По количеству клубней с одного куста наиболее высокие показатели получены для сорта Каррера (17,4 шт.), а самые низкие — для сортов Першацвет (14,2 шт.) и Талачынскі (13,6 шт.).

В исследованиях также определялось влияние сортовых особенностей на пораженность фитофторой. Установлено, что в бо́льшей степени фитофторой поражался сорт картофеля Каррера: в 2018 г. (25 %) и особенно в 2017 г. (50 %), когда более высокая влажность воздуха способствовала более интенсивному развитию фитофторы на растениях картофеля. Наиболее низкая пораженность фитофторой отмечалась у сорта Першацвет: в 2017 г. -10 % и в 2018 г. -5,0 %.

Заключение. Наибольшим уровнем экологической пластичности в почвенно-климатических условиях Гродненского района характеризовался сорт Каррера, обеспечивший получение наиболее высокого уровня урожайности (700 ц/га) и максимальное количество клубней с одного куста (17,4 шт.). Однако наибольшее содержание крахмала в клубнях (13,5 %) и максимальный его сбор (73,2 ц/га) с единицы площади обеспечивает возделывание сорта Лілея.

СПИСОК ЛИТЕРАТУРЫ

- 1. Государственный реестр сортов / Министерство сельского хозяйства и продовольствия Республики Беларусь, ГУ «Гос. инспекция по испытанию и охране сортов растений»; под. ред. В. А. Бейня. Минск, 2018.-239 с.
- 2. Гунько, Ю.В. Формирование урожая раннеспелыми сортами картофеля / Ю.В. Гунько, Л.В. Маханько // Картофелеводство: сборник научных трудов. 2010. Т. 17. С. 10–27.

УДК 597.585.1: 591.53 (476)

А.П. ГРИГОРЧИК

Минск, ГНПО «НПЦ НАН Беларуси по биоресурсам»

КРАТКИЕ СВЕДЕНИЯ О ПИТАНИИ ЛЕЩА ABRAMIS BRAMA (LINNAEUS, 1758) В РЕКЕ ПРИПЯТЬ (БЕЛАРУСЬ)

Введение. Лещ *Abramis brama* (Linnaeus, 1758) является одним из многочисленных и широко распространенных аборигенных видов в составе ихтиофауны Беларуси. Основываясь на предположении о влиянии чужеродных видов на нативные экосистемы, цель данной работы состояла в изучении состава пищи аборигенных видов (на примере леща) и

сравнении с имеющимися данными по чужеродным видам рыб — бычка-песочника и бычка-гонца — на участке р. Припять.

Материалы и методы. Отлов особей проводили на участке р. Припять (Пинский р-н, Брестская обл.) в летний период (июнь—июль) 2017 г. с использованием разрешенных орудий лова. Содержимое пищеварительных трактов исследовали согласно методическому пособию по изучению питания рыб в естественных условиях [1]. В процессе обработки отмечены количество пищевых объектов и частота их встречаемости в пищевом комке. Всего обработано 16 экз. леща с длиной тела от 9,60 см до 17,80 см (в среднем, 13,24±0,64 см) и массой от 18,36 г до 112,48 г (в среднем, 48,52±7,26 г). Для определения сходства пищевых спектров между видами использовали индекс, предложенный А.А. Шорыгиным [2], рассчитываемый путем суммирования меньших процентных долей кормовых организмов, общих для сравниваемых рыб.

Результаты и их обсуждение. Состав пищи леща включает 12 пищевых групп, представленных организмами как животного, так и растительного происхождения (таблица). В численном соотношении доминирующие доли занимают представители классов Crustacea и Insecta — 39,20 % и 57,50 %, соответственно, от общего числа кормовых объектов. Высокие доли этих групп также обусловлены высокой частотой встречаемости у анализируемых особей — от 56,30 до 87,50 %, соответственно. Доля моллюсков по численности в рационе невысокая (3,35 %), но более существенная по массе — 16,7 %. У 68,8 % особей в составе пищи отмечены представители семейств Dreissenidae, Sphaeriidae и Віthyпііdae. Среди насекомых доля семейства Chironomidae по массе достигла порядка 67,6 %. Доли остальных групп насекомых по численности незначительны (менее 1 %) и составляли суммарно около 0,34 % по массе. Минимальный вес при высокой численности отмечен для ракообразных — 0,24 % от общего суммарного веса всех компонентов.

Следует отметить в составе пищи леща значительную долю детрита и растений, суммарный вес которых составил свыше 15 % при встречаемости детрита у 44 % и растений – у 69 % особей.

Весь представленный спектр кормовых объектов леща для удобства сравнения можно объединить в группы: зообентос, зоопланктон, детрит и растительные остатки. В целом, в Припяти доля зообентоса составляет 60.9% при массе 84.6%, доля зоопланктона -39.2% при массе 0.24% от суммарного веса, доля детрита и растений -15.2% по массе.

Таблица – Спектр питания леща и двух чужеродных видов рыб в р. Припять

Пищевые компоненты			Лещ (n=16) 13,24±0,64 мм				Бычок- гонец (n=26) 43,9±2,1 мм [4]
		N, %	F, %	масса, г	% от	мм [3] % от	% от
1		2	3	4	массы 5	массы 6	массы 7
Детрит			68,75	1,11	11,56	_	
Растительность		_	43,75	0,35	3,61	_	0,54
Insecta		57,52	87,50		67,94	60,43	89,2
Culicidae		0,39	12,5	0,001	0,01	_	_
Chironomidae		56,58	87,5	6,51	67,56	59,14	86,99
Stratiomyidae		_	_	_	_	_	0,31
Ceratopogonidae		0,51	12,5	0,0005	0,01	0,21	_
Odonata		_	_	_	_	0,28	0,8
Trichoptera		0,04	6,25	0,03	0,36	0,80	0,69
Coleoptera	Haliplidae	_	_		_	_	0,25
Heteroptera	Corixidae	_	_	_	_	_	0,16
Crustacea		39,15	56,25	0,0201	0,24	0,45	2,0
Amphipoda	Gammaridae	_	_	_	_	0,4	1,19
Cyclopoida	Cyclopidae	_	_		_	_	0,04
Cladocera		39,15	56,25	0,0201	0,24	0,05	0,63
Daphniiformes	Bosminidae	35,14	43,75	0,01	0,11	_	_
	Chydoridae	3,89	56,25	0,01	0,13	0,02	0,61
	Moinidae	0,12	12,5	0,00005	0,0005	_	0,003
Polyphemiformes	Сем. Polyphemidae	_	_	_	_	0,004	0,013
Ostracoda	Podocopida	_	_	ı	_	0,03	0,14
Mollusca		3,35	68,75	1,61	16,67	39,12	8,07
Bivalvia	Dreissenidae	1,09	31,25	0,53	5,54	0,10	1,48
	Sphaeriidae	1,09	37,5	0,7	3,92	9,05	-
Gastropopoda	Valvatidae	_	_	_	_	1,93	_
	Viviparidae	_	_	_	_	4,02	_
	Hydrobiidae	_	_	_	_	23,46	_
	Bithyniidae	1,17	25,0	0,38	7,21	0,54	_
	Lymnaeidae	_	_	_	_	_	5,85
	Neritidae	_	_	_	_	_	0,74
Hirudinea	Arhynchobdellida	_	_	_	_	_	0,22
Пимином	100,0	_	_	100,0	100,0	100,0	

Примечание: N – доля определенной группы кормовых объектов в рационе (%), F (встречаемость) – частота встречаемости данной группы кормовых объектов в пищевых комках исследованной выборки (%), % от массы – доля определенной группы кормовых объектов по массе (%).

Наблюдаемая избирательность в выборе этих групп объектов и их количестве обусловлена возрастными особенностями, к тому же определяется и кормовой составляющей каждого конкретного водотока.

Проведенное сравнение состава пищевых компонентов по массе (по Шорыгину, в %) между лещом и 2 чужеродными видами рыб (бычком-песочником и бычком-гонцом) показало высокие значения индекса пищевого сходства: лещ/песочник — 64,0 %, лещ/гонец — 70,1 %. Это указывает на конкуренцию между аборигенным и чужеродными видами за кормовой ресурс, что обусловлено выбором конкретного кормового объекта, в данном случае — личинок семейства Chironomidae, являющихся одним из основных объектов питания, особенно для бентофагов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях. М., 1974. 254 с.
- 2. Шорыгин, А.А. Питание и пищевые взаимоотношения рыб Каспийского моря / А.А. Шорыгин. М.: Пищепромиздат, 1952. 268 с.
- 3. Лукина, И.И. Особенности спектров питания бычка-песочника *Neogobius fluviatilis* (Pallas, 1814) в водотоках бассейна реки Днепр на территории Беларуси / И.И. Лукина, А.П. Григорчик // Природные ресурсы. 2019. № 1. С. 57–65.
- 4. Григорчик, А.П. Спектр питания представителей семейства Бычковые (Gobiidae) в р. Припять (Беларусь) / А.П. Григорчик, Е.В. Винцек // Зоологические чтения 2017: сборник статей Международной научно-практической конференции, Гродно, 15–17 марта 2017 г.; под ред. О.В. Янчуревич [и др.]. Гродно: ГрГУ, 2017. С. 67–70.

УДК 595.782 (476-21)

В.В. ДАНИЛЁНОК, Н.В. СИНЧУК, О.В. СИНЧУК

Минск, Белорусский государственный университет Научный руководитель – О.В. Синчук, старший преподаватель

ОТНОСИТЕЛЬНАЯ ПОВРЕЖДЕННОСТЬ ЛИСТОВЫХ ПЛАСТИНОК РОБИНИИ ОБЫКНОВЕННОЙ ЛИЧИНКАМИ MACROSACCUS ROBINIELLA ПО ГЕНЕРАЦИЯМ В УСЛОВИЯХ г. БРЕСТА

Введение. Естественный ареал белоакациевой нижнесторонней минирующей моли-пестрянки (*Macrosaccus robiniella* (Clemens, 1859))