$$(N)\sum_{i=1}^{l} s_{(i)} = 0.$$

1. Ли Ц., Джадж Д., Зельнер А. Оценивание параметров марковских моделей по агрегированным временным рядам. М., 1977.
2. Синькевич Д. В., Труш Н. Н. // Вестн. Белорус. ун-та. Сер. 1. 1992.

№ 2.

3. Феллер Ф. Введение в теорию вероятностей и ее приложения. М., 1984. Поступила в редакцию 11.01.93.

УДК 517.929

ГАО СЮЭДУН (КНР)

РЕШЕНИЕ ДВУХ КУСОЧНО-ЛИНЕЙНЫХ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Necessary and sufficient conditions of optimality of a support control are proved for optimal control problems with piecewise linear output and piecewise linear cost function.

1. Рассмотрим задачу оптимального управления:

$$J(u) = c'x(t^*) \rightarrow max, \quad x = Ax + bu, \quad x(0) = x_0,$$

$$Hx(t^*) = g, \quad d'x(t^*) \ge \alpha_0(\le \alpha_0), \quad |u(t)| \le 1, \quad t \in T = [0, t^*], \tag{1}$$

 $(x \in R^n, u \in R, A \in R^{n \times n}, b, c, d \in R^n, H \in R^{m \times n}, g \in R^m, \alpha_0 \in R, m < n).$

Допустимое и оптимальное управления определяются стандартно [1. C. 11].

Пусть u(t), $t \in T$, — допустимое управление задачи (1). Исследуем случай, когда допустимая траектория x(t), t∈ T, попадает на плоскость $d'x = \alpha_0$ в конечный момент t^* .

Обозначим: $F(t,\tau)$, $\tau \in [0,t]$, — фундаментальная матрица решений уравнения x = Ax; H' = (H',d), $H(t) = HF(t^*,t)b$, $c(t) = c'F(t^*,t)b$, $t \in T$. Пусть $T_{on} = \{t_1,t_2,...t_m,t_{m+1}\}$ $\subset T$ — совокупность из m+1 изолирован-

ного момента.

Определение 1. Множество Топ — опора задачи (1), если не вырождена матрица $P = (H(t), t \in T_{on}); 2$. Пара $\{u(\cdot), T_{on}\}$ из допустимого управления $u(t), t \in T$, и опоры T_{on} — опорное управление; 3. Опорное управление $\{u(\cdot), T_{on}\}$ — невырожденное, если $|(u(t+0)+u(t-0))/2| < 1, t \in T_{on}$. Подсчитаем вектор потенциалов $v' = (v, v_{m+1})' = c'_{on}P^{-1} = (c(t), v_{m+1})' = (c'_{on}P^{-1})'$

 $t \in T_{on}$)' P^{-1} , и коуправление $\Delta(t) = (\vec{v} \cdot \vec{H} - \vec{c}) F(t^*, t) \vec{b}, t \in T$.

Теорема 1. Для оптимальности опорного управления $\{u(\cdot), T_{on}\}$ задачи (1) достаточно, а в случае его невырожденности и необходимо, чтобы выполнялись соотношения:

1)
$$\Delta(t) \le 0$$
 при $u(t) = 1$; $\Delta(t) \ge 0$ при $u(t) = -1$; $\Delta(t) = 0$ при $-1 < u(t) < 1$, $t \in T$. (2)

2)
$$v_{m+1} \le 0 (v_{m+1} \ge 0, \text{ если } d'x(t^*) \le \alpha_0).$$
 (3)

Доказательство. *Необходимость*. Пусть $\{u(\cdot), T_{on}\}$ — опорное невырожденное оптимальное управление задачи (1). Доказательство соотношений (2) аналогично [1. С. 56].

Докажем неравенство (3). Предположим, что оно неверно, т. е. $v_{m+1} > 0$. Построим промежутки $T_i^* = [0, \varepsilon]$, если $t_i = 0$; $T_i^* = [t^* - \varepsilon, t^*]$, если $t_j = t^*; T_j^* = [t_j - \epsilon/2, t_j + \epsilon/2],$ если $0 < t_j < t^*, t_j \in T_{on}$. Наряду с u(t), $t \in T$, рассмотрим зависящее от параметра $\varepsilon > 0$ семейство функций $\bar{\mathbf{u}}(t) = \mathbf{u}(t_j) + \mathbf{v}_j, \ t \in \mathbf{T}_j^e, \ t_j \in \mathbf{T}_{on}; \ \bar{\mathbf{u}}(t) = \mathbf{u}(t), \ t \in \mathbf{T} \setminus \bigcup_{j=1}^{m+1} \mathbf{T}_j^e.$

Исследуем уравнение

$$\overline{H}\Delta x (t^*) = \int_0^{t^*} \overline{H}(t)\Delta u(t)dt = (0, \dots 0, \varepsilon\alpha), \alpha \geqslant 0.$$
 (4)

Обозначим $v_{on} = (v_j, j = 1, m+1)$. Тогда уравнение (4) примет вид: $\varepsilon Pv_{on} + O(\varepsilon) = (0, ...0, \varepsilon \alpha)$. Оно в силу невырожденности матрицы P и теоремы о неявной функции при достаточно малых $\epsilon > 0$, $\alpha > 0$ имеет единственное решение

$$\mathbf{v}_{\text{on}} = \mathbf{P}^{-1}(0, \dots 0, \alpha) + \mathbf{0}(\mathbf{\epsilon})/\mathbf{\epsilon}. \tag{5}$$

Согласно (4), построенная выше функция $\bar{\mathbf{u}}(t)$, $t \in \mathbf{T}$, — допустимое управление задачи (1).

Приращение критерия качества на $\bar{u}(t)$, u(t), $t \in T$, равно:

$$\Delta J(u) = c'\Delta x (t^*) = \int_0^t c(t)\Delta u(t)dt = \varepsilon c'_{\text{off}} v_{\text{off}} + 0(\varepsilon).$$
 (6)

Подставив (5) в (6), получим $\Delta J(u) = \varepsilon c'_{on} P^{-1}(0, ..., 0, \alpha) + 0(\varepsilon) =$ = $\varepsilon v_{m+1} \alpha + 0(\varepsilon)$. Это число при $v_{m+1} > 0$ и достаточно малых $\varepsilon > 0$, $\alpha > 0$ отрицательно, что проитиворечит оптимальности управления u(t), $t \in T$. Неравенство (3) доказано.

Достаточность. Пусть $\bar{\mathbf{u}}(t) = \mathbf{u}(t) + \Delta \mathbf{u}(t), \ t \in \mathbb{T},$ — любое допустимое управление задачи (1). Из формулы Коши [1] получим

$$\overline{H}\Delta x (t^*) = \int_0^{t^*} \overline{H}(t)\Delta u(t)dt = (0, ..., 0, \alpha), \alpha \geqslant 0.$$
 (7)

Аналогично для критерия качества
$$\Delta J(u) = c' \Delta x (t^*) = \int_0^{t^*} C(t) \Delta u(t) dt. \tag{8}$$

Вычтя Ух (7) из (8), получим формулу приращения критерия качества $\Delta J(u) = \int_{0}^{c} -\Delta(t)\Delta u(t)dt + v_{m+1}\alpha$.

Из соотношений (2) и (3) следует неравенство $\Delta J(u) \leq 0$, которое означает, что u(t), $t \in T$, — оптимальное управление задачи (1). Теорема 1 доказана.

2. Применим полученный в п. 1 результат к задаче оптимального управления с кусочно-линейным выходом:

$$J(u) = c'x(t^*) \rightarrow max, \ x = Ax + bu, \ x(0) = x_0,$$

$$Hx(t^*) + hf(d'x(t^*)) = g, \ |u(t)| \le 1, \ t \in T.$$
 (9)

Здесь непрерывная скалярная функция $f(\alpha)$, $\alpha \in \mathbb{R}$, кусочно-линейна: $f(\alpha) = f^+\alpha + v^+, \ \alpha \geqslant \alpha_0; \ f(\alpha) = f^-\alpha + v^-, \ \alpha \leqslant \alpha_0, \ f^+, \ f^-, \ v^+, \ v^-, \ \alpha_0$ — заданные числа, $f^+\alpha_0 + v^+ = f^-\alpha_0 + v^-$.

Исследуем оптимальность допустимого управления u(t), $t \in T$, которому соответствует траектория x(t), $t \in T$, в конечный момент t^* попадающая на плоскость $d'x = \alpha_0$.

Опора и опорное управление для задачи (9) определяются, как и для (1) в п. 1. По опоре T_{on} задачи (9) подсчитаем вектор потенциалов $\bar{v}' = (v, v_{m+1})' = c'_{on}P^{-1}$ и коуправление $\Delta(t) = (\bar{v}'\bar{H} - c')F(t^*, t)b, t \in T$.

C учетом терминального условия $Hx(t^*) + hf(d'x(t^*)) = g$ очевидно, что задача (9) эквивалентна следующим задачам:

$$c'x(t^*) \rightarrow max, \ x = Ax + bu, \ x(0) = x_0,$$

$$H^+x(t^*) = g^+, \ d'x(t^*) \ge \alpha_0, \ |u(t)| \le 1, \ t \in T;$$

$$c'x(t^*) \rightarrow max, \ x = Ax + bu, \ x(0) = x_0,$$
(10)

$$H^-x(t^*) = g^-, d'x(t^*) \le \alpha_0, |u(t)| \le 1, t \in T,$$
 (11)

где $H^+ = H + f^+hd'$, $H^- = H + f^-hd'$, $g^+ = g - v^+h$, $g^- = g - v^-h$.

В силу специальной структуры матриц Н+, Н- можно доказать, что если T_{on} — опора задачи (9), то T_{on} — также опора задач (10), (11). При опоре T_{on} коуправления $\Delta^+(t)$, $\Delta^-(t)$, $t \in T$, для задач (10), (11) совпадают друг с другом и равны $\Delta(t)$, $t \in T$. Векторы потенциалов V^+ , V^- задач (10), (11) равны: $\bar{v}^+ = (v^+, v_{m+1}^+) = (v, v_{m+1} - f^+ v'h), \bar{v}^- = (v^-, v_{m+1}^-) =$ $= (v, v_{m+1} - f^-v'h).$

Тогда с учетом теоремы 1 нетрудно убедиться, что справедлива

Теорема 2. Для оптимальности опорного управления $\{u(\cdot), T_{out}\}$ задачи (9) достаточно, а в случае его невырожденности и необходимо, чтобы выполнялись соотношения:

- 1) $\Delta(t) \leq 0$ при u(t) = 1; $\Delta(t) \geq 0$ при u(t) = -1; $\Delta(t) = 0$ при $-1 < u(t) < 1, t \in T$.
 - 2) $f^-v'h \le v_{m+1} \le f^+v'h$.
- 3. Исследуем задачу оптимального управления с кусочно-линейным критерием качества:

$$J(u) = c'x(t^*) + f(d'x(t^*)) \rightarrow max,$$

$$\dot{x} = Ax + bu, \ x(0) = x_0, \ Hx(t^*) = g, \ |u(t)| \le 1, \ t \in T,$$
(12)

где непрерывная скалярная функция $f(\alpha)$, $\alpha \in \mathbb{R}$, определяется, как в п. 2. Пусть u(t), $t \in T$, — допустимое управление задачи (12), которому соответствует траектория x(t), t ∈ T, в конечный момент t* попадающая на плоскость $d'x = \alpha_0$.

Опора и опорное управление для задачи (12) определяются так же, как в п. 1 для задачи (1). Обозначения c_{on} , P, $\bar{v} = (v, v_{m+1})$, H, H(t), c(t), $\Delta(t)$, $t \in T$, совпадает с п. 1.

Разобьем задачу (12) на следующие две задачи:

$$(c^{+})'x(t^{*}) \rightarrow \max, \ \dot{x} = Ax + bu, \ x(0) = x_{0},$$

$$Hx(t^{*}) = g, \ d'x(t^{*}) \ge \alpha_{0}, \ |u(t)| \le 1, \ t \in T;$$

$$(c^{-})'x(t^{*}) \rightarrow \max, \ \dot{x} = Ax + bu, \ x(0) = x_{0},$$

$$Hx(t^{*}) = g, \ d'x(t^{*}) \le \alpha_{0}, \ |u(t)| \le 1, \ t \in T,$$

$$(14)$$

где $c^+ = c + f^+d$, $c^- = + f^-d$.

Обозначим: $D(t) = d'F(t^*, t)b$, $t \in T$, $D'_{on} = (D(t), t \in T_{on})$, $\bar{\eta}' = (\eta, \eta_{m+1})' = D'_{on}P^{-1}$, $\Omega(t) = (\bar{\eta'}\bar{H} - d')F(t^*, t)b$, $t \in T$. Тогда векторы потенциалов $\bar{\nu}^+$, $\bar{\nu}^-$ для задач (13), (14) примут вид: $\bar{\nu}^+ = (\bar{\nu}^+, \bar{\nu}^+_{m+1}) = (\bar{\nu} + f^+\eta, \bar{\nu}^+_{m+1} + f^+\eta_{m+1})$, $\bar{\nu}^- = (\bar{\nu}^-, \bar{\nu}^-_{m+1}) = (\bar{\nu} + f^-\eta, \bar{\nu}^-_{m+1} + f^-\eta_{m+1})$. Коуправления $\Delta^+(t)$, $\Delta^-(t)$, $t \in T$, для задач (13), (14) имеют вид:

 $\Delta^+(t) = \Delta(t) + f^+\Omega(t), \ \Delta^-(t) = \Delta(t) + f^-\Omega(t), \ t \in T.$

Из приведенных выкладок и теоремы 1 следует

Теорема 3. Для оптимальности опорного управления $\{u(\cdot), T_{on}\}$ задачи (12) достаточно, а в случае его невырожденности и необходимо, чтобы выполнялись соотношения:

1)
$$\Delta(t) + f^+\Omega(t) \le 0$$
, $\Delta(t) + f^-\Omega(t) \le 0$ при $u(t) = 1$; $\Delta(t) + f^+\Omega(t) \ge 0$, $\Delta(t) + f^-\Omega(t) \ge 0$ при $u(t) = -1$; $\Delta(t) + f^+\Omega(t) = \Delta(t) + f^-\Omega(t) = 0$ при $-1 < u(t) < 1$, $t \in T$. 2) $-f^-\eta_{m+1} \le \nu_{m+1} \le -f^+\eta_{m+1}$.

1. Габасов Р., Кириллова Ф. М. Конструктивные методы оптимизации. Мн., 1984. Ч. 2.

Поступила в редакцию 11.01.93.