнитные переходы. Правила отбора по моменту и четности для у-переходов. Вероятности переходов. Ядерная изомерия. Внутренняя конверсия.

Раздел 8. Ядерные реакции

Тема 8.1. Общая характеристика и классификация ядерных реакций. Сечение реакций. Каналы ядерных реакций. Законы сохранения в ядерных реакциях. Связь между сечениями прямых и обратных реакций.

Тема 8.2. Механизмы ядерных реакций.

Модель составного ядра. Резонансные ядерные реакции. Формула Брейта-Вигнера. Нерезонансные ядерные реакции через составное ядро. Прямые ядерные реакции. Использование прямых ядерных реакций для определения квантовых характеристик ядерных состояний. Особенности реакций под действием у-квантов и заряженных частиц. Эффект Мессбауэра.

Тема 8.3. Реакции деления.

Энергетические условия деления. Элементарная теория деления. Деление изотопов урана под действием нейтронов. Энергия активации. Цепная реакция. Коэффициент размножения. Ядерные реакторы.

Тема 8.4. Синтез ядер.

Энергетические условия синтеза. Критерий Лоусона. Проблемы управляемого термоядерного синтеза.

Раздел 9. Экспериментальные методы в физике высоких энергий

Понятие о современных методах получения пучков высоких энергий. Встречные пучки. Элементы релятивистской кинематики. Методы наблюдения короткоживущих частиц. Методы детектирования частиц высоких энергий.

Раздел 10. Свойства элементарных частиц.

Тема 10.1 Классификация взаимодействий и элементарных частиц.

Законы сохранения в мире элементарных частиц и классификация частиц. Лептоны и адроны. Частицы и античастицы.

Тема 10.2. Сильное взаимодействие и структура адронов.

Классификация и квантовые характеристики адронов. Симметрия сильного взаимодействия. Кварковая структура адронов. Элементы квантовой хромодинамики. Цветовая симметрия сильных взаимодействий. Асимптотическая свобода и конфайнмент.

Тема 10.3. Слабое взаимодействие.

Лептонный и кварковый слабые токи. Процессы, обусловленные заряженным слабым током. Универсальность слабого взаимодействия, понятие нейтрального слабого тока. Слабый заряда и промежуточными бозонами как переносчики слабого взаимодействия. Диаграммы Фейнмана.

Тема 10.4. Несохранение Р и СР – четности в слабом взаимодейстии. СРТ – теорема. Дискретные С-, Р-, Т- симметрии и СРТ теорема. Нарушение пространственной симметрии при β-распаде ядер, эксперимент мадам Ву. Несохранение СР-четности в слабом взаимодействии.

Тема 10.5. Объединение электромагнитного и слабого взаимодействия.

Принципы, лежащие в основе электрослабой теории: локальная калибровочная инвариантность, спонтанное нарушение симметрии и перенормируемость теории. Энергетические и пространственные масштабы возможного объединения трех взаимодействий

Раздел 11.Ядерная астрофизика

Этапы развития Вселенной. Современные представления о составе Вселенной. Дозвездный нуклеосинтез. Барионная асимметрия Вселенной. Ядерные реакции в звездах.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ Дневная форма получения образования

T,		Кол	ичество а	іудиторнь	их часов		CP		
Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучаемых вопросов	иекции	практические занятия	Семинарские занятия	Лабораторны занятия	Иное	Количество часов УСР	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8	9	10
1	Введение Основные этапы развития физики ядра и элементарных частиц. Масштабы явлений микромира.	2	2					[1],[4],[8]	
2	Свойства атомных ядер	6	4						
2.1	Опыт Резерфорда по рассеянию α-частиц. Заряд и массовое число ядра. Размеры ядер. Формфакторы ядра и нуклонов. Амплитуда и эффективное сечение рассеяния.	2	2					[1] ,[4], [8]	Устный опрос
2.2	Энергия связи ядра. Полуэмпирическая формула для энергии связи ядра. Спин и магнитный момент ядра.	2	2					[1], [4], [5]	Отчет о вы- полнении расчетного задания
2.3	Электрический квадрупольный момент ядра. Квантовомеханическое описание ядерных состояний. Четность волновой функции. Статистики ядер. Изотопический спин.	2						[1], [4], [5]	
3	Нуклон-нуклонные взаимодействия	4							

3.1.	Дейтрон - связанное состояние в n-p -системе. Основные характеристики дейтрона. Магнитный и квадрупольный моменты дейтрона. Волновая функция дейтрона. Тензорный характер ядерных сил. Спин-спиновая зависимость нуклонных взаимодействий.	2					[2],[4] [8], [9]	
3.2	Спиновая и спин-орбитальная зависимости ядерных сил. Обменный характер ядерных сил.Зарядовая независимость ядерных сил и изотопическая инвариантность. Обобщенный принцип Паули. Мезонная теория ядерных сил	2					[2], [6]	
4	Взаимодействие ионизирующего излучения с веществом		6	42	2			
4.1	Взаимодействие заряженных частиц с веществом. Сечение и амплитуда рассеяния. Потери энергии на ионизацию и возбуждение атомов. Тормозное излучение. Излучение Вавилова-Черенкова. Пробеги заряженных частиц.		2	12	2		[1], [4] [8], [9]	Отчет по ла- бораторной работе
4.2	Взаимодействие гамма-излучения с веществом. Прохождение у-излучения через вещество. Зависимость эффективных сечений основных механизмов взаимодействия у-квантов от их энергии и свойств вещества.		2	6			[1], [4] [8], [9]	Отчет по ла- бораторной работе
4.3	Дозиметрия ионизирующих излучений. Понятия об основных дозах радиации. Действие излучения на живую ткань. Основные методы радиометрии и спектрометрии ионизирующего излучения.		2	12	2	2	[1], [4] [8], [9]	Отчет по ла- бораторной работе. Кон- трольная ра- бота по раз- делу 4
5	Методы детектирования излучений Изучение работы и применения для решения спек-			12	2		[1], [4] [8], [9]	Отчет по ла- бораторной

	трометрических и радиометрических задач сцинтилляционных и полупроводниковых детекторов.					работе
6.	Модели атомных ядер	4	2			
6.1.	Классификация моделей ядра. Капельная модель ядра. Модель ферми-газа. Физическое обоснование оболочечной структуры ядра	2			[1] [4] [5]	
6.2	Одночастичные состояния в усредненном ядерном потенциале. Объяснение спинов и четностей состояний ядер в модели оболочек. Остаточное взаимодействие. Коллективные свойства ядер. Деформированные ядра. Состояние движения нуклонов в деформированном ядре. Вращательные и колебательные состояния ядер. Связь одночастичных и коллективных движений	2	2		[1] [4] [5] [8]	Устный опрос
7	Радиоактивность	8	4	18		
7.1	Естественная и искусственная радиоактивность. Статистический характер распада. Закон радиоактивного распада. Радиоактивные ряды. Вековое уравнение.	2	2	6	[1] [4] [8]	Отчет по ла- бораторной работе
7.2	α-распад. Энергетическое условие α-распада. Основные экспериментальные закономерности α-распада. Элементы теории α-распада. Правила отбора.	2		6	[1] [4] [8]	Отчет по ла- бораторной работе
7.3	Виды и механизм β-распада. Энергетические условия β-распадов. Спектры электронов. Характеристики нейтрино. Экспериментальное доказательство существования нейтрино. Элементы теории β-распада. Разрешенные и запрещенные β-переходы. Несохранение четности при β-распаде	2	2	6	[4], [1] [8],	Отчет по ла- бораторной работе

7.4	у-излучение ядер. Электрические и магнитные переходы. Правила отбора по моменту и четности для у-переходов. Вероятности переходов. Ядерная изомерия. Внутренняя конверсия.	2				[4] [1]	Отчет о вы- полнении расчетного задания
8	Ядерные реакции	10	6				
8.1	Общая характеристика и классификация ядерных реакций. Сечение реакций. Каналы ядерных реакций. Законы сохранения в ядерных реакциях. Связь между сечениями прямых и обратных реакций.	2	2			[11] [1] [3]	
8.2	Механизмы ядерных реакций. Модель составного ядра. Резонансные ядерные реакции. Формула Брейта-Вигнера. Нерезонансные ядерные реакции через составное ядро. Прямые ядерные реакции. Использование прямых ядерных реакций для определения квантовых характеристик ядерных состояний. Особенности реакций под действием у-квантов и заряженных частиц. Эффект Мессбауэра.	4	2		2	[7] [1] [3]	Отчет о выполнении расчетного задания Контрольная Работа по разделам 7,8
8.3	Деление атомных ядер. Энергетические условия деления. Элементарная теория деления. Энергия активации. Цепная реакция. Коэффициент размножения. Ядерные реакторы.	2	2				
8.4.	Синтез ядер. Энергетические условия деления. Критерий Лоусона. Проблемы управляемого термоядерного синтеза	2				[5] [1] [4]	

9.	Экспериментальные методы в физике высоких энергий. Понятие о современных методах получения пучков высоких энергий. Встречные пучки. Элементы релятивистской кинематики. Методы наблюдения короткоживущих частиц. Методы детектирования частиц высоких энергий.	2	2		[3] [4] [9]	
10	Свойства элементарных частиц	10	4			
10.1	.Классификация взаимодействий и элементарных частиц. Законы сохранения в мире элементарных частиц. Лептоны и адроны. Частицы и античастицы.	2	2		[3] [4] [6] [7]	Отчет о выполнении расчетного задания
10.2	Сильное взаимодействие и структура адронов. Классификация и квантовые характеристики адронов. Симметрия сильного взаимодействия. Кварковая структура адронов. Элементы квантовой хромодинамики. Цветовая симметрия сильных взаимодействий. Асимптотическая свобода и конфайнмент.	2			[4] [6] [7] [9]	
10.3	Слабое взаимодействие. Лептонный и кварковый слабые токи. Процессы, обусловленные заряженным слабым током. Универсальность слабого взаимодействия, понятие нейтрального слабого тока. Слабый заряда и промежуточными бозонами как переносчики слабого взаимодействия. Диаграммы Фейнмана.	2	2		[4] [6] [7] [9]	Устный опрос
10.4.	Несохранение Р и СР – четности в слабом взаимодейстии. СРТ – теорема. Дискретные С-, Р-, Т-симметрии и СРТ теорема. Нарушение пространственной симметрии при β-распаде ядер, эксперимент мадам Ву. Несохранение СР-четности в сла-	2			[4] [6] [7] [9]	

	бом взаимодействии.						
10.5	Объединение электромагнитного и слабого взаимодействия. Принципы, лежащие в основе электрослабой теории: локальная калибровочная инвариантность, спонтанное нарушение симметрии и перенормируемость теории. Энергетические и пространственные масштабы возможного объединения трех взаимодействий	2			2	[4] [6] [7] [9] [10]	Контрольная Работа по разделам 9,10
11	Ядерная астрофизика Этапы развития Вселенной. Современные представления о составе Вселенной. Дозвездный нуклеосинтез. Барионная асимметрия Вселенной. Ядерные реакции в звездах. Текущая аттестация					[4] [7]	2 зачета и эк-
							замен

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Мухин К.Н. Экспериментальная ядерная физика: Учебник для вузов в 2Кн.: Кн.1, Физика атомного ядра, Ч.1. Свойства нуклонов, ядер и радиоактивных излучений, 5-е изд. Москва, Энергоатомиздат, 1993 376с.
- 2. Мухин К.Н. Экспериментальная ядерная физика: Учебник для вузов в 2Кн.: Кн.1, Физика атомного ядра, Ч.2. Ядерные взаимодействия, 5-е изд. Москва, Энергоатомиздат, 1993 320с.
- 3. Мухин К.Н. Экспериментальная ядерная физика: Учебник для вузов в 2Кн.: Кн.2, Физика элементарных частиц, 5-е изд. Москва, Энергоатомиздат, 1993 408с.
- 4. Ишханов Б.С. Частицы и атомные ядра: Учебник, Б.С.Ишханов, И.М.Капитонов, Н.П. Юдин 3-е изд. Москва, URSS, 2013 582с.
- 5. Широков Ю.М. Ядерная физика. Ю.М.Широков, К.П.Юдин: Учеб. пособие. М.: Наука, 1980 486с.
- 6. Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1988 0- 272с.
- 7. Капитонов И.М. Введение в физику ядра и частиц: Учебное пос. М., УРСС, 2002 384c.
- 8. Сивухин Д.В. Общий курс физики: т.5, Атомная и ядерная физика: Учебное пособие, Москва, Физматлит, 2002 784с.
- 9. Тюрин Ю.И. Ядерная физика. Физика элементарных частиц. Астрофизика: Учебник Томск, Изд. Томск. Универс., 2009 252с.
- 10. Nisate A. Discovery of Higgs Boson at the Large Hadron Collider: A.Nisate, G/Tonelli Dubna, 2018 -117 s.

Перечень дополнительной литературы

- 1. Михайлов В.М., Крафт О.Е. Ядерная физика: Уч. пособие. Изд. Ленингр. ун-та. 1988 328 с.
- 2. Наумов А.И. Физика атомного ядра и элементарных частиц: Учебное пособие -ММосква, Просвещение, 1984 384 с.
- 3. Валантэн Л. Субатомная физика ядра и частицы: Т. 1 Элементарный подход Москва, Мир,0 1986 272 с.
- 4. Валантэн Л. Субатомная физика ядра и частицы: Т. 1 Элементарный подход Москва, Мир,0 1986 272 с.
- 5. Готтфрид К. Концепции физики элементарных частиц: К. Готфрид, В.Вайскопф Москва, Изд. Мир, 1988 -240 с.
- 6. Бопп Ф. Введение в физику ядра, адронов и элементарных частиц Москва, Изд. Мир, 1999 277 с.

- 7. Любошиц А., Киш Д. Введение в экспериментальную физику частиц Москва, Физматлит, 2001 272 с.
- 8. Ципенюк Ю.М. Принципы и методы ядерной физики Москва, Энергоатомиздат, 1993 341 с.
- 9. Хлопов М.Ю. Космомактофизика Москва, УРСС, 2003 139 с.
- 10. Рау В.Г. Основы теоретической физики, Физика атомного ядра и элементарных частиц Москва, «Высшая школа», 2005 365 с.
- 11. Блан Д. Ядра, частицы, ядерные реакторы Москва, Изд. «Мир», 1989 336 с.
- 12. Кесслер Г. Ядерная энергетика Москва, Энергоатомиздат, 1986 264с.
- 13. Степанов Ю.М. Экспериментальные методы ядерной физики: Ч.1 , Учебное пособие – Томск, Изд. Томского университета, 2010 – 370 с.
- 14. Аминьева Т.П. Фундаментальные взаимодействия и космические лучи: Т.П.Аминьева, Л.И.Сарычева Москва, УРСС, 1999 168 с.
- 15. Фейнберг Р. Элементарные частицы и законы физики: Р.Фейнберг, С.Вайнберг – Москва, Изд.Мир, 2000 -69 с.
- 16. Недорезов В.Г. Фотоядерные реакции в области нуклонных резонансов Москва, Изд. Наука образования, 2014 87 с.
- 17. Гендурайн Ф. Квантовая хромодинамика. Введение в теорию кварков и глюонов. Москва, Изд. Мир, 1986 284 с.
- 18. Клапдор-Клайнгротхаус Г.В. Астрофизика элементарных частиц: Г.В.Клапдор-Клайнгротхаус, К.Цюбер Москва, Изд. Журнала УФН, 2000 496 с.
- 19. Барсуков О.А. Основы физики атомного ядра. Ядерные технологии Москва, Физматлит, 2011 560 с.
- 20. Бринк Л. Принципы теории струн: Л.Бринк, М.Энно Москва, Изд. Мир, 1991-296 с.
- 21. Биленький С.М. введение в диаграммы Фейнмана и физику элементарных взаимодействий Москва, Энергоатомиздат, 1990 327 с.
- 22. Гротц К. Слабое взаимодействие в физике ядра, частиц и астрофизике: К.Гротц, Г.В.Клапдор-Клайнгротхаус Москва, Изд. Мир,1992 456 с.
- 23. Давыдов А.В. Исследование по физике гамма-лучей Москва, Физмотлит, 2013 199 с.
- 24. Группен К. Детекторы элементарных частиц Новосибирск, Изд. Сиб. Хрон., 1999 –
- 25. Емельянов В.М. Стандартная модель и ее расширение Москва, Физматлит, 2007 584 с.

- 26. Кейн Г. Современная физика элементарных частиц Москва, Изд. Мир, 1990 360 с.
- 27. Клапдор-Клайнгротхаус Г.В. Неускорительная физика элементарных частиц: Г.В.Клапдор-Клайнгротхаус, А.Штаудт Москва, Изд. Мир, 1996 522 с.
- 28. Крамаровский Л.М. Синтез элементов во Вселенной: Л.М.Крамаровский, Я.М.Краш, В.П.Чечев Москва, Изд. Наука, 1987 0 160 с.
- 29. Ядерный синтез с инерциальным удержанием. Современное состояние и перспективы для энергетики: под ред. Б.Ю.Шаркова Москва, Физматлит, 2005 264 с.
- 30. Шишкина Т.В. Физика элементарных частиц: Курс лекций, Т.В.Шишкина, Н.М.Шумейко Минск, Изд.БГУ, 2002 114 с.
- 31. Исаев П.С. Обыкновенные, странные, очарованные, прекрасные. Москва, Энергоатомиздат, 1995 320 с.
- 32. Хелзен Ф. Кварки и лептоны. Введение в физику частиц: Ф.Хелзен, А.Мартин – ИО НФМИ, 2000 – 452 с.
- 33. Эллиот Дж. Симметрия в физике: Т.1: Дж.Эллиот, П.Добер Москва, Изд. Мир, 1983 368 с.
- 34. Эллиот Дж. Симметрия в физике: Т.2: Дж.Эллиот, П.Добер Москва, Изд. Мир, 1983 416 с.
- 35. Ишханов Б.С. Нуклеосинтез во Вселенной: Б.С.Ишханов, И.М.Капитонов, И.А.Тутынь Москва, Изд.МГУ, 1999 128с.
- 36. Рыжакова Н.К. Ядерная физика и ее приложения Томск, Изд.ТПУ, 2011 270с.
- 37. Кадилин В.В. Прикладная ядерная физика: В.В.Кадилин, В.Ю.Милосердин, В.Т.Самосадный Москва, Изд.ИФИ, 2007 240 с.
- 38. Федоров В.В. Нейтронная физика: Учебное пособие Санкт-Перербург, Изд. ГСПУ, 2004 – 335 с.
- 39. Гришин В.Г. Кварки и адроны во взаимодействиях частиц высоких энергий Москва, Энергоатомиздат, 1988 248.
- 40. Хангулян В.А. Избранные вопросы теории ядра. Ч.1. Проблема двух тел в ядерной физике: Учебное пособие: В.А.Хангулян, И.С.Шапиро Москва, Изд.МИФИ, 2009 156 с.
- 41. Изотопы: свойства, получение, применение: под ред. В.Ю.Баранова Москва, Изд.АТ, 2000 704 с.
- 42. База данных ЦДФЭ НИИЯФ МГУ «Параметры основных и изомерных состояний атомных ядер», URL: (http://cdfe.sinp.msu.ru/services/gsp.ru.html).

43. Nuclear Wallet Cards, USA National Nuclear Data Center – NNDC, URL: http://www.nndc.bnl.gov/wallet/wccurrent.html.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Формой текущей аттестации по дисциплине «Физика ядра и элементарных частиц» учебным планом предусмотрены экзамен и два зачета.

Для текущего контроля качества усвоения знаний по дисциплине рекомендуется устные опросы, проведение контрольных работ, отчеты по лабораторным работам.

При оценке текущего контроля учитывается:

- посещение занятий и ответы;
- участие в семинарских занятиях;
- выполнение контрольных работ;
- выполнение и защита лабораторных работ.

Контрольные работы проводятся в письменной форме. Каждый из вариантов задания содержит 3-4 задачи и 4-6 вопросов в открытой форме. На выполнение отводится 90 минут. Оценка каждой контрольной работы проводится по десятибалльной шкале.

Допуск к выполнению экспериментальной части лабораторной работы проводится в on-line режиме на базе платформы STAR-NETLMS. Он предполагает внеаудиторное изучение теоретической части с одновременным выполнением ряда заданий, а также ознакомление с ходом проведения эксперимента. По результатам прохождения всех необходимых элементов или ресурсов (система автоматически проводит оценивание согласно установленным критериям) решается вопрос о допуске студента к проведению эксперимента. Если обучающий набрал нужное количество баллов – он приступает к лабораторной работе, если нет – проходит задания в лаборатории под контролем преподавателя, и только после этого допускается к эксперименту. После проведения экспериментальной части с оформлением протокола студент обязан пройти on-line тестирование по работе, которое подразумевает также ответы на вопросы в письменной форме с последующей беседой с преподавателем. Только после этого преподаватель выставляет оценку (по десятибалльной шкале) в электронный журнал системы. Выполнение всех лабораторных работ по описанной схеме, т.е. наличие любой оценки в журнале по всем работам, служит основным критерием допуска к итоговому тестированию. Итоговое тестирование также проводится on-line, но в лаборатории и под контролем преподавателя. Итоговая оценка за Лабораторный практикум выставляется автоматически как среднее арифметическое баллов, полученных за каждую работу и итоговое тестирование по десятибалльной шкале.

Экзаменационная оценка и оценка текущей успеваемости служат для определения рейтинговой оценки по дисциплине, которая рассчитывается как средневзвешенная оценка текущей успеваемости и оценки, полученной

на экзамене. Рекомендуемые весовые коэффициенты для оценки текущей успеваемости (T_T) — 0,4; для экзаменационной оценки (T_{\ni}) — 0,6.

Опенка	текущего	контроля	формируется
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 - 1 - 1	110111 0 00111	do o british i a sais

Оценка за активное участие в учебном про-	Количество баллов
цессе и посещение занятий	
Не менее 75%	Максимальный балл - 10
Не менее 50%	5
Не менее 25%	-
. Участие в практических занятиях и актив-	20
ность работы	
. Уровень выполнения заданий контрольных	50
работ	
Уровень выполнения лабораторных работ	20

Количество баллов	Оценка (T_T)	Количество баллов	Оценка (T_T)
0	0		
5	1	50	6
10	2	70	7
15	3	80	8
30	4	90	9
40	5	100	10

Контрольные мероприятия проводятся в соответствии с учебнометодической картой дисциплины. В случае пропуска контрольной работы возможность выполнения контрольной работы определяется кафедрой, обеспечивающей данный курс. В случае неявки на практическое занятие или лабораторную работу по уважительной причине студент вправе по согласованию с преподавателем выполнить нагрузку в дополнительное время. Для студентов, получивших неудовлетворительные оценки за контрольную работу, либо не явившихся по неуважительной причине, по согласованию с преподавателем и с разрешения заведующего кафедрой мероприятие может быть проведено повторно, до сессии.

Рейтинговая оценка

$$T_P = T_T \cdot 0.4 + T_3 \cdot 0.6$$
.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Раздел 4. Взаимодействие ионизирующего излучения с веществом и дозиметрия.

(Форма контроля – контрольная работа).

Раздел 7. Радиоактивность. Радиоактивные распады и вековое уравнение. Раздел 8. Ядерные реакции. Сечения ядерных реакций (Форма контроля – контрольная работа).

Раздел 9. Ядерные реакции. Раздел 10. Свойства элементарных частиц. Расчет характеристик элементарных частиц.

(Форма контроля – контрольная работа).

Примерная тематика практических занятий

Занятие1. Масштабы явлений микромира.

Занятие 2. Энергия связи ядра.

Занятие 3. Амплитуда и эффективное сечение рассеяния.

Занятие 4. Взаимодействие заряженных частиц с веществом.

Занятие 5. Взаимодействие у-квантов с веществом.

Занятие 6. Дозиметрия ионизирующего излучения.

Занятие 7. Одночастичные состояния в усредненном ядерном потенциале.

Занятие 8. Закон радиоактивного распада.

Занятие 9. Правила отбора по моменту и четности для α, β и γ распадах.

Занятие 10. Законы сохранения в ядерных реакциях.

Занятие 11. Механизмы ядерных реакций.

Занятие 12. Деление и синтез атомных ядер.

Занятие 13. Экспериментальные методы в физике высоких энергий.

Занятие 14. Законы сохранения в физике частиц.

Занятие 15. Диаграммы Фейнмана.

Примерная тематика лабораторных занятий

Лабораторное занятие 1.Дозиметрия ионизирующего излучения.

Лабораторное занятие 2. Статистика отчетов в ядерно-физическом эксперименте.

Лабораторное занятие 3. Взаимодействие гамма-излучения с веществом.

Лабораторное занятие 4. Изучение сцинтилляционного метода детектирования.

Лабораторное занятие 5. Спектрометрия гамма-излучения.

Лабораторное занятие 6. Определение активности относительным методом.

Лабораторное занятие 7. Взаимодействие электронов с веществом.

Лабораторное занятие 8. Изучение бета-спектров и реконструкция спектра нейтрино.

Лабораторное занятие 9. Взаимодействия альфа-частиц с веществом Лабораторное занятие 10.Изучение альфа-спектров.

Описание инновационных подходов и методов к преподаванию учебной дисциплины.

В рамках данного курса предполагается использовать проектный подход к преподаванию учебной дисциплины, а также метод проблемного обучения.

При организации образовательного процесса

- *используется практико-ориентированный метод*, который предполагает освоение материала, приобретения студентами знаний и умений, через решение практических задач и выполнение лабораторных работ;
- *метод учебной дискуссии*, который предполагает участие студентов в целенаправленном обмене мнениями, согласованию существующих позиций по определенной проблеме. Использование метода обеспечивает появления нового уровня понимания изучаемой темы, применения знаний для решения различных исследовательских, творческих и технических задач.

Методические рекомендации по организации самостоятельной работы обучающихся.

Основными направлениями самостоятельной работы студента являются:

- подробное ознакомление с программой учебной дисциплины;
- ознакомление со списком рекомендуемой литературы по дисциплине в целом и ее разделам;
- изучение и расширение лекционного материала преподавателя за счет специальной литературы;
- подготовка к практическим занятиям;
- подготовка к лабораторным работам. Подготовка предполагает самостоятельное изучение теоретической части работы с одновременным выполнением ряда заданий с использованием on-line курса «Физика ядра. Лабораторный практикум», созданный на образовательной платформе STAR-NETLMS (система управления обучением и подготовкой специалистов в области ядерных технологий STAR-NET). Допуск к выполнению экспериментальной части лабораторной работы проводится в on-line режиме по результатам прохождения всех необходимых элементов и ресурсов.
- подготовка к выполнению заданий в виде решения отдельных задач, проведения типовых расчетов по отдельным разделам содержания дисциплин;
- изучением основной и дополнительной литературы;
- подготовка к экзамену.

Примерный перечень вопросов к экзамену

- 1. Виды взаимодействия. Характерные размеры величин в ядерной физике.
- 1. Основные характеристики ядра.
- 2. Энергия связи ядра и удельная энергия связи.
- 3. Радиус ядра.
- 4. Спин ядра.
- 5. Магнитный момент ядра и его экспериментальное определение.

- 6. Квадрупольный момент и форма ядра.
- 7. Статистика и четность.
- 8. Изотопический спин ядра.
- 9. Классификация моделей ядра.
- 10. Коллективная модель ядра.
- 11. Модель Феми-газа.
- 12.Оболочечная модель.
- 13.Обобщенная модель.
- 14. Амплитуда и сечение рассеяния. Борновское приближение для амплитуды рассеяния.
- 15. Свойства ядерных сил.
- 16. Спиновая зависимость ядерных сил.
- 17. Свойство насыщения.
- 18. Тензорный характер ядерных сил.
- 19. Зависимость ядерных сил от скорости
- 20.Обменные ядерные силы..
- 21.Изотопическая инвариантность ядерных сил.
- 22. Мезонная теория ядерных сил.
- 23. Основные закономерности радиоактивного распада.
- 24. Виды распадов и соответствующие энергетические условия.
- 25. Радиоактивные ряды.
- 26.Последовательные и параллельные распады. Вековое уравнение.
- 27. Альфа-распад.
- 28. Виды бета-распада и энергетические условия.
- 29. Форма бета-спектра.
- 30. Нейтрино и антинейтрино. Экспериментальное доказательство существования нейтрино.
- 31. Элементы теории бета-распада. Правила отбора.
- 32. Гамма-распад ядер. Правила отбора.
- 33. Явление ядерной изомерии.
- 34. Явление внутренней конверсии.
- 35. Эффект Мессбауэра.
- 36.Измерение с помощью эффекта Мессбауэра сверхтонкого расщепления ядерных уровней и красного смещения.
- 37.Классификация и механизмы ядерных реакций.
- 38. Резонансные реакции через составное ядро.
- 39. Нерезонансные реакции через составное ядро...
- 40.Прямые ядерные реакции.
- 41. Фотоядерные реакции.
- 42.Спонтанное и вынужденное деление ядер.
- 43. Элементарная теории деления.
- 44. Цепные ядерные реакции.
- 45. Ядерные реакторы. Виды и принципы работы.
- 46. Роль запаздывающих нейтронов в управлении цепной реакцией.
- 47. Реакция синтеза.

- 48. Управляемый термоядерный синтез.
- 49. Критерий Лоусона.
- 50. Нуклеосинтез элементов во Вселенной.
- 51. Первичное космическое излучение.
- 52. Состав космического излучения на уровне моря.
- 53. Взаимодействие гамма-излучения с веществом.
- 54. Взаимодействие заряженных частиц с веществом.
- 55. Дозиметрия ядерных излучений. Виды доз.
- 56. Классификация элементарных частиц.
- 57. Фундаментальные частицы.
- 58.Законы сохранения в мире элементарных частиц и их связь с симметриями..
- 59. Симметрия сильных взаимодействий.
- 60. Кварковая модель адронов.
- 61.Обобщенный принцип Паули для кварков.
- 62. Элементы хромодинамики.
- 63. Асимптотическая свобода. Конфайнмент.
- 64. Диаграммы Фейнмана. Оценки вероятностей процессов.
- 65. Лептоны и слабое взаимодействие.
- 66. Заряженные и нейтральные слабые токи.
- 67. Электрослабая теория Вайнберга-Салама.
- 68.Спонтанное нарушение симметрии. Механизм Хигса.
- 69. Несохранение четности при бета-распаде.
- 70. Нарушение СР-четности в слабых взаимодействиях.
- 71. Симметрия лептонов и кварков. Поколения фундаментальных частиц.
- 72.Суперсимметрия.
- 73. Модель великого объединения. Распад протона.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

	1	II ICODI II	THE SALBITOR HE	
Название	Название		Предложения	Решение, принятое
дисциплины,	кафедры		об изменениях в	кафедрой, разрабо-
с которой			содержании	тавшей учебную про-
требуется согласо-			учебной про-	грамму (с указанием
вание			граммы	даты и номера прото-
			по изучаемой	кола)
			учебной	
			дисциплине	
Физика ядерных ре-	Кафедра	ядерной	нет	Рекомендовать к ут-
	физики	идернои	ncı	I
акторов	физики			верждению учебную
				программу в пред-
				ставленном варианте
				протокол № 11 от
				21.052020
Ядерные реакции	Кафедра	ядерной	нет	Рекомендовать к ут-
	физики			верждению учебную
				программу в пред-
				ставленном варианте
				протокол № 11 от
				21.052020
Физика высоких	Кафедра	ядерной	нет	Рекомендовать к ут-
энергий	физики	· · · I		верждению учебную
· · · · ·	T -			программу в пред-
				ставленном варианте
				протокол № 11 от
				21.052020
Спектрометрия и	Кафедра	ядерной	нет	Рекомендовать к ут-
• •	физики	ядернои	HCI	I
радиометрия иони-	физики			верждению учебную
зирующих излуче- ний				программу в пред-
нии				ставленном варианте
				протокол № 11 от
	* 2 1			21.052020
Взаимодействие ио-	Кафедра	ядерной	нет	Рекомендовать к ут-
низирующего излу-	физики			верждению учебную
чения с веществом				программу в пред-
				ставленном варианте
				протокол № 11 от
				21.052020
Методы и устройст-	Кафедра	ядерной	нет	Рекомендовать к ут-
ва регистрации из-	физики	-		верждению учебную
лучений				программу в пред-
				ставленном варианте
				протокол № 11 от
				21.052020
Дозиметрия и ра-	Кафедра	ядерной	нет	Рекомендовать к ут-
диационная безо-	физики	лдорион	1101	верждению учебную
пасность	φποπική			программу в пред-
11uciiocib				ставленном варианте
				протокол № 11 от
				21.052020
1				Z1.UJZUZU

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на ____/___ учебный год

№№ ПП	Дополнения и изменения	Основание
1111		
Vueñ	ная программа пересмотрена и одобрена на заседании каф	еппы
(прот	сокол № от 2020 г.)	- Дүрі
ядері	цующий кафедрой ной физики,	
	м.н., доцент	А.И.Тимощенко
	ЕРЖДАЮ н физического факультета	
	м.н., доцент	М.С.Тиванов