Белорусский государственный университет

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

1-31 04 07 Физика наноматериалов и нанотехнологий 1-31 04 06 Ядерные физика и технологии 1-31 04 01 Физика (по направлениям) Направления специальности: 1-31 04 01-01 Физика (научно-исследовательская деятельность) 1-31 04 01-02 Физика (производственная деятельность)

Учебная программа составлена на основе образовательных стандартов высшего образования ОСВО 1-31 04 01-2013, ОСВО 1-31 04 06-2013, ОСВО 1-31 04 07-2013, учебных планов №G31-214/уч. от 20.02.2018, №G31-229/уч. от 20.03.2019, №G31-218/уч. от 20.02.2018, № G 31- 162/уч. от 30.05.2013, № G31СИБД-237/уч. от 01.04.2020 и типовой учебной программы ТД-G.568/тип. от 05.04.2016г.

составители:

Н.Г. Абрашина-Жадаева — заведующая кафедрой высшей математики и математической физики Белорусского государственного университета, доктор физико-математических наук Российской Федерации, доцент;

И.А. Тимощенко — старший преподаватель кафедры высшей математики и математической физики Белорусского государственного университета.

РЕЦЕНЗЕНТЫ:

Г.Ф.Громыко — Заведующая отделом вычислительной математики Института математики НАН РБ, кандидат физ-мат. наук.

И.Д.Феранчук – профессор кафедры теоретической физики и астрофизики Белорусского государственного университета, доктор физ-мат. наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедройвысшей математики и математической физики (протокол № 10 от 26.05.2020);

Научно-методическим Советом БГУ

(протокол № 5 от 17.06.2020)

Заведующая кафедрой

Абрашина-Жадаева Н.Г.

2

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — формирование знаний и навыков математического моделирования физических процессов, методов решения уравнений в частных производных, возникающих в постановках задач математической физики.

Задачи учебной дисциплины:

- 1. обеспечение фундаментальной математической подготовки студентов;
- 2. выработка навыков построения математических моделей простейших физических явлений и решения получающихся при этом математических задач.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

В механике, гидродинамике, оптике, электродинамике возникают математические модели в виде дифференциальных уравнений в частных производных второго порядка, называемых уравнениями математической Дисциплина «Методы математической физики» необходимый математический аппарат и теорию основных уравнений математической физики. Она вырабатывает у студентов навыки построения простейших физических математических моделей явлений, получающихся при этом математических задач и составляет математическую основу дисциплин общей и теоретической физики и специальных физических дисциплин, читаемых на физическом факультете. Подготавливает студентов к изучению сложных задач моделирования и научно-исследовательской работе.

Учебная дисциплина относится к циклу специальных дисциплин государственного компонента.

Связи с другими учебными дисциплинами.

Учебная дисциплина «Методы математической физики» базируется на знаниях, приобретенных в результате освоения дисциплин «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Основы векторного и тензорного анализа», «Теория функций комплексного переменного», «Дифференциальные уравнения», «Дифференциальные и интегральные уравнения».

Требования к компетенциям

Освоение дисциплины направлено на формирование следующих групп компетенций:

Академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
- АК-2. Владеть системным и сравнительным анализом.
- АК-3. Владеть исследовательскими навыками.
- АК-4. Уметь работать самостоятельно.

- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-4. Владеть навыками здоровьесбережения.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

Для специальности **1-31 04 01 Физика (по направлениям) Профессиональные** компетенции:

- ПК-1. Применять знания теоретических и экспериментальных основ физики, современных технологий и материалов, методы исследования физических объектов, методы измерения физических величин, методы автоматизации эксперимента.
- ПК-2. Использовать новейшие открытия в естествознании, методы научного анализа, информационные образовательные технологии, физические основы современных технологических процессов, научное оборудование и аппаратуру.
- ПК-3. Проводить планирование и реализацию физического эксперимента, оценивать функциональные возможности сложного физического оборудования.
- ПК-4. Пользоваться глобальными информационными ресурсами, компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
- ПК-5. Осуществлять поиск, систематизацию и анализ информации по перспективным направлениям развития отрасли, инновационным технологиям, проектам и решениям.
- ПК-8. Осуществлять на основе методов математического моделирования оценку эксплуатационных параметров оборудования и технологических процессов, эффективности разрабатываемых технологий.
- ПК-10. Определять цели инноваций и способы их достижения, применять методы анализа и организации внедрения инноваций в научнотехнической, производственной и научно-педагогической деятельности.

Для специальности 1-31 04 06 Ядерные физика и технологии

Профессиональные компетенции:

- ПК-2. Осуществлять на основе методов математического моделирования оценку производственных процессов.
- ПК-3. Пользоваться компьютерными методами сбора, хранения и обработки информации, системами автоматизированного профаммирования, научно-технической и патентной литературой.

- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической работы.
- ПК-10. Пользоваться государственными языками Республики Беларусь и иными иностранными языками как средством делового общения.

Для специальности **1-31 04 07 Физика наноматериалов и** нанотехнологий

Профессиональные компетенции:

- ПК-2. Осуществлять на основе методов математического моделирования оценку эксплуатационных параметров функциональных наноматериалов и технологических процессов их получения.
- ПК-3. Пользоваться компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической и научно-педагогической работы.
- ПК-8. Пользоваться государственными языками Республики Беларусь и иными иностранными языками как средством делового общения.

В результате освоения учебной дисциплины студент должен: знать:

- методы решения смешанных задач и задач Коши для гиперболических и параболических уравнений;
- общие свойства гармонических функций и методы решения краевых задач для эллиптических уравнений;

уметь:

- поставить начально-краевую задачу для уравнений различных типов;
- решать смешанные и краевые задачи методом разделения переменных, методом функции Грина.

владеть:

- методикой построения математических моделей
- методами решения и анализа задач в соответствии с целями образовательной программы

Структура учебной дисциплины

Для специальностей: 1-31 04 01 Физика (по направлениям) направление специальности 1-31 04 01- 01 Физика (научно-исследовательская деятельность), 1-31 04 06 Ядерные физика и технологии, 1-31 04 07 Физика наноматериалов и нанотехнологий - дисциплина изучается в 4 семестре дневной формы получения высшего образования. Всего на изучение учебной дисциплины «Методы математической физики» отведено:

- для очной формы получения высшего образования - 174 часа, в том числе 76 аудиторных часов, из них: лекции - 42 часа, практические занятия - 28 часов, управляемая самостоятельная работа (аудиторная) - 4 часа, управляемая самостоятельная работа (ДО) - 2 часа.

Трудоемкость учебной дисциплины составляет 4,5 зачетных единиц. Форма текущей аттестации – экзамен.

Для специальности 1-31 04 01Физика (по направлениям) направление специальности 1-31 04 01-02 Физика (производственная деятельность), 1-31 04 01-02 Физика (производственная деятельность) для студентов СИБД - дисциплина изучается в 4 семестре дневной формы получения высшего образования. Всего на изучение учебной дисциплины «Методы математической физики» отведено:

- для очной формы получения высшего образования - 180 часов, в том числе 80 аудиторных часов, из них: лекции - 42 часа, практические занятия - 32 часа, управляемая самостоятельная работа (аудиторная) - 4 часа, управляемая самостоятельная работа (ДО) - 2 часа.

Трудоемкость учебной дисциплины составляет 5 зачетных единиц. Форма текущей аттестации — экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Классификация уравнений с частными производными

Тема 1.1. Общая характеристика математических моделей, адекватных физическим процессам. Классификация и приведение к каноническому виду линейных уравнений второго порядка с двумя и со многими независимыми переменными.

Раздел 2. Уравнения гиперболического типа

- Тема 2.1. Физические задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач. Корректные и некорректные задачи математической физики.
- Tема 2.2. Уравнение колебаний на бесконечной и полубесконечной прямой.
- Тема 2.3. Метод распространяющихся волн и метод продолжений. Распространение волн в неограниченном пространстве. Метод спуска.
- Тема 2.4. Уравнение колебаний в ограниченной области. Теорема единственности. Интеграл энергии.
 - Тема 2.5. Метод разделения переменных. Вынужденные колебания.

Раздел 3. Уравнения параболического типа

- Тема 3.1. Задачи о распространении тепла и диффузии газов. Постановка краевых задач. Принцип максимума для уравнения теплопроводности. Единственность и устойчивость решения.
 - Тема 3.2. Общая схема метода разделения переменных.
- Тема 3.3. Задачи теплопроводности для бесконечного и конечного цилиндра.
- Тема 3.4. Уравнение теплопроводности на бесконечной и полубесконечной прямой. Фундаментальное решение уравнения теплопроводности.

Раздел 4. Уравнения эллиптического типа

- Тема 4.1. Общие свойства гармонических функций. Внутренние и внешние краевые задачи для уравнений Лапласа, Пуассона.
 - Тема 4.2. Единственность и устойчивость решения.
- Тема 4.3. Метод Фурье для круговых, прямоугольных и цилиндрических областей.
 - Тема 4.4. Частные решения уравнения Лапласа. Шаровые функции.
 - Тема 4.5. Уравнение Шредингера.
- Тема 4.6. Объемный потенциал, потенциалы простого и двойного слоя.Свойства потенциалов.
 - Тема 4.7. Решение краевых задач методом функций Грина.
- Тема 4.8. Уравнение Гельмгольца; принцип максимума, фундаментальные решения и потенциалы, построение решения в неограниченных областях, условия излучения и предельного поглощения.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением дистанционных образовательных технологий. Для специальностей: 1-31 04 01 Физика (по направлениям) направление специальности 1-31 04 01- 01 Физика (научно-исследовательская деятельность), 1-31 04 06 Ядерные физика и технологии, 1-31 04 07 Физика наноматериалов и нанотехнологий

(bI			личест циторні часов		ов УСР	Форма контроля знаний	
Номер темы	Название темы	Лекции	Практические занятия	Аудиторный контроль УСР	Количество часов (ДО)		
1	Классификация уравнений с частными производными	4	4				
1.1	Общая характеристика математических моделей, адекватных физическим процессам. Классификация и приведение к каноническому виду линейных уравнений второго порядка с двумя и со многими независимыми переменными.	4	4			Компьютерный тест	
2	Уравнения гиперболического типа	10	10	2	2		
2.1	Физические задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач. Корректные и некорректные задачи математической физики.	2	2			Компьютерный тест	
2.2	Уравнение колебаний на бесконечной и полубесконечной прямой.	2				Компьютерный тест	
2.3	Метод распространяющихся волн и метод продолжений. Распространение волн в неограниченном пространстве. Метод спуска.	2			2 (ДО)	Отчет	
2.4	Уравнение колебаний в ограниченной области. Теорема единственности. Интеграл энергии.	2				Компьютерный тест	
2.5	Метод разделения переменных. Вынужденные колебания	2	8	2		Контрольная работа по разделам 1-2	

3	Уравнения параболического типа	10	6		
3.1	Задачи о распространении тепла и диффузии газов. Постановка краевых задач. Принцип максимума для уравнения теплопроводности. Единственность и устойчивость решения.	2			Компьютерный тест
3.2	Общая схема метода разделения переменных.	2	6		Компьютерный тест
3.3	Задачи теплопроводности для бесконечного и конечного цилиндра.	4			Компьютерный тест
3.4	Уравнение теплопроводности на бесконечной и полубесконечной прямой. Фундаментальное решение уравнения теплопроводности.	2			Компьютерный тест
4	Уравнения эллиптического типа	18	8	2	
4.1	Общие свойства гармонических функций. Внутренние и внешние краевые задачи для уравнений Лапласа и Пуассона.	2			Компьютерный тест
4.2	Единственность и устойчивость решения.	2			Компьютерный тест
4.3	Метод Фурье для круговых, прямоугольных и цилиндрических областей.	2	4		Компьютерный тест
4.4	Частные решения уравнения Лапласа. Шаровые функции.	4	4		Компьютерный тест
4.5	Уравнение Шредингера	2			Компьютерный тест
4.6	Объемный потенциал, потенциалы простого и двойного слоя. Свойства потенциалов.	2			Компьютерный тест
4.7	Решение краевых задач методом функций Грина.	2			Компьютерный тест
4.8	Уравнение Гельмгольца; принцип максимума, фундаментальные решения и потенциалы, построение решения в неограниченных областях, условия излучения и предельного поглощения	2		2	Контрольная работа по разделам 3-4

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением дистанционных образовательных технологий.

Для специальности 1-31 04 01Физика (по направлениям) направление специальности 1-31 04 01-02 Физика

(производственная деятельность), 1-31 04 01-02 Физика (производственная деятельность) для студентов СИБД

bl			личест циторні часов		ов УСР	Форма контроля знаний	
Номер темы	Название темы	Лекции	Практические занятия	Аудиторный контроль УСР	Количество часов (ДО)		
1	Классификация уравнений с частными производными	4	4				
1.1	Общая характеристика математических моделей, адекватных физическим процессам. Классификация и приведение к каноническому виду линейных уравнений второго порядка с двумя и со многими независимыми переменными.	4	4			Компьютерный тест	
2	Уравнения гиперболического типа	10	10	2	2		
2.1	Физические задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач. Корректные и некорректные задачи математической физики.	2	2			Компьютерный тест	
2.2	Уравнение колебаний на бесконечной и полубесконечной прямой.	2				Компьютерный тест	
2.3	Метод распространяющихся волн и метод продолжений. Распространение волн в неограниченном пространстве. Метод спуска.	2			2 (ДО)	Отчет	
2.4	Уравнение колебаний в ограниченной области. Теорема единственности. Интеграл энергии.	2				Компьютерный тест	
2.5	Метод разделения переменных. Вынужденные колебания	2	8	2		Контрольная работа по разделам 1-2	

3	Уравнения параболического типа	10	6		
3.1	Задачи о распространении тепла и диффузии газов. Постановка краевых задач. Принцип максимума для уравнения теплопроводности. Единственность и устойчивость решения.	2			Компьютерный тест
3.2	Общая схема метода разделения переменных.	2	6		Компьютерный тест
3.3	Задачи теплопроводности для бесконечного и конечного цилиндра.	4			Компьютерный тест
3.4	Уравнение теплопроводности на бесконечной и полубесконечной прямой. Фундаментальное решение уравнения теплопроводности.	2			Компьютерный тест
4	Уравнения эллиптического типа	18	12	2	
4.1	Общие свойства гармонических функций. Внутренние и внешние краевые задачи для уравнений Лапласа и Пуассона.	2			Компьютерный тест
4.2	Единственность и устойчивость решения.	2			Компьютерный тест
4.3	Метод Фурье для круговых, прямоугольных и цилиндрических областей.	2	4		Компьютерный тест
4.4	Частные решения уравнения Лапласа. Шаровые функции.	4	4		Компьютерный тест
4.5	Уравнение Шредингера	2			Компьютерный тест
4.6	Объемный потенциал, потенциалы простого и двойного слоя. Свойства потенциалов.	2			Компьютерный тест
4.7	Решение краевых задач методом функций Грина.	2	2		Компьютерный тест
4.8	Уравнение Гельмгольца; принцип максимума, фундаментальные решения и потенциалы, построение решения в неограниченных областях, условия излучения и предельного поглощения	2	2	2	Контрольная работа по разделам 3-4

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. М.: Наука, 2004. 798 с.
- 2. Лебедев, Н.Н. Специальные функции и их приложения. / Н.Н. Лебедев. СПб.: Лань, 2010. 358 с.
- 3. Русак, В.Н. Математическая физика / В.Н. Русак. М.: Комкнига, 2006.— 245 с.
- 4. Будак, Б.М. Сборник задач по математической физике / Б.М. Будак, А.А. Самарский, А.Н. Тихонов. М.: Физматлит, 2003.— 688 с.
- 5. Арсенин, В.Я. Методы математической физики и специальные функции / В.Я. Арсенин. М.: Наука, 1984. 367 с.
- 6. Кошляков, Н.С. Основные дифференциальные уравнения математической физики / Н.С. Кошляков, Э.Б. Глинер, М.М. Смирнов. М.: Физматгиз, 1962.— 767 с.
- 7. Абрашина—Жадаева Н.Г. Основы векторного и тензорного анализа : теория, задачи / Н.Г. Абрашина—Жадаева, И.А. Тимощенко Мн.: БГУ, 2011. 255 с.
- 8. Высшая математика. Сборник задач : учеб. пособие. В 3 ч. Ч. 3. Дифференциальные уравнения. Аналитические функции. Элементы функционального анализа / М. А. Глецевич [и др.] ; под ред. Н. Г. Абрашиной-Жадаевой, В. Н. Русака. Минск : БГУ, 2015. 392 с.
- 9. Высшая математика. Сборник задач : учеб. пособие. В 3 ч. Ч. 2. Линейная алгебра. Анализ функций многих переменных / В. К. Ахраменко и др; под. ред. : Н.Г. Абрашиной-Жадаевой, В.Н. Русака. Минск, БГУ. 2014. 384 с.

Перечень дополнительной литературы

- 1. Курант Р. Методы математической физики / Р. Курант, Д. Гильберт. М.—Л.: Гостехиздат. 1951.
- 2. Соболев, С.Л. Уравнения математической физики / С.Л. Соболев. М.: Наука, 1966.— 474 с.
- 3. Владимиров, В.С. Уравнения математической физики / В.С. Владимиров. М.: Наука, 1981.— 435 с.
- 4. Никифоров, А.Ф. Основы специальных функций / А.Ф. Никифоров, В.Б. Уваров. М.: Наука, 1974.— 470 с.
- 5. Смирнов, М.М. Задачи по уравнениям математической физики / М.М. Смирнов. М.: Наука, 1968. 112 с.
- 6. Смирнов, В.И. Курс высшей математики, Т.2 / В.И. Смирнов. М.: Наука, 1981.— 682 с.
- 10.Русак, В.Н. Задачи по математической физике и их решение / В.Н. Русак, Н.К. Филиппова. Мн: БГУ, 2007. 112 с.

11. Abrashina-Zhadaeva N.G. Vector and tensor analysis through examples and exercises / N.G. Abrashina-Zhadaeva, I.A. Timoshchenko. Minsk, BSU – 2019. – 250 p.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Для текущего контроля и самоконтроля знаний и умений студентов по данной дисциплине можно использовать следующий диагностический инструментарий:

- компьютерное тестирование;
- письменные контрольные работы;
- отчет (ДО).

Для текущего контроля качества усвоения знаний по дисциплине рекомендуется использовать контрольные работы по разделам дисциплины, компьютерные тесты. Контрольные мероприятия проводятся в соответствии с учебно-методической картой дисциплины. В случае неявки на контрольное мероприятие по уважительной причине студент вправе по согласованию с преподавателем выполнить его в дополнительное время. Для студентов, получивших неудовлетворительные оценки за контрольные мероприятия, либо не явившихся по неуважительной причине, по согласованию с преподавателем и с разрешения заведующего кафедрой мероприятие может быть проведено повторно. Предлагается аналогичное домашнее задание, обязательное выполнение которого является необходимым условием для получения зачета и допуска к экзамену.

Контрольные работы проводятся в письменной форме. На выполнение контрольной работы отводится 90 мин.

Компьютерное тестирование рекомендуется проводить в компьютерном классе с использованием теста в соответствующем курсе на образовательном портале физического факультета (eduphys.bsu.by).

Отчет по результатам дистанционного изучения темы 2.3 загружается студентом в соответствующий курс на образовательном портале физического факультета (eduphys.bsu.by).

Оценка контрольных работ, компьютерного тестирования и отчета (ДО) проводится по десятибалльной шкале.

Формой текущей аттестации по дисциплине «Методы математической физики» учебным планом предусмотрен экзамен.

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

Формирование оценки за текущую успеваемость:

- средняя оценка по контрольным работам -60 %;
- средняя оценка по компьютерным тестам— 15 %;
- отчет (ДО) -25 %.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов Вес оценка по текущей успеваемости составляет $40\,\%$, экзаменационная оценка $-60\,\%$.

Примерный перечень заданий для управляемой самостоятельной работы студентов

В качестве управляемой самостоятельной работы студентов планируется решение задач, проведение расчетов, выполнение упражнений. Форма контроля: компьютерные тесты, контрольные работы и отчет по теме 2.3. УСР будет обеспечена инструкциями, тренажерами на образовательном портале БГУ.

Примерный перечень тем контрольных работ:

- 1. Приведение к каноническому виду уравнений 2-го порядка.
- 2. Метод Фурье для уравнений гиперболического, параболического и эллиптического типов.

Примерный перечень тем компьютерного тестирования:

- 1. Приведение к каноническому виду уравнений 2-го порядка.
- 2. Уравнения гиперболического типа.
- 3. Уравнения параболического типа.
- 4. Гармонические функции и уравнения эллиптического типа.

Примерный перечень заданий для отчета (ДО):

- 1. Описать (изобразить, создать анимацию) процесс распространения волн по неограниченной струне, если заданы ее начальная форма и скорость.
- 2. Описать (изобразить, создать анимацию) процесс распространения волн по полубесконечной струне, если заданы ее начальная форма и скорость, а в начале координат задано отклонение струны от положения равновесия.
- 3. Описать (изобразить, создать анимацию) процесс распространения волн по полубесконечной струне, если заданы ее начальная форма и скорость, а в начале координат задана скорость струны.
- 4. Описать (изобразить, создать анимацию) процесс распространения волн по конечной струне, если заданы ее начальная форма и скорость, а на концах струны заданы условия первого или второго родов.

Отчет с выполненными заданиями загружается студентом в соответствующий курс на образовательном портале БГУ (eduphys.bsu.by).

Примерная тематика практических занятий

- 1. Классификация и приведение к каноническому виду линейных уравнений второго порядка с двумя независимыми переменными.
- 2. Классификация и приведение к каноническому виду линейных уравнений второго порядка со многими независимыми переменными.
- 3. Постановка краевых задач.
- 4. Метод разделения переменных. Свободные колебания. Однородные граничные условия.
- 5. Метод разделения переменных. Вынужденные колебания.
- 6. Метод разделения переменных. Неоднородные граничные условия.

- 7. Метод разделения переменных для уравнений параболического типа в прямоугольных областях.
- 8. Цилиндрические функции.
- 9. Задачи теплопроводности для бесконечного и конечного цилиндра.
- 10. Уравнение теплопроводности на бесконечной и полубесконечной прямой.
- 11. Общие свойства гармонических функций. Внутренние и внешние краевые задачи для уравнений Лапласа и Пуассона.
- 12. Метод Фурье для прямоугольных и цилиндрических областей.
- 13. Метод Фурье для круговых областей.
- 14. Метод Фурье для цилиндрических областей.
- 15. Шаровые функции.
- 16. Частные решения уравнения Лапласа.
- 17. Решение краевых задач методом функций Грина.
- 18. Уравнение Гельмгольца.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса рекомендуется использовать следующие инновационные подходы и методы:

- 1. *Практико-ориентированный подход*, который предполагает освоение содержания образования через решения практических задач, которые способствуют формированию основ дальнейшей профессиональной деятельности.
- 2. *Развитие критического мышления:* формирование навыков работы с информацией в процессе чтения и письма; понимания информации как отправного, а не конечного пункта критического мышления.

Методические рекомендации по организации самостоятельной работы обучающихся

Самостоятельная работа студентов по данной дисциплине предполагает проработку основной и дополнительной литературы, самостоятельный поиск сведений, расширение конспекта лекций по результатам данной проработки, подготовку к практическим занятиям, выполнение домашнего задание. Самостоятельную работу студентов следует организовывать на основе принципов системности и регулярности. В помощь студентам рекомендуется разрабатывать и совершенствовать дистанционный курс на образовательном портале физического факультета.

Примерный перечень вопросов к экзамену

- 1. Общая характеристика математических моделей, адекватных физическим процессам. Классификация и приведение к каноническому виду линейных уравнений второго порядка с двумя и со многими независимыми переменными.
- 2. Физические задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач. Корректные и некорректные задачи математической физики.
- 3. Уравнение колебаний на бесконечной и полубесконечной прямой.
- 4. Метод распространяющихся волн и метод продолжений. Распространение волн в неограниченном пространстве. Метод спуска.
- 5. Уравнение колебаний в ограниченной области. Теорема единственности. Интеграл энергии.
- 6. Метод разделения переменных. Вынужденные колебания.
- 7. Задачи о распространении тепла и диффузии газов. Постановка краевых задач. Принцип максимума для уравнения теплопроводности. Единственность и устойчивость решения.
- 8. Общая схема метода разделения переменных.
- 9. Фундаментальное решение уравнения теплопроводности.
- 10.Общие свойства гармонических функций.
- 11.Внутренние и внешние краевые задачи для уравнений Лапласа, Пуассона. Единственность и устойчивость решения.
- 12. Метод Фурье для круговых, прямоугольных и цилиндрических областей.
- 13. Частные решения уравнения Лапласа. Шаровые функции.
- 14. Уравнение Шредингера.
- 15. Объемный потенциал, потенциалы простого и двойного слоя. Свойства потенциалов.
- 16. Решение краевых задач методом функций Грина.
- 17. Уравнение Гельмгольца; принцип максимума, фундаментальные решения и потенциалы, построение решения в неограниченных областях, условия излучения и предельного поглощения.

Методические рекомендации по организации обучения в случае необходимости преимущественного применения электронных средств обучения (ЭСО).

В случае необходимости проведения занятий с преимущественным применением средств ЭСО занятия следует проводить на образовательном портале физического факультета (www.eduphys.bsu.by). Для обеспечения учебного процесса преподаватель может использовать все технические средства, предоставляемые образовательным порталом физического факультета. В случае технической неисправности образовательного портала преподаватель вправе использовать иные ресурсы по своему усмотрению.

Контрольные мероприятия проводятся на образовательном портале согласно учебно-методической карте. В случае необходимости письменные контрольные работы разрешается заменить компьютерным тестированием, эссе, индивидуальным заданием или иной доступной на образовательном портале формой контроля знаний. Преподаватель вправе не проводить контроль знаний после каждого занятия.

Проведение экзамена в устной форме

- 1. Всем студентам дается примерно одинаковое время на подготовку и ответ. Расписание ответов согласуется со студентами до начала экзамена
- 2. Студент получает доступ к своему заданию в назначенное время. Ответ оформляется студентом в письменном виде, затем сканируется.
- 3. После окончания времени подготовки студент подключается к соответствующему вебинару (bigbluebutton или иному) на образовательном портале физического факультета, включает микрофон и вебкамеру (или иными способами идентифицирует свою личность).
- 4. Преподаватель предоставляет студенту возможность демонстрировать свой экран с подготовленным ответом на экзаменационный билет и проводит опрос.
- 5. Преподаватель сообщает студенту оценку текущего контроля, экзаменационную и рейтинговую оценку. Студент устно подтверждает, что ознакомлен с итоговой оценкой.
- 6. Аудио- и видеозапись вебинара ведется в случае наличия технических возможностей.

Проведение экзамена в форме компьютерного теста.

- 1. Все студенты начинают проходить тест в одно и то же время. Время начала теста, длительность теста и количество вопросов в тесте сообщается студентам заранее (не позднее, чем на консультации). По истечении времени открытые попытки отправляются автоматически.
- 2. Тест закрывается в установленный срок, определяемый преподавателем и сообщаемый студентам заранее (не позднее, чем на консультации). Длительность теста не может превышать времени от начала теста до его закрытия, но может с ним совпадать.
- 3. Студент может видеть результаты своей попытки (а именно: является ли его ответ на каждый вопрос правильным, баллы за ответ, правильный ответ на каждый вопрос, итоговый отзыв к тесту) только после закрытия теста.
- 4. Экзаменационная оценка (оценка текущей аттестации) выставляется на основании шкалы перевода процента верных ответов в десятибалльную оценку:

Процент верных ответов	0-14	15-24	25- 34	35- 44	45- 54	55- 64	65- 74	75- 84	85- 94	95- 100
Оценка	1	2	3	4	5	6	7	8	9	10

- 5. Решением кафедры данную шкалу можно изменить. Студенты должны быть ознакомлены со шкалой заранее (не позднее, чем на консультации).
- 6. После закрытия теста на протяжении 45 минут (срок апелляции) студент имеет право обратиться в письменной форме на образовательном портале в соответствующем форуме данного курса к преподавателю за пояснениями о том, почему его ответ на тот или иной вопрос был неверен. В течение 90 минут с момента появления вопроса студент должен получить письменные разъяснения со стороны преподавателя.
- 7. После ответа на последний вопрос (или по истечении срока апелляции, если вопросов не было), преподавателем уже в течение 45 минут должна быть выставлена на образовательном портале фотография (скан) заполненной экзаменационной ведомости с итоговыми оценками по дисциплине.
- 8. На протяжении двух часов после выставления экзаменационной ведомости по дисциплине каждый студент должен в письменной форме на образовательном портале подтвердить, что он ознакомлен с итоговой оценкой по курсу.
- 9. По усмотрению преподавателя, если шкала перевода процента верных ответов на тест имеет верхнее ограничение ниже 10 баллов, то студент имеет право на ответ в устной или устно-письменной форме для получения наивысшей оценки текущей аттестации. В таком случае, после закрытия теста студент выходит на связь с преподавателем любым заранее (не позднее, чем на консультации) оговоренным образом. Время апелляции начинает отсчитываться от окончания видеосвязи с последним студентом, и далее вступают в силу п.п. 6-8.
- 10. Если по каким-то причинам студент не имеет технической возможности пройти тест он-лайн в установленное время, он обязан сообщить об этом не позднее, чем на консультации, для того, чтобы факультет предоставил ему такую возможность.
- 11.В случае возникновения во время теста обстоятельств непреодолимой силы, не позволяющих студенту пройти тест, он незамедлительно должен сообщить об этом преподавателю любым способом.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
		учебной дисциплине	

дополнения и изменения к учебной программе уво

на 2021/2022 учебный год

N_0N_0	Дополнения и изменения	Основание
ПП		
высі	бная программа пересмотрена и одобрена на зас шей математики и математической физики токол № от 2020 г.)	едании кафедры
_		
	дующая кафедрой высшей математики	3 A 6
и ма	тематической физикиН.Г	Г. Абрашина-Жадаева
УТВ	ВЕРЖДАЮ	
	ан физического факультета	
	-м.н., доцент	М.С. Тиванов