```
Пример 3. Текст "подсказки".

"ПР (BaCO_3) = [Ba^{2+}] [CO_3^{2-}].

п (моль) = C (моль/л) \cdot V (л)".
```

Пример 4. Текст "помощи".

- "1. Рассчитайте молярную концентрацию BaCO₃ в растворе.
 - 2. Вычислите количество ВаСО3 в 200 мл раствора".

Если такая консультация оказывается недостаточной, компьютер приступает к дообучению на аналогичном примере. Материал дополнительного задания состоит из теоретического блока (определения, формулы, подробный план работы) и серии вопросов, отвечая на которые студент по действиям решает задачу. Поскольку процесс вычисления разбивается на ряд элементарных стадий, отсутствует необходимость программирования возможных типовых ошибок. Комментарий к любым неверным действиям студента сформулирован в виде подробного разъяснения.

Для закрепления знаний и контроля степени их усвоения впоследствии обу-

чаемый должен уже самостоятельно решить задачу такого же типа.

В основной своей части (переход от одного смыслового блока к другому) структура программы линейная. Для успешно работающих студентов предусмотрен пропуск некоторых блоков, в которых обсуждаются приемы решения простейших вариантов задач. Контактное время работы с программой зависит от уровня знаний учащегося и может варьироваться в интервале 1–5 учебных часов.

Данный пакет программ ориентирован на использование IBM-совместимых ПЭВМ, работающих под управлением операционной системы DOS версий 3.00 и выше.

1. Burness J. H. // J. Chem. Educ. 1991. V.68. N11. P.919.

2. Свиридов В.В., Адамович Т.П., Васильева Г.И. и др. Развернутая программа курса неорганической химии. Мн., 1989.

3. Тикавый В.Ф., Горошко Н.Н., Рагойша А.А. // Сб. науч.-метод. ст. по химии. М., 1989. Вып.11. С.111.

УДК 547.787.2.07'544'572

М.В.КУДРЕВАТЫХ, О.Н.БУБЕЛЬ

СИНТЕЗ 4-(5-ФЕНИЛОКСАЗОЛ-2-ИЛ)БЕНЗОЙНОЙ КИСЛОТЫ

The conditions of synthesis of 4-(5-phenyloxazol-2-yl)benzoic acid beginning from terephtalic acid monomethyl ether and ω -bromoacetophenone have been found.

В сцинтилляционном анализе водных растворов радионуклидов, излучающих α - и β -частицы, наиболее широко используется в качестве люминофора-активатора 2,5-дифенилоксазол (PPO), дающий люминесценцию при 360 нм, которая в существенной мере поглощается водной средой. Для смещения спектра люминесценции в видимую область используется добавка — 1,4-бис(5-фенилоксазол-2-ил)бензол (POPOP), который возбуждается при 360 нм и люминесцирует в области 450 нм [1].

Синтезирован ряд других люминофоров [2–4], люминесцирующих при 400–460 нм. Однако они очень дороги, практически не растворяются в воде и не могут использоваться в серийных анализах водных растворов радионуклидов.

Наиболее простым из производных 2,5-дифенилоксазола, люминесцирующих при 400 нм, является 4-(5-фенилоксазол-2-ил)бензойная кислота [2]. Благодаря карбоксильной функции этот люминофор может быть введен в различные полимерные водорастворимые материалы.

Синтез 4-(5-фенилоксазол-2-ил)бензойной кислоты, описанный в работе [2], позволяет получать эту кислоту в количествах около 1 ммоль. Однако описанные методики оказились непригодными для синтеза кислоты в количествах 0,05—0,1 моль.

2 Зак. 1105

Нами разработан препаративный метод синтеза названной кислоты в количествах до 0,1 моль с выходом целевого продукта 44,5% в пересчете на диметилтерефталат.

В качестве исходного соединения использовали доступный диметиловый эфир терефталевой кислоты (I), который щелочным гидролизом переводили в калиевую соль, обработка которой соляной кислотой в ДМФА давала с выходом 76–80% монометиловый эфир терефталевой кислоты (II). Хлорангидрид (III), полученный при обработке хлористым тионилом кислоты (II) вводили в реакцию с гидрохлоридом ω -аминоацетофенона и получали с выходом 70% ω -(4-карбоксиметилбензоил)аминоацетофенон (IV), который в серной кислоте количественно циклизовали в метиловый эфир 4-(5-фенилоксазол-2-ил)бензойной кислоты (V), гидролизованный далее в кислоту (VI).

Экспериментальная часть

Спектры ПМР 10%-ных растворов веществ в дейтерохлороформе или в дейтеропиридине записаны на спектрометре "Tesla-BS-467A". Внутренний эталон – ГМДС.

Течение реакции и чистоту полученных соединений контролировали при помощи ТСХ на пластинах "Silufol", элюент — эфир-гексан в разных соотношениях или хлороформ, содержащий 1—10% метанола.

Диметилтерефталат получен с Могилевского лавсанового завода. Т. пл. 140–142°C.

Фенацилбромид синтезирован бромированием ацетофенона в уксусной кислоте. Т. пл. 51°C.

Солянокислый фенациламин получен аминированием фенацилбромида по Делепину. Т. пл. 186–187°С [6].

Калиевая соль монометилового эфира терефталевой кислоты. В трехгорлую колбу емкостью 1л, снабженную механической мешалкой, обратым холодильником и капельной воронкой, помещали 500 мл метанола и 39 г (0,201 моль) диметилового эфира терефталевой кислоты (I). Реакционную смесь нагревали до кипения и при перемешивании растворяли эфир (I). Затем в течение 3 ч по каплям добавляли раствор, содержащий 0,2 моль гидроксида калия в 50 мл метанола. Реакционную смесь охлаждали. Выпавшую калиевую соль кислоты (I) фильтровали и сушили при 130°С. Получили 40,1 г (91,5%) калиевой соли.

Монометиловый эфир терефталевой кислоты (II). Полученное количество калиевой соли растворили в 130 мл ДМФА и добавляли при интенсивном перемешивании порциями в течение 40 мин 18 мл (0,2 моль) концентрированной соляной кислоты. Выпавший хлорид калия фильтровали. Фильтрат вылили в 800 мл воды и оставили на ночь. Выпавший осадок отфильтровали, промыли водой (3×100 мл). Сушили при 120°С. Получили 26,2 г моноэфира (II) (79,1%). Моноэфир (II) кристаллизовали из 300 мл метанола. Т. пл. 220—222°С [7].

Спекто ПМР (CDCI₃): 3.79 (c.3H): 8.15, 8.40 (AA'BB', 4H, J = 8.4 Гц, 11.2 с, 1H).

Хлорангидрид монометилового эфира терефталевой кислоты (III). В колбу на 100 мл, снабженную обратным холодильником с хлоркальциевой трубкой, помещали 12,6 г (0,07 моль) моноэфира (II), 40 мл толуола, 5,7 мл (0.08 моль) хлористого тионила и 0.5 мл ДМФА. Смесь нагревали при 80°С до растворения осадка, а затем кипятили до прекращения выделения хлороводорода. На роторном испарителе отгоняли примерно 20 мл толуола. Полученный раствор использовали в синтезе ацетофенона (IV).

ω-(4-Карбоксиметил)бензоиламиноацетофенон (IV). В трехгорлую колбу помещали 0.5 л воды, 12 г (0.07 моль) солянокислого фенациламина и при перемешивании мешалкой Хершберга вносили толуольный раствор хлорангидрида (III) и 100 мл толуола. Затем по каплям в течение часа прибавляли раствор 14 г соды в 190 мл воды. Перемешивали еще 30 мин при 25°С. Избыток соды нейтрализовали 1%-ным раствором соляной кислоты до нейтральной реакции по универсальному индикатору. Осадок отфильтровали, промыли водой, сушили на воздухе. Получили 14,8 г (78,3%). Т. пл. 168-169°С.

Спектр ПМР (δ , CDCl₃): 3,86 (c, 3H); 4,88 (д, 2H, J = 4,8 Гц); 7.12–8.27 (M. 10H).

Монометиловый эфир 4-(5-фенилоксазол-2-ил)бензойной кислоты (V). В коническую колбу на 100 мл помещали 10 г (0,034 моль) бензоиламиноацетофенона (IV) и 50 мл концентрированной серной кислоты. Содержимое колбы интенсивно перемешивали в течение 2 ч. Полученный раствор выливали при перемешивании на 1 кг льда. Добавляли 300 мл хлороформа и перемешивали до растворения льда, хлороформенный слой отделяли, промывали водой, сушили безводным сульфатом магния. Раствор фильтровали, хлороформ отгоняли на роторном испарителе. Остаток кристаллизовали из толуола. Получили 9,2 г (V) (98%). Т. пл. 169-170°С [2].

Спектр ПМР (δ, CDCl₃): 3,8 (c, 3H); 7,03–7,78 (м, 6H); 8,05 (c, 4H).

4-(5-Фенилоксазол-2-ил)бензойная кислота (VI). В колбу емкостью 3 л, снабженную механической мешалкой и обратным холодильником, помещали 11,2 г (0,04 моль) метилового эфира (V) и 240 мл ацетона. К полученной смеси при перемешивании и кипении добавляли раствор 3,3 г гидроксида натрия в 2 л воды. Реакционную смесь кипятили 3 ч, затем добавляли 1 л воды и доводили до кипения. Горячий раствор фильтровали на складчатом фильтре. Реакционную смесь подкисляли до рН 3-4 по универсальному индикатору. Выпавшую кислоту фильтровали через 12 ч. Осадок промывали водой, сушили на воздухе и кристаллизовали из хлороформа. Получили 9,0 г (VI) (80%), Т. пл. 246-248°C [2].

Спектр ПМР (δ , C₅D₅N): 7,0–7,9 (м, 5H); 8,18, 8,45 (AA'BB', J = 8,6 Гц); 9,97 (c, 1H).

- 1.Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М., 1984. С. 208. 2.Красовицкий Б.М., Шершуков В.М., Волков В.Л. // ХГС. 1986. № 9. С.
 - 3. Они же // Там же. С. 1265.
- 4.Афанасиади Л.Ш., Паценкер Л.Д., Верезубова С.А. идр. // ХГС. 1986. Nº9. C.1267.
 - 5. Органикум: Практикум по органической химии. М., 1979. Т. 2. С. 173.
 - 6. В е й ганд Х и л ь ге т а г. Методы эксперимента в органической химии. М., 1968. С. 418.
 - 7. Beilsteins Handbuch der Organischen Chemie. Berlin, 1926. S. 843.

УДК 661.183(088.0)

В.К. ЛИПСКИЙ, А.Э. ТОМСОН, М.И. СОБОЛЬ, Т.В. СОКОЛОВА, В.С. ПЕХТЕРЕВА, Т.И. ЛИПСКАЯ

ВЛИЯНИЕ ГИДРОФОБИЗАЦИИ НА ИЗМЕНЕНИЕ СТРУКТУРЫ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ТОРФА

The modification of peat particles surfaces by the salts of the higher aliphatic amines of the common formulae $C_nH_{2n+1}NH_3CI$ (n = 8, 12, 14.18) has been carried out aimed at the attaching them water-repellent properties and oil capacity increasing. By the sorption method the structural Ca-form and ated peat characteristics (the specific surface value, mono-lay capacity, pores volume, distribution of pores by their dimensions) have been