Белорусский государственный университет

УТВЕРЖДАЮ Проректор по учебной работе и образовательным инновациям О.Н. Здрок 2020 г. Регистрационный № УД-<u>8421</u>/уч.

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности: 1-31 04 01 Физика (по направлениям)

Направления специальности: 1-31 04 01-02 Физика (производственная деятельность)

Учебная программа составлена на основе образовательного стандарта высшего образования ОСВО 1-31 04 01 -2013 и учебных планов № G 31- 162/уч. от 30.05.2013 и № G31СИБД-237/уч. от 01.04.2020

составители:

- **Н.Г. Абрашина-Жадаева** заведующая кафедрой высшей математики и математической физики Белорусского государственного университета, доктор физико-математических наук Российской Федерации, доцент;
- **В.В. Кашевский** доцент кафедры высшей математики и математической физики Белорусского государственного университета;
- **И.А. Тимощенко** старший преподаватель кафедры высшей математики и математической физики Белорусского государственного университета.

РЕЦЕНЗЕНТЫ:

Пекарский А.А. – профессор кафедры теории функций Белорусского государственного университета, доктор физико-математических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой высшей математики и математической физики (протокол № 10 от 26 мая 2020);

Научно-методическим Советом БГУ

(протокол № 5 от 17.06.2020)

Заведующая кафедрой

Абрашина-Жадаева Н.Г.

A My

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — ознакомление студентов с основными понятиями анализа функций комплексной переменной, функциональных рядов, специальных функций, операционного исчисления и различными применениями их при решении физических задач.

Задачи учебной дисциплины:

- 1. формирование целостной системы знаний об анализе функций комплексной переменной.
- 2. обучение навыкам исследования физических процессов инструментами комплексного анализа.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Фундаментальные понятия теории функций комплексной переменной находят весьма широкое применение в большинстве разделов современной математики и физики. Дисциплина «Теория функций комплексной переменной» направлена на развитие методов исследования функций в комплексной плоскости и представляет много полезных математических моделей для физиков-инженеров. Изучение данного курса, овладение средствами моделирования реальных явлений и процессов является необходимым элементом математического образования будущих специалистов-физиков.

Учебная дисциплина относится к компоненту учреждения высшего образования цикла специальных дисциплин.

Связи с другими учебными дисциплинами. «Теория функций комплексной переменной» базируется на знаниях, приобретенных в результате освоения дисциплин «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Основы векторного и тензорного анализа».

Требования к компетенциям

Освоение учебной дисциплины «Теория функций комплексной переменной» должно обеспечить формирование следующих компетенций:

Академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
- АК-2. Владеть системным и сравнительным анализом.
- АК-3. Владеть исследовательскими навыками.
- АК-4. Уметь работать самостоятельно.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-8. Обладать навыками устной и письменной коммуникации.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Социально-личностные компетенции:

– СЛК-2. Быть способным к социальному взаимодействию.

- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

Профессиональные компетенции:

- ПК-1. Применять знания теоретических и экспериментальных основ физики, современных технологий и материалов, методы исследования физических объектов, методы измерения физических величин, методы автоматизации эксперимента.
- ПК-2. Использовать новейшие открытия в естествознании, методы научного анализа, информационные образовательные технологии, физические основы современных технологических процессов, научное оборудование и аппаратуру.
- ПК-3. Проводить планирование и реализацию физического эксперимента, оценивать функциональные возможности сложного физического оборудования.
- ПК-4. Пользоваться глобальными информационными ресурсами, компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
- ПК-6. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-исследовательской, научно-производственной и научно-педагогической работы.
- ПК-8. Осуществлять на основе методов математического моделирования оценку эксплуатационных параметров оборудования и технологических процессов, эффективности разрабатываемых технологий.
- ПК-11. Владеть знаниями о структурной организации материи, о современных физических методах познания природы.

В результате освоения учебной дисциплины студент должен:

знать:

- 1. комплексные числа;
- 2. основы теории функций комплексной переменной;
- 3. конформные отображения элементарными функциями;
- 4. приложения теории вычетов;
- 5. основы теории рядов и преобразования Фурье;
- б. основы операционного исчисления;
- 7. цилиндрические функции и основные ортогональные полиномы;

уметь:

- 1. вычислять значения элементарных функций комплексной переменной
- 2. дифференцировать функции комплексной переменной
- 3. вычислять интегралы по комплексной переменной;
- 4. использовать теорию конформных отображений;

- 5. применять теорию рядов Фурье, вычетов и операционного исчисления;
- 6. осуществлять асимптотические разложения;
- 7. проводить вычисления со специальными функциями;

владеть:

- 1. навыками применения теории функций комплексной переменной;
- 2. навыками решения алгебраических и дифференциальных уравнений и систем операционным методом и методом преобразования Фурье.

Структура учебной дисциплины

Дисциплина изучается в 3 семестре. Всего на изучение учебной дисциплины «Теория функций комплексной переменной» отведено:

- для очной формы получения высшего образования - 262 часа, в том числе 136 аудиторных часов, из них: лекции - 68 часов, практические занятия - 60 часов, управляемая самостоятельная работа (аудиторная) - 6 часов, управляемая самостоятельная работа (ДО) - 2 часа.

Трудоемкость учебной дисциплины составляет 7 зачетных единиц. Форма текущей аттестации – зачет, экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Функции комплексной переменной

- Тема 1.1. Комплексная плоскость.
- Тема 1.2. Предел и непрерывность функций комплексной переменной. Основные элементарные функции комплексной переменной
- Тема 1.3. Дифференцируемость функций комплексной переменной. Аналитические функции.

Раздел 2. Конформные отображения элементарными аналитическими функциями

- Тема 2.1. Геометрический смысл модуля и аргумента производной функции комплексной переменной. Конформные отображения.
 - Тема 2.2. Дробно-линейная функция.
 - Тема 2.3. Функция Жуковского. Степенная и показательная функции.
 - Тема 2.4. Многозначные функции. Радикал и логарифм. Точки ветвления.
 - Тема 2.5. Применение конформных отображений в физических задачах.

Раздел 3. Интегрирование функций комплексной переменной

- Тема 3.1. Интеграл по комплексной переменной. Интегральная теорема Коши.
- Тема 3.2. Интегральная формула Коши. Формула среднего значения. Принцип максимума модуля.
- Тема 3.3. Интеграл типа Коши. Бесконечная дифференцируемость аналитической функции. Теорема Морера.

Раздел 4. Степенные ряды

- Тема 4.1. Степенные ряды. Теорема Коши-Адамара. Теоремы Абеля. Аналитичность суммы степенного ряда.
- Тема 4.2. Ряды Тейлора. Разложение аналитической функции в ряд Тейлора. Теорема Лиувилля. Основная теорема алгебры. Нули аналитической функции.
 - Тема 4.3. Ряды Лорана.

Раздел 5. Теория вычетов

- Тема 5.1. Изолированные особые точки аналитической функции. Классификация, ряд Лорана в окрестности изолированной особой точки.
- Тема 5.2. Вычет аналитической функции в изолированной особой точке. Вычет в бесконечно удаленной точке. Теорема Коши о вычетах.
- Тема 5.3. Вычисление определенных интегралов с помощью вычетов.
 Лемма Жордана.

Раздел 6. Дополнительные вопросы теории функций комплексной переменной

- Тема 6.1. Теорема единственности. Аналитическое продолжение. Аналитическое продолжение гамма-функции.
 - Тема 6.2. Понятия об асимптотических разложениях.

Раздел 7. Ряды и преобразование Фурье

- Тема 7.1. Ряды Фурье в гильбертовых пространствах.
- Тема 7.2. Тригонометрические ряды Фурье. Поточечная сходимость.
- Тема 7.3. Равномерная сходимость тригонометрических рядов Фурье. Ряды Фурье в комплексной форме.
 - Тема 7.4. Преобразование Фурье. Свойства.

Раздел 8. Специальные функции

- Тема 8.1. Фундаментальные системы решений уравнения Бесселя. Цилиндрические функции.
- Teма 8.2. Рекуррентные соотношения для цилиндрических функций. Асимптотика. Интегральные представления.
- Teма 8.3. Ортогональность функций Бесселя. Модифицированные функции Бесселя.
 - Тема 8.4. Полиномы Лежандра.
 - Тема 8.5. Присоединенные функции Лежандра.
 - Тема 8.6. Полиномы Чебышёва-Эрмита и Чебышёва-Лагерра.

Раздел 9. Операционное исчисление

- Тема 9.1. Преобразование Лапласа. Свойства оригиналов и изображений.
- Тема 9.2. Теоремы обращения.
- Тема 9.3. Приложение преобразования Лапласа.

10. Интегральные уравнения с симметричными ядрами.

- Тема 10.1. Свойства собственных значений и собственных функций интегрального оператора с симметричным ядром.
- Тема 10.2. Разложение в ряд Фурье по собственным значениям симметричного ядра.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением дистанционных образовательных технологий

Номер темы	Название темы	ауди	практиче- воэв ские занятия	Количество часов УСР	Формы контроля Знаний		
1	Функции комплексной переменной	6	10				
1.1.	Комплексная плоскость.	2	4		Компьютерное тестирование		
1.2.	Предел и непрерывность функций комплексной переменной. Основные элементарные функции комплексной переменной.	2	4		Компьютерное тестирование		
1.3.	Дифференцируемость функций комплексной переменной. Аналитические функции.	2	2		Компьютерное тестирование		
2	Конформные отображения элементарными аналитическими функциями	8	8	4			
2.1.	Геометрический смысл модуля и аргумента производной функции комплексной переменной. Конформные отображения.	2			Компьютерное тестирование		
2.2.	Дробно-линейная функция.	2	4		Компьютерное тестирование		
2.3.	Функция Жуковского. Степенная и показательная функции.	2	2		Компьютерное тестирование		
2.4.	Многозначные функции. Радикал и логарифм. Точки ветвления.	2	2	2	Контрольная работа по разделам 1-2		
2.5.	Применение конформных отображений в физических задачах.			2(ДО)	Отчет		
3	Интегрирование функций комплексной переменной	6	4				
3.1.	Интеграл по комплексной переменной. Интегральная теорема Коши.	2	2		Компьютерное тестирование		
3.2.	Интегральная формула Коши. Формула среднего значения. Принцип максимума модуля.	2	2		Компьютерное тестирование		
3.3.	Интеграл типа Коши. Бесконечная дифференцируемость аналитической функции. Теорема Морера.	2			Компьютерное тестирование		
4	Степенные ряды	6	8				
4.1.	Степенные ряды. Теорема Коши-Адамара. Теоремы Абеля. Аналитичность суммы	2	1		Компьютерное тестирование		

	степенного ряда.				
4.2.	Ряды Тейлора. Разложение аналитической функции в ряд Тейлора. Теорема Ли-	3	5		Компьютерное тестирование
	увилля. Основная теорема алгебры. Нули аналитической функции.	3	3		Компьютерное тестирование
4.3.	Ряды Лорана.	1	2		Компьютерное тестирование
5	Теория вычетов	6	10	2	
5.1.	Изолированные особые точки аналитической функции. Классификация, ряд Лорана в окрестности изолированной особой точки.	2	2		Компьютерное тестирование
5.2.	Вычет аналитической функции в изолированной особой точке. Вычет в бесконечно удаленной точке. Теорема Коши о вычетах.	2	4		Компьютерное тестирование
5.3.	Вычисление определенных интегралов с помощью вычетов. Лемма Жордана.	2	4	2	Контрольная работа по раз- делам 3-5
6	Дополнительные вопросы теории функций комплексной переменной	4			
6.1.	Теорема единственности. Аналитическое продолжение. Аналитическое продолжение гамма-функции.	2			Компьютерное тестирование
6.2.	Понятия об асимптотических разложениях.	2			Компьютерное тестирование
7	Ряды и преобразование Фурье	10	6		
7.1.	Ряды Фурье в гильбертовых пространствах.	4			Компьютерное тестирование
7.2.	Тригонометрические ряды Фурье. Поточечная сходимость.	2	2		Компьютерное тестирование
7.3.	Равномерная сходимость тригонометрических рядов Фурье. Ряды Фурье в комплексной форме.	2	2		Компьютерное тестирование
7.4.	Преобразование Фурье. Свойства.	2	2		Компьютерное тестирование
8	Специальные функции	12	8		
8.1.	Фундаментальные системы решений уравнения Бесселя. Цилиндрические функции.	2	2		Компьютерное тестирование
8.2.	Рекуррентные соотношения для цилиндрических функций. Асимптотика. Интегральные представления.	2	2		Компьютерное тестирование
8.3.	Ортогональность функций Бесселя. Модифицированные функции Бесселя.	2			Компьютерное тестирование
8.4.	Полиномы Лежандра.	2	2		Компьютерное тестирование
8.5.	Присоединенные функции Лежандра.	2			Компьютерное тестирование
8.6.	Полиномы Чебышёва-Эрмита и Чебышёва-Лагерра.	2	2		Компьютерное тестирование
9	Операционное исчисление	6	6	2	
9.1.	Преобразование Лапласа. Свойства оригиналов и изображений.	2	2		Компьютерное тестирование

9.2.	Теоремы обращения.	2	2		Компьютерное тестирование
9.3.	Приложение преобразования Лапласа.	2	2	2	Контрольная работа по раз- делам 7-9
10	Интегральные уравнения с симметричными ядрами	4			
10.1.	Свойства собственных значений и собственных функций интегрального оператора с симметричным ядром.	2			Компьютерное тестирование
10.2.	Разложение в ряд Фурье по собственным значениям симметричного ядра.	2			Компьютерное тестирование

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Свешников, А.Т. Теория функций комплексной переменной / А.Т. Свешников, А.Н. Тихонов. М.: Физматлит, 2010. 334 с.
- 2. Сидоров, Ю.В. Лекции по теории функций комплексного переменного / Ю.В. Сидоров, М.В. Федорюк, М.И. Шабунин М.: Наука, 1989. 477 с.
- 3. Лаврентьев М.А. Методы теории функций комплексного переменного. / М.А. Лаврентьев, Б.В. Шабат. М.: Наука, 1987. 688 с.
- 4. Аксенов, А. П. Теория функций комплексной переменной в 2 ч. Часть 2 : учебник и практикум для вузов / А. П. Аксенов. Москва : Издательство Юрайт, 2020. 333 с.
- 5. Эдвардс Р. Ряды Фурье в современном изложении: В 2-х т. / Р. Эдвардс. М.: Мир, 1985.
- 6. Арсенин, В.Я. Методы математической физики и специальные функции / В.Я. Арсенин. М.: Наука, 1984.—367 с.
- 7. Лебедев, Н.Н. Специальные функции и их приложения. / Н.Н. Лебедев. СПб.: Лань, 2010. 358 с.
- 8. Русак, В.Н. Математическая физика / В.Н. Русак. М.: Комкнига, 2006. 245 с.
- 9. Васильева А.Б. Интегральные уравнения / А.Б. Васильева, Н.А. Тихонов. М.: ФИЗМАТЛИТ, 2002. 159 с.
- 10. Высшая математика. Сборник задач: учеб. пособие. В 3 ч. Ч. 3. Дифференциальные уравнения. Аналитические функции. Элементы функционального анализа / М. А. Глецевич [и др.]; под ред. Н. Г. Абрашиной-Жадаевой, В. Н. Русака. Минск: БГУ, 2015. 392 с.
- 11. Краснов, М.Л. Функции комплексного переменного. Задачи и примеры с подробными решениями / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М.: УРСС, 2003. 208 с.
- 12. Краснов, М.Л. Операционное исчисление. Теория устойчивости. Задачи и примеры с подробными решениями./ М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Урсс, 2003. —303 с.

Перечень дополнительной литературы

- 1. Маркушевич А.И. Теория аналитических функций. В 2 т. / А.И. Маркушевич. М.:Наука, 1968.
- 2. Иванов В.И. Конформные отображения и их приложения / В.И. Иванов, В.Ю. Попов. М. УРСС, 2002. 324 с.
- 3. Сборник задач по теории аналитических функций / [М.А.Евграфов и др.]; под ред. М.А. Евграфова. М.: Наука, 1972. 416 с.
- 4. Butz T. Fourier transformation for pedestrians / T. Butz. Springer, 2006. 250 p.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Для диагностики компетенций и текущего контроля качества усвоения знаний по дисциплине рекомендуется использовать компьютерное тестирование по разделам дисциплины, отчет (ДО) по теме 2.3, контрольные работы. Контрольные мероприятия проводятся соответствии **учебно-**В методической картой дисциплины. В случае неявки на контрольное мероприятие по уважительной причине студент вправе по согласованию с преподавателем выполнить его в дополнительное время. Для студентов, получивших неудовлетворительные оценки за контрольные мероприятия, либо не явившихся по неуважительной причине, по согласованию с преподавателем и с разрешения заведующего кафедрой мероприятие может быть проведено повторно. Предлагается аналогичное домашнее задание, обязательное выполнение которого является необходимым условием для получения зачета и допуска к экзамену.

Контрольная работа проводится в письменной форме. На выполнение контрольной работы отводится 90 мин.

Отчет по результатам дистанционного изучения заданной темы загружается студентом в соответствующий курс на образовательном портале физического факультета (eduphys.bsu.by).

Оценка всех форм текущего контроля проводится по десятибалльной шкале.

Формой текущей аттестации по дисциплине «Теория функций комплексной переменной» учебным планом предусмотрен зачет и экзамен.

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

Формирование оценки за текущую успеваемость:

- Средняя оценка по контрольным работам − 75 %;
- средняя оценка по тестам 10 %;
- отчет (ДО) 15 %.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов. Вес оценки текущей успеваемости составляет 40 %, экзаменационной оценки -60 %.

Примерный перечень заданий для управляемой самостоятельной работы студентов

В качестве управляемой самостоятельной работы студентов планируется решение задач, выполнение упражнений. Форма контроля: контрольная работа, компьютерное тестирование, отчет по теме 2.3 (2ч/ДО).

Примерный перечень тем контрольной работы:

- 1. Функции комплексной переменной.
- 2. Конформные отображения элементарными аналитическими функциями.
- 3. Интегрирование функций комплексной переменной.
- 4. Степенные ряды.
- 5. Теория вычетов.
- 6. Ряды и преобразование Фурье.
- 7. Специальные функции.
- 8. Операционное исчисление.

Примерный перечень тем компьютерного тестирования:

- 1. Функции комплексной переменной.
- 2. Конформные отображения элементарными аналитическими функциями.
- 3. Интегрирование функций комплексной переменной.
- 4. Степенные ряды.
- 5. Теория вычетов.
- 6. Аналитическое продолжение.
- 7. Асимптотические разложения.
- 8. Ряды и преобразование Фурье.
- 9. Специальные функции.
- 10.Операционное исчисление.
- 11. Интегральные уравнения с симметричными ядрами.

Примерный перечень заданий для отчета (ДО):

- 1. Визуализируйте безциркуляционное обтекание произвольного цилиндра.
- 2. Визуализируйте плоское электрическое поле в многоэлектродной системе.

Отчет с выполненными заданиями загружается студентом в соответствующий курс на образовательном портале БГУ (eduphys.bsu.by).

Примерный перечень тем практических занятий

- 1. Комплексная плоскость.
- 2. Предел и непрерывность функций комплексной переменной. Основные элементарные функции комплексной переменной

- 3. Дифференцируемость функций комплексной переменной. Аналитические функции.
- 4. Геометрический смысл модуля и аргумента производной функции комплексной переменной. Конформные отображения.
- 5. Дробно-линейная функция.
- 6. Функция Жуковского. Степенная и показательная функции.
- 7. Многозначные функции. Радикал и логарифм. Точки ветвления.
- 8. Интеграл по комплексной переменной.
- 9. Интегральная формула Коши.
- 10. Степенные ряды. Теорема Коши-Адамара.
- 11. Разложение аналитической функции в ряд Тейлора.
- 12. Нули аналитической функции.
- 13. Ряды Лорана
- 14. Изолированные особые точки аналитической функции. Классификация, ряд Лорана в окрестности изолированной особой точки.
- 15.Вычет аналитической функции в изолированной особой точке. Вычет в бесконечно удаленной точке.
- 16. Вычисление контурных интегралов с помощью вычетов.
- 17. Вычисление определенных интегралов с помощью вычетов.
- 18. Тригонометрические ряды Фурье.
- 19. Сходимость тригонометрических рядов Фурье.
- 20. Ряды Фурье в комплексной форме.
- 21. Преобразование Фурье. Свойства.
- 22. Цилиндрические функции
- 23.Полиномы Лежандра.
- 24. Присоединенные функции Лежандра.
- 25.Полиномы Чебышёва-Эрмита.
- 26.Полиномы Чебышёва-Лагерра.
- 27. Преобразование Лапласа. Свойства оригиналов и изображений.
- 28. Теоремы обращения.
- 29. Приложение преобразования Лапласа.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса рекомендуется использовать следующие инновационные подходы и методы:

1. *Практико-ориентированный подход*, который предполагает освоение содержания образования через решения практических задач, которые способствуют формированию основ дальнейшей профессиональной деятельности.

2. **Развитие критического мышления**: формирование навыков работы с информацией в процессе чтения и письма; понимания информации как отправного, а не конечного пункта критического мышления.

Методические рекомендации по организации самостоятельной работы обучающихся

Самостоятельная работа студентов по данной дисциплине предполагает проработку основной и дополнительной литературы, самостоятельный поиск сведений, расширение конспекта лекций по результатам данной проработки. Самостоятельную работу студентов следует организовывать на основе принципов системности и регулярности. В помощь студентам рекомендуется разрабатывать и совершенствовать дистанционный курс на образовательном портале физического факультета.

Примерный перечень вопросов к экзамену

- 1. Комплексная плоскость
- 2. Функции комплексной переменной. Производная и интеграл.
- 3. Конформные отображения: основные определения, принципы и теоремы
- 4. Конформные отображения дробно-линейной функцией
- 5. Конформные отображения функцией Жуковского, степенной и показательной функциями
- 6. Интегральная теорема Коши и ее следствия
- 7. Интегральная формула Коши и ее следствия
- 8. Интеграл типа Коши. Бесконечная дифференцируемость аналитической функции. Теорема Морера
- 9. Степенные ряды.
- 10. Разложение аналитической функции в ряд Тейлора
- 11. Теорема единственности. Аналитическое продолжение
- 12.Ряды Лорана
- 13.Изолированные особые точки.
- 14.Вычеты.
- 15. Цилиндрические функции
- 16. Ортогональность функций Бесселя и интегральные представления
- 17. Полиномы Лежандра
- 18.Полиномы Чебышёва-Эрмита
- 19.Полиномы Чебышёва-Лягерра
- 20. Гильбертовы пространства. Ряды Фурье
- 21. Тригонометрические ряды Фурье
- 22. Преобразование Фурье
- 23. Преобразование Лапласа
- 24. Интегральные уравнения с симметричным ядром
- 25. Неоднородное интегральное уравнение с симметричным ядром

Методические рекомендации по организации обучения в случае необходимости преимущественного применения электронных средств обучения (ЭСО).

В случае необходимости проведения занятий с преимущественным применением средств ЭСО занятия следует проводить на образовательном портале физического факультета (www.eduphys.bsu.by). Для обеспечения учебного процесса преподаватель может использовать все технические средства, предоставляемые образовательным порталом физического факультета. В случае технической неисправности образовательного портала преподаватель вправе использовать иные ресурсы по своему усмотрению.

Контрольные мероприятия проводятся на образовательном портале согласно учебно-методической карте. В случае необходимости письменные контрольные работы разрешается заменить компьютерным тестированием, эссе, индивидуальным заданием или иной доступной на образовательном портале формой контроля знаний. Преподаватель вправе не проводить контроль знаний после каждого занятия.

Проведение экзамена в устной форме

- 1. Всем студентам дается примерно одинаковое время на подготовку и ответ. Расписание ответов согласуется со студентами до начала экзамена
- 2. Студент получает доступ к своему заданию в назначенное время. Ответ оформляется студентом в письменном виде, затем сканируется.
- 3. После окончания времени подготовки студент подключается к соответствующему вебинару (bigbluebutton или иному) на образовательном портале физического факультета, включает микрофон и вебкамеру (или иными способами идентифицирует свою личность).
- 4. Преподаватель предоставляет студенту возможность демонстрировать свой экран с подготовленным ответом на экзаменационный билет и проводит опрос.
- 5. Преподаватель сообщает студенту оценку текущего контроля, экзаменационную и рейтинговую оценку. Студент устно подтверждает, что ознакомлен с итоговой оценкой.
- 6. Аудио- и видеозапись вебинара ведется в случае наличия технических возможностей.

Проведение экзамена в форме компьютерного теста.

- 1. Все студенты начинают проходить тест в одно и то же время. Время начала теста, длительность теста и количество вопросов в тесте сообщается студентам заранее (не позднее, чем на консультации). По истечении времени открытые попытки отправляются автоматически.
- 2. Тест закрывается в установленный срок, определяемый преподавателем и сообщаемый студентам заранее (не позднее, чем на консультации). Длительность теста не может превышать времени от начала теста до его закрытия, но может с ним совпадать.

- 3. Студент может видеть результаты своей попытки (а именно: является ли его ответ на каждый вопрос правильным, баллы за ответ, правильный ответ на каждый вопрос, итоговый отзыв к тесту) только после закрытия теста.
- 4. Экзаменационная оценка (оценка текущей аттестации) выставляется на основании шкалы перевода процента верных ответов в десятибалльную оценку:

Процент верных	0-14	15-24	25-34	35-44	45-54	55-64	65-74	75-84	85-94	95-100
ответов	0 1 1	10 2 .	200.		100			,,,,	00) .	22 100
Оценка	1	2	3	4	5	6	7	8	9	10

- 5. Решением кафедры данную шкалу можно изменить. Студенты должны быть ознакомлены со шкалой заранее (не позднее, чем на консультации).
- 6. После закрытия теста на протяжении 45 минут (срок апелляции) студент имеет право обратиться в письменной форме на образовательном портале в соответствующем форуме данного курса к преподавателю за пояснениями о том, почему его ответ на тот или иной вопрос был неверен. В течение 90 минут с момента появления вопроса студент должен получить письменные разъяснения со стороны преподавателя.
- 7. После ответа на последний вопрос (или по истечении срока апелляции, если вопросов не было), преподавателем уже в течение 45 минут должна быть выставлена на образовательном портале фотография (скан) заполненной экзаменационной ведомости с итоговыми оценками по дисциплине.
- 8. На протяжении двух часов после выставления экзаменационной ведомости по дисциплине каждый студент должен в письменной форме на образовательном портале подтвердить, что он ознакомлен с итоговой оценкой по курсу.
- 9. По усмотрению преподавателя, если шкала перевода процента верных ответов на тест имеет верхнее ограничение ниже 10 баллов, то студент имеет право на ответ в устной или устно-письменной форме для получения наивысшей оценки текущей аттестации. В таком случае, после закрытия теста студент выходит на связь с преподавателем любым заранее (не позднее, чем на консультации) оговоренным образом. Время апелляции начинает отсчитываться от окончания видеосвязи с последним студентом, и далее вступают в силу п.п. 6-8.
- 10. Если по каким-то причинам студент не имеет технической возможности пройти тест он-лайн в установленное время, он обязан сообщить об этом не позднее, чем на консультации, для того, чтобы факультет предоставил ему такую возможность.
- 11.В случае возникновения во время теста обстоятельств непреодолимой силы, не позволяющих студенту пройти тест, он незамедлительно должен сообщить об этом преподавателю любым способом.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной	Название кафедры	Предложения об	Решение, принятое ка-
дисциплины, с кото-		изменениях в	федрой, разработавшей
рой требуется согла-		содержании	учебную программу (с
сование		учебной про-	указанием даты и номе-
		граммы учре-	ра протокола)
		ждения высшего	
		образования по	
		учебной дисци-	
		плине	
Методы математи-	Кафедра высшей	Нет	Внесение изменений не
ческой физики	математики и мате-		требуется (протокол
	матической физики		№ 10 от 26.05.2020)

дополнения и изменения к учебной программе уво

на 2021/2022 учебный год

№№ ПП	Дополнения и изменения	Основание				
1111						
высп	бная программа пересмотрена и одобрена на засе, шей математики и математической физики токол № от 2020 г.)	дании кафедры				
	Заведующая кафедрой высшей математики и математической физики					
	ЕРЖДАЮ н физического факультета					
	м.н., доцент	М.С. Тиванов				