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Large genomics pan-cancer datasets that were made publically available in the last dec-

ade are now complemented with measurements at single cell level and may include up to a 

billion data points. Here we show how deconvolution method based on independent com-

ponent analysis can process transcriptomes measured for bulk samples at pan-cancer level 

and for single-cell measurements from normal tissues and neoplasia. 

Key words: transcriptomics; RNA-seq; independent component analysis; pan-cancer; 

single-cell. 

Introduction. The majority of tumor samples collected from patients and 

studied by high-throughput transcriptomics are heterogeneous at three levels. 

First, bulk tissue samples contain a mixture of several cell types. Their pro-

portions vary from one specimen to another and are difficult to control. Sec-

ond, cancers naturally develop inter and intra-tumor heterogeneity of malig-

nant cells. Third, the evolving technology may introduce technical biases and 

limit comparison of data originated from new patients to large publicly avail-

able datasets, such as The Cancer Genome Atlas (TCGA) [1].  

One of experimental methods, developed to disentangle the complexity of 

bulk biological samples and characterize various cell populations is a single-
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cell RNA sequencing (scRNA-seq). It has a strong application potential in on-

cology. At the same time, single cell data are susceptible to the same technical 

issues as bulk RNA-seq, including the effects of batches, number of reads per 

cell (cell “size”), gene length, and patient-to-patient variability. In addition, 

various biological processes in the cells can be masked by the cell cycle, 

which is the strongest contributor to transcriptome variability in proliferating 

tumor cells. Another challenge of single cell data is its dimensionality: one 

dataset may easily describe ~10
4
 features for ~10

4
 cells. 

In this work, we applied an in silico data-driven deconvolution method 

called consensus independent component analysis (ICA) [2, 3] to resolve the 

complexity of bulk and single cell data. The methods were able to separate 

technical biases from signals of biological interest, isolate signals from differ-

ent biological processes and cell subpopulations in different components inte-

grate several levels omics data with recorded patient clinical data. The devel-

oped methods were implemented in R scripts and as an R package consICA 

and were applied individually to several cancers included into TCGA dataset, 

as well as to entire TCGA and, in addition, to several scRNA-seq experi-

ments.  

Methods. The parallel multiplatform consensus ICA was implemented in 

consICA [3] package. The ICA algorithm (R-package fastICA) was performed 

with multiple initial estimations, excluding random samples for each run. At 

each run the centered and scaled initial data matrix was presented as a matrix 

product of independent signals (S) and their weights (M) (Fig.1). The results 

of individual runs were mapped and consensus matrices of the signals and 

weights were calculated [3]. Finally, matrix S can be interpreted based on the 

most contributing genes, e.g. by gene-set enrichment analysis, and weight ma-

trix M can be linked to clinical data using ANOVA and Cox-regression. We 

also used random forest as a classification tool to predict subtypes of the tu-

mor based on component weighs. The method was tested on 10456 TCGA 

samples and several independent datasets. Additional level of interpretation of 

independent components was achieved by including scRNA-seq data into 

consideration. Two scRNA-seq datasets composed of 2544 normal pancreas 

cells [4] and 3304 cancer cells from two patient-derived glioblastoma cell-

lines [5] were considered. 
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Fig. 1. Consensus ICA implemented in consICA tool decomposes combined gene ex-

pression matrix from multiple samples into meaningful statistically independent signals in 

the space of genes (metagenes, S) and weights in the space of samples (weight matrix, M). 

Biological processes and signatures of cell subtypes can be found in S, while M could be 

linked to patient groups and patient survival (using Cox regression). 

Results. We first applied the method independently to several cancers: 

skin cutaneous melanoma (SKCM) [3], lung squamous cell carcinoma 

(LUSC), lung adenocarcinoma (LUAD), low grade gliomas (LGG), glioblas-

toma multiform (GBM), pancreatic cancer (PAAD) and prostate cancer 

(PRAD). We showed that ICA-based deconvolution engineers features with 

predictive power and can be used to classify subtypes of the tumors, predict 

patient survival and characterize intensity of biological processes within the 

bulk patient samples. In the majority of datasets a cell cycle component was 

associated with poor survival. Similar behavior was observed for a component 

linked to keratinization and epidermis development. Interestingly, the pres-

ence of immune-related components showed an antinomic effect: they were 

associated with better survival for SKCM, LUAD, LUSC patients, showed no 

effect in PRAD and PAAD, and an increased the risk for brain cancer patients 

(GBM and LGG).  
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We investigated predictions of the biological processes on in-house data 

from GBM patient tumor specimens, patient-derived orthotopic xenograft 

(PDOX) models in vivo, and patient-derived classical and stem-like cell lines 

cultured in vitro and xenografted in vivo (collaboration with 

Dr. A. Golebiewska and Prof. S. Niclou, Luxembourg Institute of Health).  

 
Fig. 2. Consensus ICA detects cell cycle in bulk pan-cancer TCGA dataset composed of 

10456 samples from 33 cancers (A) and in a single cell data of 3304 cancer cells (B) (from 

Sompairac et al., 2019 [2]). Pan-cancer analysis shows the proliferation level of different 

cancers, averaged over the cells collected in each sample (highlighted cancers were inves-

tigated specifically). At the same time, scRNA-seq allows zooming into the cycling pro-

cess itself and discriminate between subpopulations of dividing and resting cells. Up-

regulated gene markers of the cell cycle are highlighted. 

The highest cell cycle component was found for the stable and most prolifera-

tive cell lines U87, U251 that showed minimal cell migration, while preclini-

cal models showed strong migrating signals. This confirmed the benefits of 

replacement of human stromal compartment with rodent counterparts. The 

method was also able to reproduce the phenotype of patient-derived cell lines: 

angiogenic (forming solid tumors with blood vessels), migrating (spreading in 

mesenchyme without vascularization) and mixed. 

Simultaneous analysis of the entire TCGA dataset (pan-cancer) was per-

formed using 100 independent components. We identified components linked 

to increased risk in all considered 33 tumors: keratinization/cornification, cell 

cycle, inflammation, increased glycolysis, cell motility and angiogenesis. Av-

erage level of the cell cycle can be a characteristic of tumor aggressiveness 

(Fig. 2A).  

On the single-cell level, our method successfully identified technical fac-

tors (batches, number of reads per cell) and biological signals (cell cycle in 

tumor tissue, mRNA processing, ribosome biogenesis, translation) and isolat-

ed their effects in different components. We showed that it is possible to ex-

clude technical components, such as batch effect and “cell size”, and thus 
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normalize the single cell data by removing correspondent components. Simi-

larly to bulk samples, some components can also be used to discriminate be-

tween cell types. Finally, we investigated two components linked to the cell 

cycle and reconstructed trajectory of the dividing cells using the information 

about the markers of the cell cycle (Fig. 2B). Interestingly, we were able to 

correlate the ICA results of scRNA-seq and bulk sample RNA-seq and show 

that similarity is preserved between estimated components both for cancer and 

stromal cells. The later fact was used to identify stromal cells in PAAD can-

cer.  

Conclusions. We demonstrated that ICA-based deconvolution can be ap-

plied at the level of large datasets from bulk samples as well as at the level of 

single cells. In both cases, the developed consICA was able to separate tech-

nical effect from biologically related signals. Biological signals can be related 

to cellular processes, such as cell cycle, transcription, translation and metabol-

ic processes; or to cell types: various immune, endothelial, muscle cells, as 

well and highly proliferative cancer cells. By mapping of the components be-

tween bulk and single cell datasets, we can improve the annotation of the 

components and therefore establish a link between observation at cellular lev-

el and clinical data.  
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