БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям

О.И. Чуприс 2019 г.

Регистрационный № УД- 8102 /уч.

Прикладные методы цифровой обработки сигналов

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 01 Математика (по направлениям)
Направление специальности
1-31 03 01-04 Математика (научно-конструкторская деятельность)

Учебная программа составлена на основе ОСВО 1-31 03 01-2013 и учебного плана (регистрационный номер G31-209/уч. от 29.05.2015-

составитель:

М. И. Вашкевич, доцент кафедры математической кибернетики механикоматематического факультета Белорусского государственного университета, кандидат технических наук, доцент.

РЕЦЕНЗЕНТ:

И.С. Азаров, заведующий кафедрой электронных вычислительных средств учреждения образования «Белорусский государственный университет информатики и радиоэлектроники».

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой математической кибернетики механико-математического факультета Белорусского государственного университета (протокол № 10 от 03.05.2019);

Научно-методическим Советом Белорусского государственного университета (протокол № 5 от 28.06.2019)

Зав. кафедрой математической кибернетики _____ А.Л.Гладков

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель дисциплины «Прикладные методы цифровой обработки сигналов» - научить студентов владеть теоретическими основами и практическими навыками цифровой обработки сигналов, которые включают знание особенностей и границ применимости различных методов анализа сигналов, понимание процесса перехода от непрерывного к дискретному представлению сигнала, знанию базовые преобразования сигналов, методов проектирования и реализации цифровых фильтров.

Образовательная цель: изложение основных принципов частотного анализа сигналов, а также методов проектирования, анализа и реализации цифровых фильтров.

Развивающая цель: дальнейшее формирование у студентов математического мышления, навыков построения практических систем цифровой обработки сигналов.

Воспитательная цель: формирование у студентов математической культуры, стремления к совершенствованию знаний в области цифровой обработки сигналов и использованию их для решения актуальных социальных и технических проблем современного общества.

Задачи учебной дисциплины:

- 1. Показать место цифровой обработки сигналов в системе математического знания и потенциал её применения в науке, производстве и информационных технологиях.
- 2. Подготовить будущих специалистов по математике и информационным технологиям к использованию прикладных методов цифровой обработки сигналов на практике.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к циклу дисциплин специализаций компонента учреждения высшего образования.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Дисциплина «Прикладные методы цифровой обработки сигналов» связана с дисциплинами «Основы цифровой обработки сигналов», «Алгебра» и «Дискретная математика».

Требования к компетенциям

Освоение учебной дисциплины «Прикладные методы цифровой обработки сигналов» должно обеспечить формирование следующих *академических*, *социально-личностных и профессиональных* компетенций:

академические компетенции:

АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;

- АК-2. Владеть системным и сравнительным анализом;
- АК-3. Владеть исследовательскими навыками;
- АК-4. Уметь работать самостоятельно;
- АК-5. Быть способным порождать новые идеи;
- АК-8. Обладать навыками устной и письменной коммуникации;
- АК-9. Уметь учиться, повышать свою квалификацию в течение жизни;

социально-личностные компетенции:

- СЛК-2. Быть способным к социальному взаимодействию;
- СЛК-3. Обладать способностью к межличностным коммуникациям;
- СЛК-5. Быть способными к критике и самокритике;

профессиональные компетенции:

- ПК-1. Разрабатывать практические рекомендации по использованию научных исследований, планировать и проводить экспериментальные исследования, исследовать патентоспособность и показатели технического уровня разработок программного обеспечения информационных систем.
- ПК-5. Заниматься аналитической и научно-исследовательской деятельностью в области математики и информационных технологий.
- ПК-8. Работать с научной, нормативно-справочной и специальной литературой;

В результате изучения дисциплины студент должен:

знать:

- процесса перехода от непрерывного к дискретному представлению сигнала;
- особенности частотного анализа дискретных, непрерывных, периодических и апериодических сигналов;
 - быстрые алгоритмы дискретного преобразования Фурье (БПФ);
 - основы анализа дискретных сигналов при помощи z-преобразования;
 - основные этапы проектирования и реализации цифровых фильтров;

уметь:

- программировать алгоритмы БПФ;
- выполнять анализ сигнала во временной и частотной области;
- анализировать разностные уравнения с постоянными коэффициентами с использованием z-преобразования;

владеть:

- методами описания дискретных сигналов во временной и частотной области;
- методами анализа дискретных последовательностей при помощи z-преобразования;
 - методами проектирования и реализации цифровых фильтров.

Структура учебной дисциплины

Дисциплина изучается 6 семестре очной формы обучения. Всего на изучение дисциплины отводится 146 часов, из них аудиторных - 86 часов, по видам занятий: лекций - 42 часов, лабораторных занятий - 38 часов, УСР - 6 часа.

Трудоемкость учебной дисциплины составляет -4 зачетные единицы.

Форма текущей аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Методы Фурье-анализа

- **Тема 1. 1.** Классификация сигналов и методов Фурье-анализа. Дискретные и непрерывные сигнала. Периодические и апериодические сигналы.
- **Тема 1. 2.** Ряды Фурье. Ортогональность функций sin и cos. Эффект Гиббса. Тригонометрическая запись ряда Фурье. Комплексная запись ряда Фурье.
- **Тема 1. 3.** Интегральное преобразование Фурье. Дельта-функция. Преобразование Фурье дельта-функции (интерпретация). Прямоугольный импульс и его преобразование Фурье. Свойства преобразования Фурье. Свертка. Эффекты конечной длины выборки. Важность фазовой информации в сигнале.
- **Тема 1. 4.** Дискретное временное преобразование Фурье. Вычисление импульсной характеристики идеального ФНЧ. Теорема о свертке. Вычисление ДВПФ при помощи таблиц. Поиск обратного ДВПФ при помощи табличным способом.
- **Тема 1.5.** Дискретное преобразование Фурье (ДПФ). Алгебраический взгляд на ДПФ. Быстрое преобразование Фурье. Сложность ДПФ. Предварительные замечания. Алгоритм БПФ с прореживанием (децимацией) по времени. Свойства БПФ с основанием 2 и прореживанием по времени.

Раздел 2. Дискретизация непрерывного сигнала

- **Тема 2. 1.** Дискретизация аналоговых сигналов по времени. Критерий Найквиста. Эффект подмены частот.
- **Тема 2. 2.** Математическое описание процесса дискретизации. Фильтры для устранения эффекта наложения спектров.

Раздел 3. Z-преобразование

- **Тема 3. 1.** Определение z-преобразования. Свойства z-преобразования. Сходимость z-преобразования.
- **Тема 3. 2.** Анализ разностных уравнений с постоянными коэффициентами при помощи z-преобразования. Описание систем дискретного времени с помощью полюсов и нулей. Исследование устойчивости дискретных систем. Оценка импульсной характеристики.
- **Тема 3. 3.** Обратное z-преобразование. Табличный метод. Метод разложения на элементарные дроби. Метод степенных рядов.

Раздел 4. Разработка фильтров с конечной импульсной характеристикой (КИХ-фильтров)

- **Тема 4. 1.** Интуитивное представление о работе КИХ-фильтра. Ключевые особенности КИХ-фильтров.
- **Тема 4. 2.** Линейная фазовая характеристика и её следствия. Типы КИХ-фильтров с фазовой характеристикой. Спецификация КИХ-фильтра.
- **Тема 4. 3.** Методы расчета коэффициентов КИХ-фильтров. Метод взвешивания. Оптимизационные методы. Метод частотной выборки.
- **Тема 4. 4.** Структуры КИХ-фильтров. Трансверсальная структура Структура с линейной фазовой характеристикой. Критерии выбора структуры.

Раздел 5. Разработка фильтров с бесконечной импульсной характеристикой (БИХ-фильтров)

- **Тема 5. 1.** Основные характеристики БИХ-фильтров. Этапы разработки цифровых БИХ-фильтров.
- **Тема 5.2.** Методы расчета коэффициентов БИХ-фильтров. Расчет коэффициентов фильтра путем размещения нулей и полюсов. Методы согласованного z-преобразования. Метод билинейного z-преобразования.
- **Тема 5. 3.** Структуры БИХ-фильтров. Каскадная и параллельная реализация БИХ-фильтров. Влияние конечной разрядности на БИХ-фильтры.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ очная форма получения образования

19	Количество а				удиторных часов			
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Методы Фурье-анализа	10			12		2	
	Классификация сигналов и методов Фурье-анализа. Дискретные и непрерывные сигналы. Периодические и апериодические сигналы.	2			2			Защита лабораторных работ
	Ряды Фурье. Ортогональность функций sin и cos. Эффект Гиббса. Тригонометрическая запись ряда Фурье. Комплексная запись ряда Фурье.	2						Экспресс-опрос
	Интегральное преобразование Фурье. Дельта-функция. Преобразование Фурье дельта-функции (интерпретация). Прямоугольный импульс и его преобразование Фурье. Свойства преобразования Фурье. Свертка. Эффекты конечной длины выборки.	2			4			Защита лабораторных работ
	Дискретное временное преобразование Фурье. Вычисление импульсной характеристики идеального ФНЧ. Теорема о свертке. Вычисление ДВПФ при помощи таблиц.	2					2	Контрольная работа
	Дискретное преобразование Фурье (ДПФ). Алгебраический взгляд на ДПФ. Быстрое преобразование Фурье. Сложность ДПФ. Предварительные замечания. Алгоритм БПФ с прореживанием (децимацией) по времени. Свойства БПФ с основанием 2 и прореживанием по времени.	2			6			Защита лабораторных работ
2	Дискретизация непрерывного сигнала	4						
	Дискретизация аналоговых сигналов по времени. Критерий Найквиста. Эффект подмены частот.	2						Устный опрос

	Математическое описание процесса дискретизации. Фильтры для	2					Экспресс-опрос
	устранения эффекта наложения спектров.						Skempett empet
3	Z -преобразование	8				4	
3.1	Определение z-преобразования. Свойства z-преобразования.	2					Устный опрос
	Сходимость z-преобразования.						
	Анализ разностных уравнений с постоянными коэффициентами при						Контрольная работа
3.2	помощи z-преобразования. Описание систем дискретного времени с помощью полюсов и нулей. Исследование устойчивости дискретных	2				2	
	систем. Оценка импульсной характеристики.						
	Обратное z-преобразование. Табличный метод. Метод разложения на						
	элементарные дроби . Метод степенных рядов.	4				2	Контрольная работа
	Разработка фильтров с конечной импульсной характеристикой			10			
4	(КИХ-фильтров)	10		18			
4 1	Интуитивное представление о работе КИХ-фильтра. Ключевые	2		2			Защита
4.1	особенности КИХ-фильтров.	2		2			лабораторных работ
4.2	Линейная фазовая характеристика и её следствия. Типы КИХ-	2					Защита
4.2	фильтров с фазовой характеристикой. Спецификация КИХ-фильтра.	2		6			лабораторных работ
4.2	Методы расчета коэффициентов КИХ-фильтров. Метод взвешивания.	4					Защита
4.3	Оптимизационные методы. Метод частотной выборки.			6			лабораторных работ
4.4	Структуры КИХ-фильтров. Трансверсальная структура. Структура с	2		4			Защита
4.4	линейной фазовой характеристикой. Критерии выбора структуры.	2		4			лабораторных работ
5	Разработка фильтров с бесконечной импульсной	10		8			
3	характеристикой (БИХ-фильтров)	10		O			
1 7 1	Основные характеристики БИХ-фильтров. Этапы разработки	2		2			Защита
	цифровых БИХ-фильтров.	2		-			лабораторных работ
	Методы расчета коэффициентов БИХ-фильтров. Расчет						_
5.2	коэффициентов фильтра путем размещения нулей и полюсов.	6		4			Защита
	Методы согласованного z-преобразования. Метод билинейного z-	Ü		•			лабораторных работ
	преобразования.						7
5.3	Структуры БИХ-фильтров. Каскадная и параллельная реализация	2		2			Защита
	БИХ-фильтров. Влияние конечной разрядности на БИХ-фильтры.	12		20			лабораторных работ
	ОТОТИ	42		38		6	

ИНФОРМАЦИОННО - МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Солонина А. И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2018.
- 2. Оппенгейм А., Шафер Р. Цифровая обработка сигналов. М.: Техносфера, 2012.
- 3. Малла C., Вэйвлеты в обработке сигналов. M.: Мир, 2005. C. 671.

Перечень дополнительной литературы

- 1. Рабинер, Л. Теория и применение цифровой обработки сигналов / Л. Рабинер, Б. Гоулд ; пер. с англ. М. : Мир, 1978.
- 2. Айфичер Э. Цифровая обработка сигналов : практический подход / Э. Айфичер, Б. Джервис ; пер. с англ. 2-е изд. М. : Вильямс, 2004. 992 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

С целью текущего контроля знаний студентов предусматривается проведение устных опросов, экспресс-опросов, лабораторных работ. По итогам обучения проводится зачет.

Итоговая оценка формируется на основе:

- 1. Правила проведения аттестации студентов (Постановление Министерства образования Республики Беларусь №53 от 29.05.2012г.).
- 2. Положения о рейтинговой системе оценки знаний по дисциплине в БГУ (Приказ ректора БГУ от 18.08.2015г. № 382-ОД).
- 3. Критериев оценки знаний студентов по 10 балльной системе оценки (письмо Министерства образования от 22.12.2003г.).

Формирование оценки за текущую успеваемость:

- устный опрос 25 %;
- экспресс-вопрос 25 %;
- защита лабораторных работ -50 %.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и зачетной оценки с учетом их весовых коэффициентов. Вес оценки по текущей успеваемости составляет 30 %, зачетной оценки — 70 %.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Студент получает вопросы по теории и простейшие задачи к этим вопросам.

Раздел 1. Методы Фурье-анализа

Тема 1.4. Дискретное временное преобразование Фурье.

Вычисление дискретного во времени преобразования Фурье (ДВПФ). Вычисление интегрального преобразования Фурье. Вычисление коэффициентов разложения функции в ряд Фурье. Вычисление свертки (выходного сигнала линейной стационарной системы).

Форма контроля – контрольная работа.

Раздел 3. Z-преобразование

Тема 3.2. Анализ разностных уравнений с постоянными коэффициентами при помощи z-преобразования.

Вычисление z-преобразования. Определение области сходимости z-преобразования.

Форма контроля – контрольная работа.

Тема 3. 3. Обратное z-преобразование.

Вычисление обратного z-преобразования табличным методов. Вычисление обратного z-преобразования методом разложения на элементарные дроби. Вычисление обратного z-преобразования разложения в степенной ряд.

Форма контроля – контрольная работа.

Образцы задач к заданиям. Раздел 1. Методы Фурье-анализа

1. Найдите ДВПФ следующей последовательности:

$$x(n) = -\alpha^n u(-n-1), |\alpha| > 1.$$

- 2. Дана линейная стационарная система с комплексной частотной характеристикой $H(e^{j\omega}) = e^{j\omega/4}$, $-\pi < \omega \le \pi$. Определите отклик системы y(n) на входной сигнал $x(n) = \cos(5\pi n/2)$.
- 3. Найдите ДВПФ следующей последовательности:

$$f(n) = 2^{-n}u(n),$$

где

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

4. Дан Фурье-образ вещественной последовательности (|a| < 1):

$$X(e^{j\omega})=rac{1}{1-ae^{-j\omega}}.$$
 Доказать, что $X_Rig(e^{j\omega}ig)=X_Rig(e^{-j\omega}ig).$

Раздел 3. Z-преобразование

- 1. Найти z-преобразование и область сходимости для x(n) = u(n).
- 2. Найти z-преобразование и ОС для $x(n) = u(n)a^n e^{\alpha n}$.
- 3. Линейная стационарная (ЛС) система имеет следующую передаточную функцию

$$H(z) = \frac{z^2}{\left(z - 0.9 \cdot e^{\frac{j\pi}{2}}\right) \left(z - 0.9 \cdot e^{-\frac{j\pi}{2}}\right)}.$$

Найдите разностное уравнение, описывающее данную ЛС-систему; Постройте импульсную характеристику ЛС-системы.

4. Найти последовательность x(n), чье z-преобразование равно

$$X(z) = \ln(1 + az^{-1}), |z| > a.$$

Примерная тематика лабораторных занятий

Основная цель проведения лабораторных занятий состоит в закреплении теоретического материала курса, приобретении навыков выполнения эксперимента, обработки экспериментальных данных, анализа результатов, грамотного оформления отчетов.

№ темы	Наименование	Содержание		
	лабораторной работы			
1	2	3		
1.5	Быстрое	Программирование алгоритма быстрого преобразования		
	преобразование Фурье	Фурье.		
1.1, 1.3	Преобразование	Изучение методов определения основных свойств		
	Фурье: эффекты	случайных сигналов, таких, как мощность, спектральная		
	конечной длины	плотность мощности и автокорреляционная функция,		

	выборки.	получение практических навыков анализа случайных сигналов в среде Matlab.
4.1, 4.2, 4.3	Расчет цифровых КИХ-фильтров с линейной фазовой характеристикой методом взвешивания	Расчет импульсной характеристики КИХ фильтра с линейной фазовой характеристикой по заданной амплитудно-частотной характеристике.
4.2, 4.3	Расчет цифровых КИХ-фильтров методом частотной выборки	Расчет импульсной характеристики КИХ фильтра по заданной амплитудно-частотной характеристике методом частотной выборки.
4.3, 4.4	Расчет оптимальных КИХ-фильтров с минимаксной ошибкой	Расчет импульсной характеристики КИХ фильтра по заданной амплитудно-частотной характеристике используя алгоритм Ремеза.
5.1, 5.2, 5.3	Расчет цифровых фильтров с бесконечными импульсными характеристиками	Расчет типовых БИХ фильтров, используя функции проектирования Matlab

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *эвристический подход*, который предполагает:

- осуществление студентами личностно-значимых открытий окружающего мира;
- демонстрацию многообразия решений большинства профессиональных задач и жизненных проблем;
- творческую самореализацию обучающихся в процессе создания образовательных продуктов;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности.

При организации образовательного процесса используется также *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине размещены на образовательном портале комплекс учебных и учебно-методических материалов: курсы лекций и методические указания к практическим занятиям, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в том числе вопросы для подготовки к экзамену, примерный перечень заданий для самостоятельного выполнения и самоконтроля, список рекомендуемой литературы).

Примерный перечень вопросов к зачету

- 1. Классификация сигналов и методов Фурье-анализа. Дискретные и непрерывные сигналы. Периодические и апериодические сигналы.
- 2. Ряды Фурье. Доказательство ортогональности функций sin и cos.
- 3. Тригонометрическая запись ряда Фурье. Комплексная запись ряда Фурье.
- 4. Преобразование Фурье. Дельта-функция во временной и частотной областях.
- 5. Прямое и обратное преобразования Фурье (анализ и синтез).
- 6. Преобразование Фурье функций sin и cos.
- 7. Прямоугольный импульс и его преобразование Фурье.
- 8. Свойства симметрии преобразования Фурье.
- 9. Теоремы о преобразовании Фурье.
- 10. Дискретное преобразование Фурье длины N. Свойство ортогональности дискретных комплексных экспонент.
- 11. Быстрое вычисление дискретного преобразования Фурье (БПФ).
- 12. Теорема о выборке (теорема В.А. Котельникова).
- 13. Критерий Найквиста. Эффект подмены частот.
- 14. Z-преобразование. Его связь с преобразованием Фурье. Понятие области сходимости.
- 15. Свойства z-преобразования.
- 16. Анализ разностных уравнений с постоянными коэффициентами при помощи z-преобразования.
- 17. Обратное z-преобразование: табличный метод.
- 18. Обратное z-преобразование: метод простейших дробей.
- 19. Обратное z-преобразование: метод разложения в степенной ряд.
- 20. Линейная и циклическая свертка.
- 21.Алгоритм вычисления линейной свертки с использованием ДПФ.
- 22. Типы цифровых фильтров (ЦФ). Передаточная (характеристическая) функция ЦФ.

- 23.Передаточная функция цифрового нерекурсивного фильтра с линейной фазовой характеристикой.
- 24.Использование оконных функций при синтезе КИХ-фильтров. Обобщенное окно Хэмминга.
- 25.Методы расчета коэффициентов КИХ-фильтров: Оптимизационные методы и метод частотной выборки.
- 26.Расчет коэффициентов БИХ-фильтра путем размещения нулей и полюсов.
- 27. Расчет коэффициентов БИХ-фильтра методом согласованного z-преобразования.
- 28. Расчет коэффициентов БИХ-фильтра методом билинейного z-преобразования.
- 29. Структуры БИХ-фильтров. Каскадная и параллельная реализация БИХ-фильтров. Влияние конечной разрядности на БИХ-фильтры.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную
требуется		учреждения высшего	программу (с
согласование		образования по учебной	указанием даты и
		дисциплине	номера протокола)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

№ п/п	Дополнения и изменения	Основание
Учебн	ная программа пересмотрена и одобрена протокол	на заседании кафедры № от 20 г.)
Завед	ующий кафедрой	
	РЖДАЮ и факультета	