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Introduction. Recently, the deep convolutional neural networks (deep 

CNNs) are widely used in different application domains. They have demon-

strated high-quality results in a number of various image processing, image 

analysis, and image recognition tasks. One of the vital fields of application of 

related deep learning technologies is the medical diagnosis [1, 2] where corre-

sponding neural network solutions are typically aimed at the biomedical im-

age segmentation and classification. Once obtained, these classification re-

sults can be used for the generation of so-called “second opinion” to be con-

sidered by medical doctors who are making the final diagnostic decisions.  

Unfortunately, a few years ago it was discovered that the deep CNNs are 

vulnerable to so-called adversarial attacks [3]. An adversarial attack supposes 

a subtle modification of an original image in such a way that the changes are 

almost invisible to the human eye. The modified image is called an adversari-

al (attacking) image, and when submitted to a classifier it is misclassified. 

Thus, the goal of modification of an input image is to fool the CNN and force 

it to make a wrong classification decision. The adversarial attacks are called 

the white-box attacks when the information about the architecture and all the 

weights of the target CNN is known to the attacker. Alternatively, in case no 

information about the target CNN is available the attack is termed as a black-

box attack. Also, when the attacker wants to force CNN to categorize an im-

age to a specific wrong class, such an attack is referred to as a targeted attack. 

Otherwise, when the goal is to force CNN to a wrong decision, no matter to 

which wrong class the adversarial image will be classified, such an attack 

called the untargeted one. 

Currently, there are a number of papers dedicated to the problem of adver-

sarial attacks (see, for example, [4-8]). However, the majority of these works 

studying various aspects of the problem of adversarial attacks to images be-

longing to the computer vision domain and even to such benchmarking image 

datasets as popular MNIST images of 10 digits.  

In this work, we are concentrating on biomedical images, which are play-

ing the key role in the disease diagnosis and monitoring of various treatment 

processes. It is clear that the security of computer-assisted diagnosis processes 

is of paramount importance. We present detailed results on the success rate 

for both white-box and black-box untargeted attacks to five types of popular 

deep CNN architectures including InceptionV3, Xception, ResNet50, Dense-

Net121, and Mobilenet. The image data being used are digital chest X-Ray 

images, 2D slices of Computed Tomography (CT) images as well as color 

histology images. 

Materials. The image data used in this study are digital chest X-Ray imag-

es of norm of different age groups, 2D slices of Computed Tomography (CT) 
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images representing the norm and lung tuberculosis as well as color histology 

images sampled from normal and cancerous tissue of thyroid glands and the 

ovary. An additional benchmarking image dataset consisted of 6 classes of 

histological images stained with different histochemical markers. A detailed 

description of image data and the number of images in each class is given in 

table 1. 

Table 1.  
Description of datasets and classification task configurations 

Image type Classification task Number of 

images, total 

Number of images by 

classes 

Chest X-ray of Norm 

2 age groups: 

G1: 20-35 years 

G2: 50-70 years 

200,000 G1: 100,000 

G2: 100,000 

G3: 183,360 

Histology, Ovary cancer 

and cancer of Thyroid 

gland 

4 classes: 

C1: Ovary norm 

C2: Ovary tumor 

C3: Thyroid norm 

C4: Thyroid tumor 

192,000 C1: 48,000 

C2: 48,000 

C3: 48,000 

C4: 48,000 

Histology images stained 

with conventional H&E 

method and specific tar-

geted markers including 

CD31, CD105, D240, 

FRES, and Ki67 

6 classes: 

C1: CD31 

C2: CD105 

C3: D240 

C4: FRES 

C5: H&E 

C6: Ki67 

267,984 C1: 59,568 

C2: 37,488 

C3: 55,296 

C4: 35,280 

C5: 24,192 

C6: 56,160 

Lungs CT, 2D axial slices, 

layers 

2 classes: 

C1: Norm 

C2: Tuberculosis 

149,248 C1: 111,990 

C2: 37,258 

Methods. The black-box settings followed in this study require complete 

knowledge of the training image dataset of the network to be attacked (target 

CNN) while its architecture and trained parameters remain unknown. The 

whole attacking pipeline is based on the white-box Projected Gradient De-

scent (PGD) algorithm which was applied in the following way: 

1. Train the “basic” CNN on which the adversarial (i.e., attacking) images 

will be generated using the training dataset of the target network being 

under attack. 

2. Perform PGD attack on the trained network for each image in particular 

testing dataset to obtain a set of adversarial examples. 

3. Pass both the testing dataset and its adversarial examples to the target 

network to assess the rate of successful attacks. 
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We used the rate of successful attacks as an estimation for impact of sug-

gested algorithm. In order to make the results clear and consistent we define a 

single testing dataset for each training dataset. We have performed a large 

number of experiments based on each image dataset for the following five 

network architectures: InceptionV3, ResNet50, DenseNet121, Mobilenet, 

Xception. To imitate the black-box constraints the following testing pipeline 

was implemented: 

1. Select a single network as a target one. 

2. Perform the defined black-box algorithm with each network left as an 

attacking ones separately. 

3. Carry out steps 1-2 with subsequent selection of every network as a 

target one. 

Results. Experiments described above were carried out for every dataset 

described in the section of materials. Results of these experiments are pre-

sented in Fig. 1 and 2.  

 

Fig.1. Results of adversarial attacks to X-Ray (left) and CT (right) images 

The percentage of successful attacks is depicted both as the plots and cor-

responding data tables underneath. In order to ease interpretation of the re-

sults, the examples of original images of each class are provided on the right 

in each occasion. As it can be seen from the figures, every network is unstable 

under white-box attacking setup (see the bars on the leading diagonal). How-

ever, networks trained on CT and histology images of ovary and thyroid gland 

appear to be almost invulnerable to black-box attacks. 
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Fig.2. Results of adversarial attacks to histology images representing the Norm and Tumor 

classes of the ovary and thyroid gland (left) and 6 classes representing different histochem-

ical markers (right) 

Conclusions. Results obtained with this study allow drawing the following 

conclusions:  

1. All tested networks are vulnerable to white-box adversarial attacks. 

2. Network’s vulnerability to black-box attacks strongly depends on the 

training dataset.  

REFERENCES 

1. Litjens G., Kooi T., Bejnordi B. et al. A survey on deep learning in medical image 

analysis // Med. Image Anal. 2017. Vol. 42. P. 60–88. 

2. Ker J., Wang L., Rao J., Lim T. Deep Learning Applications in Medical Image Analysis 

// IEEE Access. 2018. Vol. 6. P. 9375–9389. 

3. Szegedy C., Wojciech Z., Sutskever I. et al. Intriguing properties of neural networks // 

International Conference on Learning Representations (ICLR). 2014. P. 1–10. 

4. Madry A., Makelov A., Schmidt L. et al. Towards Deep Learning Models Resistant to 

Adversarial Attacks [Electronic resource]. – Mode of access: 

https://arxiv.org/abs/1706.06083. – Date of access:  15.03.2020. 

5. Xu W., Evans D., Qi Y. Feature Squeezing: Detecting Adversarial Examples in Deep 

Neural Networks [Electronic resource]. – Mode of access:  

https://arxiv.org/abs/1704.01155. – Date of access: 15.03.2020. 

6. Wang H., Yu C. A Direct Approach to Robust Deep Learning Using Adversarial Net-

works [Electronic resource]. – Mode of access: https://arxiv.org/pdf/1905.09591. – Date 

of access: 13.03.2020. 

7. Papernot N., McDaniel P., Jha S. et al. The Limitations of Deep Learning in Adversarial 

Settings [Electronic resource]. – Mode of access: https://arxiv.org/abs/1511.07528v1. – 

Date of access: 13.03.2020. 

8. Sun K., Zhu Z., Lin Z. Towards Understanding Adversarial Examples Systematically: 

Exploring Data Size, Task and Model Factors [Electronic resource]. – Mode of access: 

https://arxiv.org/abs/1902.11019. – Date of access: 13.03.2020. 

https://arxiv.org/abs/1706.06083
https://arxiv.org/pdf/1905.09591
https://arxiv.org/abs/1511.07528v1
https://arxiv.org/abs/1902.11019

