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One-Dimensional and Quasi-One-Dimensional

Models of Quantum Waveguides in an External

Field
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The modeling of electron coherent transport in low dimensional systems in an
external field has been considered. For quasi-one dimensional systems with a profile
defined via plane curve the effect of the influence of a transverse electric field on
the transmission coefficient of the system is investigated. The possibility of efficient
governing of the transmission of the system via external electric field and qualitative
agreement of the simulation results for 1D and 2D models is demonstrated.

1. Introduction

Development and miniaturization in the field of electronic components has achieved the

stage, when devices make use of quantum coherent effects. There are two actual development

directions, namely, the design of new nanoscale digital electronics components and the develop-

ment of new media and systems, that deal with quantum behavior in mesoscopic scale

Materials with anomalously high Fermi surface anisotropy are commonly refereed to as

one-dimensional systems. Their properties are described in terms of one or two dimensional

zone structure, while the rest dimensions are spatially localized. It’s evident, that transport

characteristics of these systems are highly anisotropic, so while conductivity in chosen directions

has typical metallic behavior, in localized dimensions we deal with jumps between layers, or even

transport is denied [1]

Despite that one-dimensional model systems were used widely in the beginning of condensed

matter physics development, they were abandoned for a long while. These models possessed

several anomalous properties ( e. g. [1–3] ). We emphasize the fact of full wavefunction

localization in case of small disorder among mentioned properties.

Interest to one-dimensional systems raised again when research on such substances as

TTF−TCNQ (tetrathiafulvalenetetracyanoquinodimethane) ,(SN)x, (CH)x revealed that their

electric properties sufficiently differ from known 3D systems. [4]
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Experiments show that temperature dependence of these such materials conductivity has

rather high maximum of 105−−106Ω−1m−1 for TTF −TCNQ. Also, there is a metal-insulator

transition in the range of low temperatures. Moreover, a charge density wave (CDW) mechanism

of charge transport was observed in experiments with such systems [2]

Several approaches were introduced to describe electric and transport properties of one and

quasi-one dimensional systems [5–11]. They describe frequency and temperature dependence

of conductivity, anomalous conductivity fluctuations of mesoscopic samples, effects connected

with disorder, quantum localization and some other issues It’s also important to investigate an

influence of geometry limitations on system quantum properties Several results were obtained

for one-dimensional chain of non-trivial shape (waveguide-like system) [12]–[20]. It was shown

that bonded states exist in quantum waveguides, and localization is possible in ensembles of

these systems. [21].

Consideration of these systems in external fields and in scales where ballistic coherent trans-

port plays important role requires more precise accounting of system geometry and overall model

generalization. Analytical description of quantum transport on disordered wires in external elec-

tric field is discussed in [21]. Landauer approach is used there along with first approximation of

controlling field with perturbation theory.

In this paper we give numerical analysis of controlling electric field effect on one-dimensional

chain represented with a curve. Also, we will consider the same system represented with narrow

plain waveguide of finite length and the same shape as the above mentioned curve.

2. Localization effects in quasi-one-dimensional systems in exter-

nal fields

We consider a one-dimensional chain of N scatterers (atoms) located along a curve z(x) =

exp(−βx2) on a plane XOZ exposed to external uniform electric field of intensity ~Ez illustrated

on fig.1 Potential energy of an electron u(x) in the point (x, z) equals Ezz(x). In case of small

β values the system can be considered as a linear chain z = 0 with additional potential. An

accelerating potential ExL is applied to fixed edges of a chain, where Ex is electric field intensity

and L is chain length.

We will follow [22], where Krönig-Penney model with disorder is used to calculate conduc-

tivity. On the lines of [22]–[23], we put down Krönig-Penney quantum model as follows

(
− d2

dx2
+

N∑
n=1

Vnδ(x− na) + eEzz(x) + eExx

)
Ψ(x) = EΨ(x) (1)

where E – Hamiltonian eigenvalues in units ~2/2m, ~ – Planck constant, m – electron mass, e

– electron charge, a – grid parameter, Vn – mean value of scattering atom random potential.

Amplitude distribution is uniform
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FIG. 1. Stochastic model of one-dimensional system in external field with fixed edges.

Then, as in [22]-[23], time-independent Schrödinger equation can be represented as Poincare

map due to the properties of scattering potentials

Ψn+1 =

(
cos kn+1 +

kn sin kn+1

kn+1 sin kn

cos kn + Vn
sin kn+1

kn+1

)
Ψn − kn sin kn+1

kn+1 sin kn

Ψn−1 (2)

where kn = (E + naEz + z(na))1/2, N – number of atoms in chain.

System transparency is as follows [22]

t =
k0

kL

|exp(2ikL)− 1|2
|ΨN+2 −ΨN+3 exp(−ikL)|2 (3)

where k0 =
√

E, kL =
√

E + EzL and L = N + 2.
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FIG. 2. One-dimensional system transparency lnT vs. wavenumber k dependence: (a) Uz transverse
field maximum value 0.01 eV, (b) Uz maximum value 0.07 eV. kF stands for Fermi wavenumber.

It is known [9] that a distinguishing feature of one-dimensional models is abnormal con-

ductivity fluctuation. In our system, dispersion is around 2 dB when simulation is held 10000
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times for each wavenumber That’s why we used a geometric mean of 100000 realizations for each

point.

The model reads, that controlling parameter is not the transverse field intensity Ez, but

maximal potential energy Uz = Ezz(0) in the electric field System transparency in logarithmic

scale vs. electron wavenumber for several Uz values is shown on fig.2. One can find that

transverse field makes a sufficient influence on conductivity in the range of wavenumbers close

to Fermi vector kF Thus, it can be stated that transverse electric field can be used to control

1D–system conductivity.

The issue of dependence of transparency on field intensity also makes an interest. As it

was mentioned, perturbation theory gives square dependence [24]. Numerical simulation results

for T versus Uz are given on fig. 3 Despite theoretical results, there is exponential transparency

decrease with the Uz increase.
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FIG. 3. One-dimensional system transparency logarithm − ln T versus Uz for wavenumber
k = 0.99 kF : solid line for N = 100 atoms, dashed line – N = 500 atoms

It should by stated that pure quantum transport mode in scatterers system is considered

(localization effects in coherent transport are considerable). Obviously, this fact can be a reason
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for transparency versus longitudinal field energy dependence observed on fig.4 One can see that

the dependence is sufficiently nonlinear, almost exponential This is due to the absence of non-

coherent scattering in the system. Such mode is presumed to be achieved in nanoelectronic

components within near future.
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FIG. 4. One-dimensional system transparency lnT versus Ux dependence for wavenumber k = 0.99 kF

and several Uz: solid line for Uz = 0, dashed line for Uz = 0.02 eV, dotted line for Uz = 0.04 eV.

To sum up, we can draw a conclusion, that one-dimensional disordered quantum coherent

scatterers chain of a nontrivial shape in electric field can possess localization (delocalisation)

properties. The dependence of transparency versus field intensity can render a possible use

in high-frequency switches for considered systems. However the considered system is rather

simplified. That’s why we also consider a a plain channel of finite width
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3. Field control of conductivity in a curved nanoscale channel

The model represents a nanoscale curved channel (quantum waveguide) of a finite width

and shape defined as in previous section with one electron passing through A chain of scatterring

atoms of can be allocated inside the channel, and localization phenomena will be caused in that

case by both external field and system geometry. Scatterers were simulated via a chain of two-

dimensional Gaussian-shaped potentials u(r) = exp(−r2/(2σ2)) of defined halfwidth σ = 0.1 nm.

Among approaches to simulation of nanoscale quantum system they usually mark out solu-

tion of time-independent Schrödinger equation followed by construction of appropriate transfer-

matrix. This approach has considerable disadvantages, namely the requirement to compute a

huge number of eigenvalues and eigenfunctions (in our case Hamiltonian ones), and the need

of adequate definition of source and drain areas and appropriate border conditions. Another

approach is to solve time-dependent Schrödinger equation for a wave packet passing through a

defined area. While the number of dimensions is increased by one, two advantageous possibilities

appear: a possibility to make an effective parallel supercomputer realization and a possibility

to use numerical methods (so-called symplectic integrators) that conserve wavefunction norm.

The latter also allows exact charge conservation. We used Split-Step Fourier method [25], a

simplectic integrator of error O(dt3) on a step. Supercomputer implementation is described in

[26, 27].
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FIG. 5. drain area accumulated charge time dependence for (a) system without scatterring chain (b)
with chain.

We were investigating possibility of coherent quantum transport field control, so it was

enough to choose an area sufficient for qualitative analysis of corresponding effects. A 30 nm

square was chosen. Inside this area there is a curved channel with infinite walls on each side

of 2.6 nm flat span. Channel shape is defined as z(x) = a exp(−βx2), channel length is 20 nm.
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Initial wavepacket is a Gaussian-shaped packet in source area with defined speed along the

channel. Source and drain areas were supported via accumulating of wavefunction absolute

value sqaure in these areas, followed by zeroing these areas on each time step. Thus we obtain

charge accumulated in this areas. Asymptotic value of charge accumulated in drain area gives

transparency.
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FIG. 6. Transparency T versus profile height H dependency

Numeric analysis reveal that it is enough to use 0.015 nm spatial grid step. Time-

dependencies of accumulated charge for several grid resolutions are represented on fig. 5.

2048x2048 resolution gives asymptotic charge value, that differs result obtained for doubled

resolution by no more than 10%.

Now let us consider system geometry influence on it’s transparency. Curved/straight chan-

nel transparency ratio
T

T0

vs. bond height dependence is in fig. 6. Curveness-connected phe-

nomena exist, but are relatively small.

A channel of height of 2.4 nm was chosen to evaluate the influence of scattering chain on

system transparency. In fig. 7 there are transparency vs. transverse field energy dependencies
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FIG. 7. Transparency lnT vs. transverse electric field energy dependence. Solid line for system with
scatterring chain, dashed line for system without it.

for channels with and without scattering chain. Empty channel transparency is lower than

transparency of a channel with scattering chain.

Transparency dependence on transverse field energy for three different longitudinal field

energy values is given in 8. Transparency field control works in all this cases.

We use above mentioned
T

T0

rate to compare one-dimensional and quasi-one-dimensional

models. In fig.9 one can see transparency vs. field energy dependencies for both models. Models

are qualitatively compliant.

Conclusion

In the paper we have demonstrated the existence of canal transparency field control in one-

dimensional and quasi-one-dimensional systems . Fields of relatively small intensities can be

used to control conductivity of these systems in coherent quantum transport mode. Localization
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FIG. 8. Curved channel transparency lnT vs. transverse field energy Uz.

phenomena become exponentially sensitive to the field magnitude. Both considered models have

given qualitatively compliant results.
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