Γ еометрия и топология

${ m G}$ eometry and topology

УДК 515.12

О НЕПРЕРЫВНОСТИ ФУНКТОРОВ ВИДА C(X, Y)

 Γ . О. КУКРАК 1), В. Л. ТИМОХОВИЧ 1

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Рассматривается категория \mathcal{P} , объекты которой — пары топологических пространств (X,Y). Каждой такой паре ставится в соответствие пространство непрерывных отображений $C_{\tau}(X,Y)$ с топологией τ . Наложением некоторых ограничений на объекты и морфизмы категории \mathcal{P} выделяется подкатегория $\mathcal{K} \subset \mathcal{P}$, для которой указанное отображение является функтором из \mathcal{K} в категорию Тор топологических пространств и непрерывных отображений. Исследуется вопрос о том, при каких дополнительных условиях на \mathcal{K} указанный функтор непрерывен. При этом решается задача нахождения предела обратного спектра в категории \mathcal{P} . Показано, что она сводится к отысканию пределов возникающих естественным образом прямого и обратного спектров в категории Тор. В качестве τ рассмотрены топология поточечной сходимости, компактно-открытая топология и топология графика.

Ключевые слова: пространство отображений; функтор C(X, Y); непрерывный функтор; обратный спектр; прямой спектр.

Образец цитирования:

Кукрак ГО, Тимохович ВЛ. О непрерывности функторов вида C(X,Y). Журнал Белорусского государственного университета. Математика. Информатика. 2020;1:22—29. https://doi.org/10.33581/2520-6508-2020-1-22-29

For citation:

Kukrak HO, Timokhovich VL. On the continuity of functors of the type C(X, Y). *Journal of the Belarusian State University. Mathematics and Informatics*. 2020;1:22–29. Russian. https://doi.org/10.33581/2520-6508-2020-1-22-29

Авторы:

Глеб Олегович Кукрак – кандидат физико-математических наук; доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета.

Владимир Леонидович Тимохович — кандидат физико-математических наук, доцент; доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета.

Authors:

Hleb O. Kukrak, PhD (physics and mathematics); associate professor at the department of geometry, topology and methods of teaching mathematics, faculty of mechanics and mathematics. *kukrak@bsu.by*

Vladimir L. Timokhovich, PhD (physics and mathematics), docent; associate professor at the department of geometry, topology and methods of teaching mathematics, faculty of mechanics and mathematics.

timvlaleo@gmail.com

ON THE CONTINUITY OF FUNCTORS OF THE TYPE C(X, Y)

H. O. KUKRAK^a, V. L. TIMOKHOVICH^a

^aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus Corresponding author: H. O. Kukrak (timvlaleo@gmail.com)

We consider the category \mathcal{P} , the objects of which are pairs of topological spaces (X,Y). Each such pair (X,Y) is assigned the space of continuous maps $C_{\tau}(X,Y)$ with some topology τ . By imposing some restrictions on objects and morphisms of category \mathcal{P} , we define a subcategory $\mathcal{K} \subset \mathcal{P}$, for which the above map is a functor from \mathcal{K} to the category Top of topological spaces and continuous maps. The following question is investigated. What are the additional conditions on \mathcal{K} , under which the above functor is continuous? Along the way the problem of finding the limit of the inverse spectrum in the category \mathcal{P} is solved. We show, that it reduces to finding the limits of the corresponding direct spectrum and inverse spectrum in the category Top. Point convergence topology, compact-open topology and graph topology are considered as the topology τ .

Keywords: function space; functor C(X, Y); continuous functor; inverse spectrum; direct spectrum.

Введение

Рассмотрим категорию \mathcal{P} , объектами которой являются произвольные упорядоченные пары (X,Y) то-пологических пространств, а морфизмом пары (X,Y) в пару (E,Z) – любая упорядоченная пара (φ,ψ) непрерывных отображений $E \xrightarrow{\varphi} X$, $Y \xrightarrow{\psi} Z$ (композиция $(\varphi',\psi') \circ (\varphi,\psi) = (\varphi \circ \varphi',\psi' \circ \psi)$). Переходя от пар (X,Y), (E,Z) и морфизма $(X,Y) \xrightarrow{(\varphi,\psi)} (E,Z)$ к множествам непрерывных отображений C(X,Y), C(E,Z) (кратко: C(X) при $Y=\mathbb{R}$) и соответствующему отображению $C(X,Y) \xrightarrow{c(\varphi,\psi)} C(E,Z)$: $f \to \overline{f} = \psi \circ f \circ \varphi$, получаем функтор C из категории \mathcal{P} в категорию Set всех множеств и отображений. При задании на множествах вида C(X,Y) некоторой топологии τ естественно возникает задача отыскания достаточно обширной подкатегории \mathcal{K} в \mathcal{P} , в рамках которой любое отображение вида $C(X,Y) \xrightarrow{c(\varphi,\psi)} C(E,Z)$ непрерывно, и тогда C – функтор из \mathcal{K} в категорию Тор топологических пространств и непрерывных отображений.

Исследования в указанном направлении начаты в работе [1], которая, в свою очередь, предваряется статьями [2–5]. В настоящей статье они продолжены. В качестве τ рассмотрены топология поточечной сходимости τ_p , компактно-открытая топология τ_k и топология графика τ_Γ , а соответствующие функторы в категорию Тор исследованы на непрерывность.

Понятия и обозначения

Пусть X — топологическое пространство (далее — просто пространство), $A \subset X$, $x \in X$. Обозначим: τ_X — топология пространства X, $\tau_X(A) = \{U \in \tau_X \mid A \subset U\}$, $\tau_X(x) = \tau_X(\{x\})$; id_X — тождественное отображение X на себя.

Пространство X называют:

- k-пространством [6, с. 236], если из того, что A не замкнуто, следует существование компактного множества $B \subset X$, для которого $A \cap B$ не замкнуто в B;
- изокомпактным [7], если компактно любое счетно-компактное замкнутое множество $B \subset X$ (таково, например, любое слабо паракомпактное пространство [6, с. 477]).

Отображение $f \in C(X, Y)$ называют:

- совершенным [6, с. 277], если оно замкнуто (т. е. f(F) замкнуто в Y для любого замкнутого $F \subset X$) и $f^{-1}(y)$ компактно для любой точки $y \in Y$;
- k-накрывающим [6, с. 506], если для каждого компактного $B \subset Y$ найдется компактное $F \subset X$, для которого f(F) = B. Всякое совершенное сюръективное отображение является k-накрывающим [6, с. 278].

Отметим, что, в отличие от [6], в определениях k-пространства и совершенного и k-накрывающего отображений никакие условия отделимости нами не предполагаются.

На множестве C(X,Y) топология поточечной сходимости τ_p [6, с. 172], компактно-открытая топология τ_{κ} [6, с. 243] и топология графика τ_{Γ} [8] определены предбазами, состоящими из всех множеств вида $\langle x,V\rangle = \left\{f \in C(X,Y) \middle| f(x) \in V\right\}$ (для τ_p), $\langle F,V\rangle = \left\{f \in C(X,Y) \middle| f(F) \subset V\right\}$ (для τ_{κ}) и $O(U) = \left\{f \in C(X,Y) \middle| \Gamma_f \in U\right\}$ (для τ_{Γ}), где $x \in X$, $F \subset X$ и F компактно, $V \in \tau_Y$, $\Gamma_f = \left\{(x,f(x)) \in X \times Y \middle| x \in X\right\}$ — график отображения f и U — открытое множество в $X \times Y$. Соответствующие пространства обозначаем кратко через $C_p(X,Y)$, $C_{\kappa}(X,Y)$ и $C_{\Gamma}(X,Y)$.

Пусть \mathcal{A} — некоторая категория, множество Σ направлено (т. е. частично упорядочено и для любых α , $\beta \in \Sigma$ можно выбрать $\gamma \in \Sigma$ так, что $\gamma \geq \alpha$ и $\gamma \geq \beta$) и для каждых $\alpha \in \Sigma$ и $\beta \geq \alpha$ определены объект X_{α} и морфизм φ_{α}^{β} из \mathcal{A} . Семейство S указанных объектов и связующих морфизмов обозначают кратко $S = \left\{ X_{\alpha}, \varphi_{\alpha}^{\beta}, \Sigma \right\}$ и называют *обратным спектром* или *проективной системой* [9, с. 89; 10, с. 59] (*прямым спектром* или *индуктивной системой* [10, с. 59]), если $\varphi_{\alpha}^{\alpha}$ есть тождественный морфизм $1_{X_{\alpha}}, \varphi_{\alpha}^{\beta} : X_{\beta} \to X_{\alpha}$ ($\varphi_{\alpha}^{\beta} : X_{\alpha} \to X_{\beta}$ соответственно) и $\varphi_{\alpha}^{\gamma} = \varphi_{\alpha}^{\beta} \circ \varphi_{\beta}^{\gamma}$ ($\varphi_{\alpha}^{\gamma} = \varphi_{\beta}^{\gamma} \circ \varphi_{\alpha}^{\beta}$) при $\alpha \leq \beta \leq \gamma$.

Под *пределом* в категории $\mathcal A$ обратного (прямого) спектра S понимают объект X в совокупности с морфизмами $\pi_{\alpha}: X \to X_{\alpha}$ ($\pi_{\alpha}: X_{\alpha} \to X$), удовлетворяющими условиям:

$$(a) \ \pi_\alpha = \phi_\alpha^\beta \circ \pi_\beta \ (\pi_\alpha = \pi_\beta \circ \phi_\alpha^\beta) \ при \ \alpha \le \beta;$$

(b) если объект X' из A и морфизмы $\pi'_{\alpha}: X' \to X_{\alpha}$ ($\pi'_{\alpha}: X_{\alpha} \to X'$) таковы, что $\pi'_{\alpha} = \varphi^{\beta}_{\alpha} \circ \pi'_{\beta}$ ($\pi'_{\alpha} = \pi'_{\beta} \circ \varphi^{\beta}_{\alpha}$) при $\alpha \leq \beta$, то существует единственный морфизм $h: X' \to X$ ($h: X \to X'$), для которого $\pi'_{\alpha} = \pi_{\alpha} \circ h$ ($\pi'_{\alpha} = h \circ \pi_{\alpha}$) при любом $\alpha \in \Sigma$. Если спектр S обратный, то его предел обозначают $\varinjlim S$ или $\varinjlim X_{\alpha}$, если прямой, то $\varinjlim S$ или $\varinjlim X_{\alpha}$, а морфизмы π_{α} называют (в обоих случаях) *каноническими проекциями*.

В категории Тор пределы спектров существуют и определены следующим образом. Если спектр S обратный, то его предел — подпространство $L \subset \prod_{\alpha \in \Sigma} X_{\alpha}, \ L = \left\{ \left(x_{\alpha} \middle| \alpha \in \Sigma \right) \middle| x_{\alpha} = \varphi_{\alpha}^{\beta} \left(x_{\beta} \right), \ \alpha \leq \beta \right\}$, а морфизмы π_{α} — естественные проекции $L \xrightarrow{\pi_{\alpha}} X_{\alpha}$. Элементы L называют *нитями спектра* S. Базу в L образуют множества вида $\pi_{\alpha}^{-1}(V)$, где $V \in \tau_{X_{\alpha}}$ [9, с. 90]. Предел прямого спектра S — фактор-пространство K дискретной суммы $\coprod_{\alpha \in \Sigma} X_{\alpha}$ по следующему отношению эквивалентности: $x \sim y \ (x \in X_{\alpha}, y \in X_{\beta})$, если $\varphi_{\alpha}^{\gamma}(x) = \varphi_{\beta}^{\gamma}(y)$ при некотором $\gamma \in \Sigma$, а канонические проекции $X_{\alpha} \to K$ (их обозначаем через ι_{α}) определены как сужения $\iota_{\alpha} = \pi \middle|_{X_{\alpha}}$, где $\pi : \coprod_{\alpha \in \Sigma} X_{\alpha} \to K$ — естественная проекция.

Пусть \mathcal{A} и \mathcal{B} – категории, $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ – ковариантный функтор, $S = \left\{ X_{\alpha}, \, \varphi_{\alpha}^{\beta}, \, \Sigma \right\}$ – обратный спектр в \mathcal{A} , имеющий в \mathcal{A} предел $L = \underline{\lim} X_{\alpha}$ с каноническими проекциями $L \xrightarrow{\pi_{\alpha}} X_{\alpha}$. В категории \mathcal{B} определены соответствующие обратный спектр $\mathcal{F}(S) = \left\{ \mathcal{F}(X_{\alpha}), \, \mathcal{F}(\varphi_{\alpha}^{\beta}), \, \Sigma \right\}$, объект $\mathcal{F}(L)$ и морфизмы $\mathcal{F}(\pi_{\alpha}): \mathcal{F}(L) \to \mathcal{F}(X_{\alpha})$, причем $\mathcal{F}(\pi_{\alpha}) = \mathcal{F}(\varphi_{\alpha}^{\beta}) \circ \mathcal{F}(\pi_{\beta})$ при $\alpha \leq \beta$. Функтор \mathcal{F} называют непрерывным или перестановочным с обратным пределом [9, с. 187; 10, с. 64], если для любого такого S объект $\mathcal{F}(L)$ в совокупности с морфизмами $\mathcal{F}(\pi_{\alpha}): \mathcal{F}(L) \to \mathcal{F}(X_{\alpha})$ является пределом обратного спектра $\mathcal{F}(S)$ в категории \mathcal{B} .

Функторы C_n , C_{κ} и C_{Γ}

Задавая на множествах вида C(X,Y) некоторую топологию τ , мы ставим в соответствие каждому объекту (X,Y) категории $\mathcal P$ топологическое пространство $C_{\tau}(X,Y)$. Если при этом для любого морфизма $(X,Y) \xrightarrow{(\phi,\psi)} (E,Z)$ из некоторой подкатегории $\mathcal K \subset \mathcal P$ соответствующее отображение $C_{\tau}(X,Y) \xrightarrow{c(\phi,\psi)} C_{\tau}(E,Z) : f \to \overline f = \psi \circ f \circ \phi$ непрерывно, то получаем ковариантный функтор C_{τ} из $\mathcal K$ в категорию Тор. Далее в качестве τ рассмотрим топологии τ_p, τ_{κ} и τ_{Γ} , а соответствующие функторы обозначим кратко через C_p, C_{κ} и C_{Γ} . Нам понадобятся следующие из полученных ранее результатов.

Теорема 1 [1]. Отображения $C_p(X,Y) \xrightarrow{c(\phi,\psi)} C_p(E,Z)$ и $C_{\kappa}(X,Y) \xrightarrow{c(\phi,\psi)} C_{\kappa}(E,Z)$ непрерывны при любых $X, Y, E, Z, \phi \in C(E,X)$ и $\psi \in C(Y,Z)$.

Следствие 1. C_p и C_{κ} – функторы из категории \mathcal{P} в категорию Тор.

Теорема 2 [1]. Если отображение $\varphi \in C(E,X)$ совершенно, то $C_{\Gamma}(X,Y) \xrightarrow{c(\varphi,\psi)} C_{\Gamma}(E,Z)$ непрерывно для любых Y,Z и $\psi \in C(Y,Z)$.

Следствие 2. Пусть \mathcal{K} – подкатегория в \mathcal{P} , в которой для каждого морфизма (ϕ, ψ) отображение ϕ совершенно. Тогда C_{Γ} – функтор из \mathcal{K} в категорию Тор.

При непрерывности отображений вида $C_{\Gamma}(X,Y) \xrightarrow{c(\phi,\psi)} C_{\Gamma}(E,Z)$ вопрос (обратный) о совершенности $\phi \in C(E,X)$ решается следующим образом.

Теорема 3 [1]. Отображение $\varphi \in C(E, X)$ совершенно, если отображение $C_{\Gamma}(X, \mathbb{R}) \xrightarrow{c(\varphi, id_{\mathbb{R}})} C_{\Gamma}(E, \mathbb{R})$ непрерывно, E изокомпактно, а X – вполне регулярное k-пространство.

Следствие 3. Пусть \mathcal{K} – подкатегория в \mathcal{P} , в которой для любого объекта (X,Y) пространство X – вполне регулярное и изокомпактное k-пространство, и вместе c каждым морфизмом $(X,Y) \xrightarrow{(\phi,\psi)} (E,Z)$ содержится также морфизм $(X,\mathbb{R}) \xrightarrow{(\phi,\mathrm{id}_{\mathbb{R}})} (E,\mathbb{R})$. Если при этом C_{Γ} является функтором из \mathcal{K} в категорию Тор, то для любого морфизма (ϕ,ψ) из \mathcal{K} отображение ϕ совершенно.

Непрерывность функторов C_p , C_{κ} и C_{Γ}

В категории \mathcal{P} рассмотрим обратный спектр $S = \left\{ (X_{\alpha}, Y_{\alpha}), (\phi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}), \Sigma \right\}$ и соответствующие спектры в категории Тор: прямой спектр $S_X = \left\{ X_{\alpha}, \phi_{\alpha}^{\beta}, \Sigma \right\}$ и обратный спектр $S_Y = \left\{ Y_{\alpha}, \psi_{\alpha}^{\beta}, \Sigma \right\}$. Пусть $K = \underline{\lim} X_{\alpha}$ и $L = \underline{\lim} Y_{\alpha}$ — их пределы, $\iota_{\alpha} : X_{\alpha} \to K$ и $\pi_{\alpha} : L \to Y_{\alpha}$ — соответствующие канонические проекции. Возвращаясь в \mathcal{P} , получим пару (K, L) и дополнительно к морфизмам $\left(X_{\beta}, Y_{\beta} \right) \xrightarrow{\left(\phi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta} \right)} \left(X_{\alpha}, Y_{\alpha} \right)$ также морфизмы $(K, L) \xrightarrow{\left(\iota_{\alpha}, \pi_{\alpha} \right)} \left(X_{\alpha}, Y_{\alpha} \right)$, причем $\left(\iota_{\alpha}, \pi_{\alpha} \right) = \left(\phi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta} \right) \circ \left(\iota_{\beta}, \pi_{\beta} \right)$ при $\alpha \le \beta$. Пусть далее пара (K', L') и морфизмы $(K', L') \xrightarrow{\left(\iota_{\alpha}', \pi_{\alpha}' \right)} \left(X_{\alpha}, Y_{\alpha} \right)$ таковы, что $\left(\iota_{\alpha}', \pi_{\alpha}' \right) = \left(\phi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta} \right) \circ \left(\iota_{\beta}', \pi_{\beta}' \right)$ при $\alpha \le \beta$.

Очевидно, что для отображений $\iota'_{\alpha}: X_{\alpha} \to K'$ и $\pi'_{\alpha}: L' \to Y_{\alpha}$ выполняются соотношения $\iota'_{\alpha} = \iota'_{\beta} \circ \phi^{\beta}_{\alpha}$ и $\pi'_{\alpha} = \psi^{\beta}_{\alpha} \circ \pi'_{\beta}$ при $\alpha \leq \beta$ и, следовательно, определены однозначно непрерывные отображения $K \xrightarrow{u} K'$ и $L' \xrightarrow{v} L$ такие, что $\iota'_{\alpha} = u \circ \iota_{\alpha}$ и $\pi'_{\alpha} = \pi_{\alpha} \circ v$ для любого $\alpha \in \Sigma$. Но тогда морфизм $(K', L') \xrightarrow{(u,v)} (K, L)$ единственный, для которого $(\iota'_{\alpha}, \pi'_{\alpha}) = (\iota_{\alpha}, \pi_{\alpha}) \circ (u, v)$ при всех $\alpha \in \Sigma$. Итак, условия (a) и (b) категорного определения предела обратного спектра проверены и таким образом доказана следующая теорема.

Теорема 4. В категории \mathcal{P} пределом обратного спектра $S = \left\{ (X_{\alpha}, Y_{\alpha}), (\phi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}), \Sigma \right\}$ является пара (K, L), где $K = \underline{\lim} X_{\alpha}$, $L = \underline{\lim} Y_{\alpha}$, а каноническими проекциями – морфизмы $(K, L) \xrightarrow{(\iota_{\alpha}, \pi_{\alpha})} (X_{\alpha}, Y_{\alpha})$, где ι_{α} и π_{α} – канонические проекции пределов (в категории Top) K и L соответственно.

Отметим, что категория \mathcal{P} является произведением категории Тор и дуальной категории Тор* (полученной «поворотом стрелок»), $\mathcal{P} = \text{Top}^* \times \text{Top}$, и теорему 4 можно доказать как простое утверждение в рамках общей теории категорий.

Рассмотрим тот же обратный спектр $S = \left\{ (X_{\alpha}, Y_{\alpha}), (\varphi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}), \Sigma \right\}$. Предположим, что некоторая подкатегория $\mathcal{K} \subset \mathcal{P}$ содержит все объекты спектра S, пару $(K, L) = \underline{\lim}(X_{\alpha}, Y_{\alpha})$ и все морфизмы $(\varphi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta})$ и $(\iota_{\alpha}, \pi_{\alpha})$, и при задании на множествах вида C(X, Y) топологии τ возникает функтор C_{τ} из \mathcal{K} в категорию Тор. Теперь рассмотрим соответствующие обратный спектр $C_{\tau}(S) = \left\{ C_{\tau}(X_{\alpha}, Y_{\alpha}), c(\varphi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}), \Sigma \right\}$ (в категории Тор), его предел $\Lambda = \underline{\lim} C_{\tau}(X_{\alpha}, Y_{\alpha})$ с каноническими проекциями $\Pi_{\alpha} : \Lambda \to C_{\tau}(X_{\alpha}, Y_{\alpha})$, пространство $C_{\tau}(K, L)$ и непрерывные отображения $C_{\tau}(K, L) \xrightarrow{c(\iota_{\alpha}, \pi_{\alpha})} C_{\tau}(X_{\alpha}, Y_{\alpha})$. Поскольку $c(\iota_{\alpha}, \pi_{\alpha}) = c(\varphi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}) \circ c(\iota_{\beta}, \pi_{\beta})$ при $\alpha \leq \beta$, то определено, причем единственным образом, непрерывное отображение $h : C_{\tau}(K, L) \to \Lambda$ такое, что $c(\iota_{\alpha}, \pi_{\alpha}) = \Pi_{\alpha} \circ h$ для всех $\alpha \in \Sigma$.

Лемма 1. Пусть $f \in C_{\tau}(K, L)$ и $h(f) = (f_{\alpha} | \alpha \in \Sigma) (f_{\alpha} = \Pi_{\alpha}(h(f)) \in C_{\tau}(X_{\alpha}, Y_{\alpha}))$. Тогда $f_{\alpha} = \pi_{\alpha} \circ f \circ \iota_{\alpha}$, $\alpha \in \Sigma$.

Доказательство следует непосредственно из равенства $c(\iota_{\alpha}, \pi_{\alpha}) = \Pi_{\alpha} \circ h$.

Лемма 2. Отображение $h: C_{\tau}(K, L) \to \Lambda$ – непрерывная биекция.

Доказательство. Непрерывность h уже отмечена. Докажем биективность. Для этого сперва покажем инъективность. Пусть $f,g\in C(K,L),\ h(f)=(f_{\alpha}|\alpha\in\Sigma),\ h(g)=(g_{\alpha}|\alpha\in\Sigma)\ u\ f\neq g$. Тогда для некоторого класса эквивалентности $\left[x_{\beta}\right]\in K\ (x_{\beta}\in X_{\beta})$ нити $f\left(\left[x_{\beta}\right]\right)=\left(y_{\alpha}|\alpha\in\Sigma\right)\ u\ g\left(\left[x_{\beta}\right]\right)=\left(z_{\alpha}|\alpha\in\Sigma\right)$ различны, т. е. $y_{\gamma}\neq z_{\gamma}$ для некоторого $\gamma\in\Sigma$. Выберем $\delta\in\Sigma$ такое, что $\delta\geq\beta$ и $\delta\geq\gamma$, и обозначим $x_{\delta}=\varphi_{\beta}^{\delta}\left(x_{\beta}\right)$ $(x_{\delta}\in X_{\delta})$. Используя лемму 1 и соотношение $\left[x_{\delta}\right]=\left[x_{\beta}\right]$, получим $f_{\delta}(x_{\delta})=\left(\pi_{\delta}\circ f\circ\iota_{\delta}\right)\left(x_{\delta}\right)=y_{\delta}$ и $g_{\delta}(x_{\delta})=$ $=\left(\pi_{\delta}\circ g\circ\iota_{\delta}\right)\left(x_{\delta}\right)=z_{\delta}$. Но $y_{\delta}\neq z_{\delta}$, поскольку $\psi_{\gamma}^{\delta}\left(y_{\delta}\right)=y_{\gamma}\neq z_{\gamma}=\psi_{\gamma}^{\delta}\left(z_{\delta}\right)$. Итак, $f_{\delta}\neq g_{\delta}$, т. е. $h(f)\neq h(g)$. Инъективность доказана.

Пусть теперь $(f_{\alpha}|\alpha\in\Sigma)\in\Lambda$. Покажем существование $f\in C_{\tau}(K,L)$ такого, что $h(f)=(f_{\alpha}|\alpha\in\Sigma)$, т. е. $f_{\alpha}=\pi_{\alpha}\circ f\circ\iota_{\alpha}$, $\alpha\in\Sigma$ (см. лемму 1). Для произвольных γ , $\alpha\in\Sigma$ выберем $\delta\in\Sigma$, $\delta\geq\gamma$, $\delta\geq\alpha$, и положим $f_{\gamma\alpha}=\psi_{\alpha}^{\delta}\circ f_{\delta}\circ\phi_{\gamma}^{\delta}$. Проверим корректность определения. Пусть $\kappa\in\Sigma$, $\kappa\geq\gamma$ и $\kappa\geq\alpha$. Покажем, что $\psi_{\alpha}^{\kappa}\circ f_{\kappa}\circ\phi_{\gamma}^{\kappa}=\psi_{\alpha}^{\delta}\circ f_{\delta}\circ\phi_{\gamma}^{\delta}$. Подберем $\nu\in\Sigma$ так, чтобы выполнялись соотношения $\nu\geq\delta$ и $\nu\geq\kappa$. Тогда $\psi_{\alpha}^{\kappa}\circ f_{\kappa}\circ\phi_{\gamma}^{\kappa}=\psi_{\alpha}^{\kappa}\circ\psi_{\kappa}^{\nu}\circ f_{\nu}\circ\phi_{\gamma}^{\kappa}=\psi_{\alpha}^{\nu}\circ f_{\nu}\circ\phi_{\gamma}^{\nu}$. С другой стороны, $\psi_{\alpha}^{\delta}\circ f_{\delta}\circ\phi_{\gamma}^{\delta}=\psi_{\alpha}^{\delta}\circ\psi_{\delta}^{\nu}\circ f_{\nu}\circ\phi_{\delta}^{\nu}\circ f_{\nu}\circ f_{\nu}\circ\phi_{\delta}^{\nu}\circ f_{\nu}\circ\phi_{\delta}^{\nu}\circ f_{\nu}\circ f_$

Отметим, что $f_{\gamma\gamma} = f_{\gamma}$. Для проверки соотношения $f_{\gamma\alpha} = \psi_{\alpha}^{\beta} \circ f_{\delta\beta} \circ \phi_{\gamma}^{\delta}$ при $\gamma \leq \delta$ и $\alpha \leq \beta$ выберем $\nu \in \Sigma$, $\nu \geq \beta$, $\nu \geq \gamma$, и получим $\psi_{\alpha}^{\beta} \circ f_{\delta\beta} \circ \phi_{\gamma}^{\delta} = \psi_{\alpha}^{\beta} \circ \psi_{\beta}^{\nu} \circ f_{\nu} \circ \phi_{\gamma}^{\delta} = \psi_{\alpha}^{\nu} \circ f_{\nu} \circ \phi_{\gamma}^{\nu} = f_{\gamma\alpha}$. Таким образом, определены непрерывные отображения $f_{\gamma L} : X_{\gamma} \to L$, $f_{\gamma L} (x_{\gamma}) = (f_{\gamma \alpha} (x_{\gamma}) | \alpha \in \Sigma)$ и $f_{\gamma L} = f_{\nu L} \circ \phi_{\gamma}^{\nu}$ при $\gamma \leq \nu$. Но тогда по определению существует единственное непрерывное отображение $f : K \to L$, для которого $f_{\gamma L} = f \circ \iota_{\gamma}$ при любом $\gamma \in \Sigma$. А поскольку $\pi_{\alpha} \circ f \circ \iota_{\alpha} = \pi_{\alpha} \circ f_{\alpha L} = f_{\alpha \alpha} = f_{\alpha}$, то в силу леммы 1 отображение f – искомое. Итак, h сюръективно. Лемма 2 доказана.

Следствие 4. Функтор C_{τ} непрерывен на категории K тогда и только тогда, когда обратное отображение $h^{-1}: \Lambda \to C_{\tau}(K, L)$ непрерывно при любом выборе в K обратного спектра S, для которого в K существует предел $(K, L) = \underline{\lim} S$.

Теорема 5. Функтор C_n из категории \mathcal{P} в категорию Тор непрерывен.

Доказательство. Учитывая следствие 4, рассмотрим произвольные $f \in C_p(K,L)$ и окрестность f вида $\langle \left[x_\gamma \right], \pi_\beta^{-1}(V_\beta) \rangle$, где $\left[x_\gamma \right] \in K$ $(x_\gamma \in X_\gamma)$, V_β открыто в Y_β . Пусть $f\left[\left[x_\gamma \right] \right] = \left(y_\alpha \middle| \alpha \in \Sigma \right) \in L$. Ясно, что $y_\beta \in V_\beta$. Выберем $\delta \in \Sigma$, $\delta \geq \gamma$, $\delta \geq \beta$, и обозначим $x_\delta = \varphi_\gamma^\delta(x_\gamma)$ $(x_\delta \in X_\delta)$. Затем в Y_δ выберем окрестность V_δ точки y_δ так, чтобы выполнялось включение $\psi_\delta^\delta(V_\delta) \subset V_\beta$. Перейдем к нити (в Λ) $h(f) = \left(f_\alpha \middle| \alpha \in \Sigma \right)$. Заметим (см. лемму 1), что $f_\delta(x_\delta) = \pi_\delta \left(f\left(\left[x_\delta \right] \right) \right) = \pi_\delta \left(f\left(\left[x_\gamma \right] \right) \right) = y_\delta \in V_\delta$ и, следовательно, $\Pi_\delta^{-1}(\langle x_\delta, V_\delta \rangle)$ — окрестность в Λ нити h(f). Пусть $g \in C_p(K,L)$, $h(g) = \left(g_\alpha \middle| \alpha \in \Sigma \right) \in \Pi_\delta^{-1}(\langle x_\delta, V_\delta \rangle)$. Тогда $g_\delta(x_\delta) = \pi_\delta \left(g\left(\left[x_\gamma \right] \right) \right) = \pi_\delta \left(g\left(\left[x_\gamma \right] \right) \right) \in V_\delta$, откуда $g \in \langle \left[x_\gamma \right], \pi_\delta^{-1}(V_\delta) \rangle$. Но $\pi_\delta^{-1}(V_\delta) \subset \pi_\beta^{-1}(V_\beta)$, значит, $\langle \left[x_\gamma \right], \pi_\delta^{-1}(V_\delta) \rangle \subset \langle \left[x_\gamma \right], \pi_\beta^{-1}(V_\beta) \rangle$, что влечет $g \in \langle \left[x_\gamma \right], \pi_\beta^{-1}(V_\beta) \rangle$. Итак, h^{-1} непрерывно. Теорема 5 доказана.

Перейдем к топологии τ_{κ} .

Лемма 3 [1] (см. также [9, с. 100]). Если $\left\{Y_{\alpha}, \psi_{\alpha}^{\beta}, \Sigma\right\}$ – обратный спектр в категории Тор, $L = \underline{\lim} Y_{\alpha}$, $F \subset U \subset L$, U открыто в L, a F компактно, то $F \subset \pi_{\beta}^{-1}(W) \subset U$ для некоторых $\beta \in \Sigma$ u открытого $W \subset Y_{\beta}$.

Теорема 6. Пусть \mathcal{K} – подкатегория в \mathcal{P} и для любого морфизма (ϕ, ψ) из \mathcal{K} отображение ϕ k-накрывающее. Тогда функтор C_{κ} непрерывен на \mathcal{K} .

Доказательство. Фиксируем произвольные $f \in C_{\kappa}(K,L)$ и окрестность f вида $\langle F,G \rangle$, где $F \subset K$ и F компактно, G открыто в L. Учитывая лемму 3 и компактность f(F), считаем, что $G = \pi_{\beta}^{-1}(V)$, где V открыто в Y_{β} . Выберем компактное $B \subset X_{\beta}$ такое, что $\iota_{\beta}(B) = F$, и рассмотрим нить $h(f) = (f_{\alpha} | \alpha \in \Sigma) \in \Lambda$, где $\Lambda = \underset{\Gamma}{\lim} C_{\kappa}(X_{\alpha}, Y_{\alpha})$. Поскольку $f_{\beta}(B) = (\pi_{\beta} \circ f \circ \iota_{\beta})(B) \subset V$, то $h(f) \in \Pi_{\beta}^{-1}(\langle B, V \rangle)$. Пусть теперь $g \in C_{\kappa}(K, L)$, $h(g) = (g_{\alpha} | \alpha \in \Sigma) \in \Pi_{\beta}^{-1}(\langle B, V \rangle)$. Ясно, что $(\pi_{\beta} \circ g)(F) = (\pi_{\beta} \circ g \circ \iota_{\beta})(B) = g_{\beta}(B) \subset V$, откуда $g \in \langle F, \pi_{\beta}^{-1}(V) \rangle$. Таким образом, непрерывность h^{-1} проверена и теорема 6 доказана.

Мотивацией выбора k-накрывающих отображений может служить следующее утверждение.

Утверждение. Пусть в подкатегории $\mathcal{K} \subset \mathcal{P}$ для любого объекта (X, Y) пространство X вполне регулярно, вместе с любым морфизмом $(\varphi, \psi) : (X, Y) \to (E, Z)$ присутствует и морфизм $(\varphi, \mathrm{id}_{\mathbb{R}}) : (X, \mathbb{R}) \to (E, \mathbb{R})$ и функтор C_{κ} непрерывен на \mathcal{K} . Тогда если в \mathcal{K} определены обратный спектр $\{(X_{\alpha}, Y_{\alpha}), (\varphi_{\alpha}^{\beta}, \psi_{\alpha}^{\beta}), \Sigma\}$ и его предел (K, L) $(K = \underline{\lim} X_{\alpha}, L = \underline{\lim} Y_{\alpha})$, то для некоторого $\beta \in \Sigma$ все отображения $\iota_{\alpha} : X_{\alpha} \to K$ k-накрывающие при $\alpha \ge \beta$.

 $\iota_{\alpha}: X_{\alpha} \to K$ k-накрывающие при $\alpha \geq \beta$. \mathcal{A} оказательство. Будем считать, что $Y_{\alpha} = \mathbb{R}$ и $\psi_{\alpha}^{\beta} = \mathrm{id}_{\mathbb{R}}$ при $\alpha \leq \beta$ (в рамках \mathcal{K} такой переход возможен). Ясно, что $L = \mathbb{R}$ и $\pi_{\alpha} = \mathrm{id}_{\mathbb{R}}$ для любого $\alpha \in \Sigma$. Пусть $F \subset K$ и F компактно. Рассмотрим $f \in C_{\kappa}(K,L)$, $f(K) = \{0\}$, нить $h(f) = (f_{\alpha}|\alpha \in \Sigma) \in \Lambda$, где $\Lambda = \underline{\lim} C_{\kappa}(X_{\alpha},Y_{\alpha})$, и окрестность $\left\langle F, \left(-\frac{1}{2};\frac{1}{2}\right)\right\rangle$ в $C_{\kappa}(K,L)$ функции f. По условию существуют $\beta \in \Sigma$ и окрестность G в $C_{\kappa}(X_{\beta},Y_{\beta})$ функции f_{β} такие, что $h^{-1}(\Pi_{\beta}^{-1}(G)) \subset \left\langle F, \left(-\frac{1}{2};\frac{1}{2}\right)\right\rangle$. Поскольку $f_{\beta}(X_{\beta}) = \{0\}$, можно считать, что $G = \left\langle B, \left(-\varepsilon;\varepsilon\right)\right\rangle$, где $B \subset X_{\beta}$ и B компактно, $\varepsilon > 0$. Покажем, что $F \subset \iota_{\beta}(B)$. Допустим, что найдется точка $z \in F \setminus \iota_{\beta}(B)$. Выберем функцию $g \in C(K)$ такую, чтобы выполнялись равенства g(x) = 0 при $x \in \iota_{\beta}(B)$ и g(z) = 1. Очевидно, $h(g) \in \Pi_{\beta}^{-1}(G)$, но $g \notin \left\langle F, \left(-\frac{1}{2};\frac{1}{2}\right)\right\rangle$. Получено противоречие, значит, $F \subset \iota_{\beta}(B)$. Обозначим $P = B \cap \iota_{\beta}^{-1}(F)$. Множество P компактно, и $\iota_{\beta}(P) = F$. Итак, $\iota_{\beta} - k$ -накрывающее. Но тогда и $\iota_{\alpha} - k$ -накрывающее при $\alpha \geq \beta$ в силу соотношения $\iota_{\beta} = \iota_{\alpha} \circ \varphi_{\beta}^{\alpha}$. Утверждение доказано.

В завершение рассмотрим топологию τ_{Γ} на C(X,Y), отдельные свойства которой, в частности связь с топологиями равномерной сходимости при метризуемом Y, были установлены в [2; 5]. В [1] получено необходимое условие непрерывности функтора C_{Γ} на некоторой подкатегории $\mathcal{K} \subset \mathcal{P}$.

Теорема 7 [1]. Пусть \mathcal{K} – подкатегория в \mathcal{P} , в которой вместе с любым объектом (X,Y) присутствует и любой объект вида $(X,W_0(\theta))$, где θ – бесконечный начальный ординал и $W_0(\theta)$ – множество всех ординалов $\alpha \leq \theta$ с порядковой топологией, и для каждого морфизма $(X,Y) \xrightarrow{(\phi,\psi)} (E,Z)$ непременно E = X и $\phi = \mathrm{id}_X$. Если при этом функтор C_Γ непрерывен на \mathcal{K} , то для любого объекта (X,Y) из \mathcal{K} пространство X компактно.

Пример. Пусть Σ — семейство некоторых непустых замкнутых в \mathbb{R} множеств $A \subset I = [0;1]$ такое, что $\cup \Sigma = I$, $|A| \leq \omega$ ($\omega = |\mathbb{N}|$) и $A \cup B \in \Sigma$ для любых $A, B \in \Sigma$, и если $\left(x_n \middle| n \in \mathbb{N}\right)$ — сходящаяся последовательность точек из I, то $\left\{x_n \middle| n \in \mathbb{N}\right\}$ $\subset A$ для некоторого $A \in \Sigma$. Положим $A \leq B$, если $A \subset B$; $X_A = A$ (с евклидовой топологией) и $\phi_A^B : X_A \to X_B$ — обычное вложение при $A \leq B$; $Y_A = \mathbb{R}$ и $\psi_A^B = \mathrm{id}_{\mathbb{R}}$ при $A \leq B$. Ясно, что $K = \varinjlim X_A = I$ (с евклидовой топологией) и $\mathfrak{t}_A : X_A \to K$ — обычное вложение (о подобных примерах см. $[11, \mathrm{c.}\ 188]$), $L = \varinjlim Y_A = \mathbb{R}$ и $\pi_A = \mathrm{id}_{\mathbb{R}}$ для любого $A \in \Sigma$. Рассмотрим $f \in C_\Gamma(K, L)$, $f(K) = \{0\}$, $h(f) = (f_A \middle| A \in \Sigma) \in \Lambda$, где $\Lambda = \varinjlim C_\Gamma(X_A, Y_A)$, и окрестность O(U) в $C_\Gamma(K, L)$ функции f, где $U = I \times \left(-\frac{1}{2}; \frac{1}{2}\right)$. Допустим, что существует окрестность нити h(f) вида $\Pi_B^{-1}(O(G))$ (G открыто

в $X_B \times \mathbb{R}$), для которой $h^{-1}\Big(\Pi_B^{-1}\big(O(G)\big)\Big) \subset O(U)$. Поскольку $f_B\big(X_B\big) = \big\{0\big\}$ и $X_B = B$ компактно, можно считать, что $G = X_B \times (-\varepsilon; \varepsilon)$, $\varepsilon > 0$. Выберем функцию $g \in C(I)$ так, чтобы выполнялись равенства $g(B) = \big\{0\big\}$ и g(x) = 1 для некоторой точки $x \in I \setminus B$. Ясно, что $g_B = g \circ \iota_B \in O(G)$, следовательно, $h(g) \in \Pi_B^{-1}\big(O(G)\big)$. Но поскольку $g \notin O(U)$, то h^{-1} разрывно.

С учетом следствия 2, теоремы 7 и примера представляются разумными следующие ограничения на подкатегорию $\mathcal{K} \subset \mathcal{P}$ в «области непрерывности» C_{Γ} .

Теорема 8. Пусть в подкатегории $\mathcal{K} \subset \mathcal{P}$ для любого морфизма $(X, Y) \xrightarrow{(\phi, \psi)} (E, Z)$ пространства X и E компактны, ϕ – совершенная сюръекция. Тогда функтор C_{Γ} непрерывен на \mathcal{K} .

До казательство. Фиксируем произвольные $f \in C_{\Gamma}(K,L)$ $(K = \varinjlim X_{\alpha}, L = \varinjlim Y_{\alpha})$ и окрестность O(G) отображения f (G открыто в $K \times L)$. Для каждой точки $(k,f(k)) \in \Gamma_f$ подберем окрестности U_k точки k и V(k) точки f(k), где $V(k) = \pi_{\alpha(k)}^{-1}(W(k))$, W(k) открыто в $Y_{\alpha(k)}$, так, чтобы выполнялись включения $f(U_k) \subset V(k)$ и $U_k \times V(k) \subset G$. В силу компактности K существует конечное семейство окрестностей U_{k_1}, \ldots, U_{k_n} такое, что $\bigcup_{i=1}^n U_{k_i} = K$. Выберем $\gamma \in \Sigma$, чтобы выполнялись соотношения $\gamma \geq \alpha(k_1), \ldots, \gamma \geq \alpha(k_n)$. Отметим, что $\pi_{\alpha}^{-1}(A) = \pi_{\beta}^{-1}((\psi_{\alpha}^{\beta})^{-1}(A))$, где $A \subset Y_{\alpha}$ и $\alpha \leq \beta$ произвольные. Обозначив $H_i = (\psi_{\alpha(k_i)}^{\gamma})^{-1}(W(k_i))$ $(H_i$ открыто в Y_{γ}), получим $V(k_i) = \pi_{\gamma}^{-1}(H_i)$ и $\Gamma_f \subset \bigcup_{i=1}^n (U_{k_i} \times V(k_i)) = \bigcup_{i=1}^n (U_{k_i} \times \pi_{\gamma}^{-1}(H_i)) \subset G$. Далее положим $Q_i = \iota_{\gamma}^{-1}(U_{k_i})$ и обозначим $S = \bigcup_{i=1}^n (Q_i \times H_i)$. Ясно, что S открыто в $X_{\gamma} \times Y_{\gamma}$ и $f_{\gamma} = \pi_{\gamma} \circ f \circ \iota_{\gamma} \in O(S)$, т. е. $h(f) = (f_{\alpha} \mid \alpha \in \Sigma) \in \Pi_{\gamma}^{-1}(O(S))$. Пусть теперь $g \in C_{\Gamma}(K,L)$, $h(g) = (g_{\alpha} \mid \alpha \in \Sigma)$ и $h(g) \in \Pi_{\gamma}^{-1}(O(S))$, т. е. $g_{\gamma} = \pi_{\gamma} \circ g \circ \iota_{\gamma} \in O(S)$. Несложно проверить, что при этом $\Gamma_g \subset \bigcup_{i=1}^n (U_{k_i} \times \pi_{\gamma}^{-1}(H_i)) \subset G$, т. е. $g \in O(G)$. Итак, $C_{\Gamma}(K,L) \xrightarrow{h} \Lambda = \varinjlim C_{\Gamma}(X_{\alpha}, Y_{\alpha})$ – гомеоморфизм. Теорема доказана.

Отметим, что теоремы 5, 6 и 8 существенно усиливают аналогичные результаты, полученные в [1].

Библиографические ссылки

- 1. Кукрак ГО, Тимохович ВЛ, Фролова ДС. Некоторые топологические свойства функтора C(X, Y). Труды Института математики НАН Беларуси. 2018;26(1):71–78.
- 2. Кукрак ГО, Тимохович ВЛ. Некоторые топологические свойства пространства отображений. *Вестник БГУ. Серия 1.* Физика. Математика. Информатика. 2010;1:144–149.
- 3. Тимохович ВЛ, Фролова ДС. Об инфимальной топологии пространства отображений. *Вестник БГУ. Серия 1. Физика. Математика. Информатика.* 2011;2:136–140.
- 4. Тимохович ВЛ, Фролова ДС. Инфимальная топология пространства отображений и отображение вычисления. *Вестник* БГУ. Серия 1. Физика. Математика. Информатика. 2012;1:68–72.
- 5. Тимохович ВЛ, Фролова ДС. Топологии равномерной сходимости. Собственность (в смысле Аренса Дугунджи) и секвенциальная собственность. *Известия вузов. Математика*. 2013;9:45–58.
 - 6. Энгелькинг Р. Общая топология. Москва: Мир; 1986. 752 с.
 - 7. Bacon P. The compactness of countably compact spaces. Pacific Journal of Mathematics. 1970;32(3):587-592.
 - 8. Naimpally S. Graph topology for function spaces. Transactions of the American Mathematical Society. 1966;123:267–272.
 - 9. Федорчук ВВ, Филиппов ВВ. Общая топология. Основные конструкции. Москва: Физматлит; 2006. 336 с.
- 10. Букур И, Деляну А. *Введение в теорию категорий и функторов*. Райкова ДА, Ретах ВС, переводчики. Москва: Мир; 1972. 259 с.
 - 11. Александрян РА, Мирзаханян ЭА. Общая топология. Москва: Высшая школа; 1979. 336 с.

References

- 1. Kukrak HO, Timokhovich VL, Frolova DS. [Some topological properties of the functor of C(X, Y)]. Trudy Instituta matematiki NAN Belarusi. 2018;26(1):71–78. Russian.
- 2. Kukrak HO, Timokhovich VL. [Some topological properties of mapping spaces]. *Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika.* 2010;1:144–149. Russian.

- 3. Timokhovich VL, Frolova DS. [On infimal topology of mapping spaces]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2011;2:136–140. Russian.
- 4. Timokhovich VL, Frolova DS. [Infimal topology of mapping spaces and evaluation map]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2012;1:68–72. Russian.
- 5. Timokhovich VL, Frolova DS. [Topologies of uniform convergence. The property in the sense of Arens Dugundji and the sequential property]. *Izvestiya vuzov. Matematika*. 2013;9:45–58. Russian.
 - 6. Engelking R. General topology. Berkeley: John L. Keller; 1955. 298 p.

Russian edition: Engelking R. Obshchaya topologiya. Moscow: Mir; 1986. 752 p.

- 7. Bacon P. The compactness of countably compact spaces. Pacific Journal of Mathematics. 1970;32(3):587-592.
- 8. Naimpally S. Graph topology for function spaces. Transactions of the American Mathematical Society. 1966;123:267–272.
- 9. Fedorchuk VV, Filippov VV. Obshchaya topologiya. Osnovnie konstruktsii [General topology. The main constructions]. Moscow: Fizmatlit; 2006. 336 p. Russian.
 - 10. Bucur I, Deleanu A. Introduction to the theory of categories and functors. New York: NYWiley; 1968. 224 p.

Russian edition: Bucur I, Deleanu A. *Vvedenie v teoriyu kategoriy i funktorov.* Raikova DA, Retakh VS, translators. Moscow: Mir; 1972. 259 p.

11. Aleksandrian RA, Mirzakhanyan EA. *Obshchaya topologiya* [General topology]. Moscow: Vyshaya shkola; 1979. 336 p. Russian.

Статья поступила в редколлегию 27.12.2019. Received by editorial board 27.12.2019.