Catalytic oxidation of hydrocarbons and thiophene at V_2O_5 : MoO₃ nano- and microheterostructures

A. I. Kokorin^a, T. V. Sviridova^b, P. A. Vakhrushin^c, E. V. Boykov^c, M. V. Vishnetskaya^c, D. V. Sviridov^b

^aInstitute of Chemical Physics RAS, Moscow, Russia ^bDepartment of Chemistry, Belarusian State University, Minsk, Belarus, e-mail: sviridov@bsu.by ^cGubkin Russian State University of Oil and Gas, Moscow, Russia

The catalytic activity of mixed oxides of general composition $(1-x)V_2O_5$: $xMoO_3$ towards thermally-induced oxidation of benzene, dodecane and thiophene by molecular oxygen in the temperature range of 250–400°C has been investigated. The possibility of selective oxidation of sulfur-containing compounds in the presence of hydrocarbons was demonstrated. The effect of the catalyst composition on the yield of oxidation products and structural changes in the catalyst $(1-x)V_2O_5$: $xMoO_3$ during its operation are discussed. The oxidation mechanism involving the active oxygen species formed at the heterogeneous oxide surface is proposed.

Acknowledgement. We thank RFBR (project No. 10-03-90003-Bel_a) and BEFFI (grant No. X10P-040) for financial support of the work.