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Abstract  The principal objective of this paper is to show that deformation of the General Relativity within the scope of 
both the Generalized Uncertainty Principle (UV-cutoff) and the Extended Uncertainty Principle (IR-cutoff) in the cases when 
the corresponding gravitational equations have a thermodynamic interpretation may be studied in terms of a small parameter 
introduced in previous works of the author. From this viewpoint the parameter is though to be universal. Consideration is 
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1. Introduction 
In the last decade numerous works devoted to a Quantum 

Field Theory (QFT) at Planck’s scale[1–3] have been pub-
lished (of course, the author has no pretensions of being 
exhaustive in his references). This interest stems from the 
facts that (i) at these scales it is expected to reveal the effects 
of a Quantum Gravity (QG), and this still unresolved theory 
is intriguing all the researchers engaged in the field of theo-
retical physics; (ii) modern accelerators, in particular LHC, 
have the capacity of achieving the energies at which some 
QG effects may be exhibited. 

Now it is clear that Quantum Field Theory (QFT) at 
Planck’s scales, and possibly at very large scales as well, 
undergoes changes associated with the appearance of addi-
tional parameters related to (i) a minimal length (on the order 
of the Planck’s length) and (ii)a minimum momentum. As 
this takes place, the corresponding parameters are naturally 
considered as deformation parameters, i.e. the related 
quantum theories are considered as a high-energy deforma-
tion (at Planck’s scales) and a low-energy deformation 
(IR-cutoff), respectively, of the well-known quantum field 
theory, the latter being introduced in the corresponding high- 
and low-energy limits and exact to a high level. The defor-
mation is understood as an extension of a particular theory by 
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inclusion of one or several additional parameters in such a 
way that the initial theory appears in the limiting transition 
[4]. 

Most natural approach to the introduction of the above- 
mentioned parameters is to treat a quantum field theory with 
the Generalized Uncertainty Principle (GUP)[5–15] and with 
the Extended Uncertainty Principle (EUP), respectively [12– 
15]. In the case of GUP we easily obtain a minimal length on 
the order of the Planck’s min pl l  and the corresponding 
high-energy deformation of well-known QFT–QFT with 
GUP. It should be noted that QFT with GUP at Planck’s 
scales (Early Universe) is attested in many works (for ex-
ample[5–11])). Even if we disregard the works devoted to a 
string theory, still remaining a tentative one, GUP is quite 
naturally derived from the gedanken experiment[6–9]. 

On the other hand, GUP has no way in the spaces with 
large length scales (for example (A)dS). For such spaces, 
e.g., in[12,14] the Extended Uncertainty Principle has been 
introduced (find its exact definition below) giving an ab-
solute minimum in the uncertainty of the momentum. 
The problem is to find whether there are cases when the 

deformations generated by GUP and EUP are defined by the 
same parameter. By author’s opinion this is the case for 
Gravity modified (deformed) within GUP and EUP, when 
the corresponding initial theory has a "thermodynamic in-
terpretation"[16–21]. Specifically, the deformation parame-
ter 2 2

minl xα = / , min pl l , 0 1 4α< ≤ /  where x  is the measuring 
scale, introduced by the author in a series of works[22–32] 
meets the above requirements. 

Note that this parameter has been introduced to study the 
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deformation of QFT at Planck’s scale, although the defor-
mation per se, associated with a high-energy modification of 
the density matrix, was "minimal" in that it presented no 
noncommutativity operators related to different spatial co-
ordinates  

[ ] 0i jX X i j, ≠ , ≠               (1) 
and hence "limited" as in the end it failed to lead to GUP. 
Nevertheless, the corresponding deformation parameter in 
some way is universal. 

This paper continues the studies, described in[33–35] (the 
latter in particular), of the fundamental quantities in "ther-
modynamic interpretation" of gravity[16–21] for GUP and 
EUP deformations of the latter. Compared to the works[35], 
the results from which are used in this paper, the important 
results associated with EUP are put forward together with the 
demonstration that GUP and EUP have the same deforma-
tion parameter, at least in this context. 

The structure of this work is as follows. In Section 2 it is 
shown that the deformation of the fundamental thermody-
namic quantities for black holes within GUP and EUP may 
be interpreted with the use of the same parameter. In Section 
3, within the scope of a dynamic model for the cosmological 
constant Λ  (vacuum energy density), GUP is studied for 
the pair ( VΛ, )[33,34], where V  – is the "space-time vol-
ume". In this Section consideration is given to the possible 
existence of EUP for this pair, i.e. to a possible extension of 
the Uncertainty Principle to the pair in the IR region, and 
hence to the possible substantiation of the proper (coincident 
with the experimental) value for Λ . In Section 4 the results 
of Section 2 are applied to Einstein’s Equations for space 
with horizon and to Friedmann’s Equations. It is demon-
strated that in both cases their deformation (in the first case 
within GUP and in the second case within EUP) may be 
interpreted with the use of the same small dimensionless 
parameter having a known variability domain. 

And, finally, in Section 5 the problems of further inves-
tigations are discussed, some final comments are given. 

2. Universal Deformation Parameter in 
Gravitational Thermodynamics with 
GUP and EUP 

In this Section the Gravitational Thermodynamics (GT) is 
understood as thermodynamics of spaces with horizon[18, 
20]. 

2.1. Gravitational Thermodynamics with GUP 
We use the notation and principal results from[14]. So, 

GUP is of the form 
2

2 2
2

( )
[1 ]i

i j ij p
p

x p lδ α ′ ∆
∆ ∆ ≥ +



              (2) 

and, since i j ijx p δ∆ ∆ >  , we have  
2 2 2

2
2 2

( ) 1[1 ] [1 ]
4 i

p i i
i i ij ij x

i

l p x
x p

x
δ α δ α′

∆

∆ ∆
∆ ∆ ≥ + > + ,

∆
 



   (3) 

where 
ixα∆  – parameter α  corresponding to ix∆ , 2min pl lα′= . 

Besides, as distinct from[14], for the dimensionless factor in 
GUP, instead of α , we use α′  to avoid confusion with the 
deformation parameter. 

In this terms the uncertainty in moment is given by the 
nonstrict inequality  

1

1

2 ( ) [1 1 ]

2 ( ) [1 1 ]
i i

i i

x i x i

x i x

x p

x

α α

α α

−
∆ ∆

−
∆ ∆

∆ − − ≤ ∆ ≤

∆ + − .





          (4) 

But for the quantities determining GT in terms of α  one 
can derive exact expressions. Indeed, in terms of α  the 
GUP-modification (or rather GUP-deformation)is easily 
obtained for the Hawking temperature[36–39,14,15] that has 
been computed in the asymptotically flat d  - dimensional 
space for a Schwarzshild black hole with a metric given by  

2 2 2 2 3 2 2
2dds N dt N dr r d−

−= − + + Ω ,           (5) 
where  

2
3

2

161
( 2) d

d

GMN
d r

π
−

−

= − ,
− Ω

            (6) 

2d−Ω  is the area of the unit sphere 2nS − , and r+  is the 
uncertainty in the emitted particle position by the Hawking 
effect, expressed as  

ix r+∆ ≈                  (7) 
and being nothing else but a radius of the event horizon. In 
this case the deformation parameter α  arises naturally. 
Actually, modification of the Hawking temperature is of the 
form, see formula (10) in[14]  

2 2
1 2

2 2 2

43( ) [1 (1 ) ]
4 2

p
GUP

p

lrdT
l r

α
π α

′
/+

′
+

−
= − −

       (8) 

and may be written in a natural way as  
1 1 232( ) [1 (1 ) ]

4GUP r r
dT

r
α α

π + +

− /

+

−
= − − ,

        (9) 

where rα +
- parameter α  associated with r+ . It is clear that 

GUPT  is actually the deformation HawkT  – black hole tem-
perature for a semiclassical case[40]. In such a manner 
compared to HawkT  GUPT  is additionally dependent only on 
the dimensionless small deformation parameter rα +

. 
The dependence of the black hole entropy on rα +

 may be 
derived in a similar way. For a semiclassical approximation 
of the Bekenstein-Hawking formula[41,40] 

2

1
4 p

AS
l

= ,                      (10) 

where A  – surface area of the event horizon, provided the 
horizon event is of radius r+ , 2A r+  and (10) is clearly of 
the form  

1
rS σα
+

−= ,                   (11) 

where σ  is some dimensionless denumerable factor. The 
general formula for quantum corrections [38] given as  

2

2 2

2
1
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44 4
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l

πα ′

−
∞

=
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 
∑

           (12) 

where the expansion coefficients 2( 1)n
nc α′ +∝  can always be 
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computed to any desired order of accuracy[38], may be also 
written in the general case as a Laurent series in terms of rα +

 
2

1 1

1

ln( )
4

( ) const

GUP r r

n n
n r

n
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c

πασα σα

σ α

+ +

+

′
− −

∞
−

=

= −

+ + .∑
             (13) 

In what follows the representation in terms of the defor-
mation parameter α  is referred to as α -representation.  

2. Gravitational Thermodynamics with 
EUP 

Let us consider QFT with EUP[14]. In this case we obtain 
QFT with minp . Obviously, there is no minimal length minl  in 
QFT with EUP whatsoever but we assume that QFT with 
GUP is valid. At the present time for such an assumption we 
can find solid argumentation[6–9]. As will be shown later, in 
this case the fundamental quantities may be also expressed in 
terms of α . Hereinafter we use a small dimensionless pa-
rameter  

2

2
or

l

l

l
α = ,




                    (14) 

where 2or original pl l lα′≡ = , α′ –dimensionless constant on the 
order of unity from GUP (2), and it is suggested that  

2 0 1 4or ll l i e α≤ , . < ≤ / .


          (15) 
Similar to the previous Section, it is convenient to use the 

principal results of[14] (sections 3,4). Then EUP in (A)dS 
space takes the form  

2
2

2

( )
[1 ]i

i j ij
x

x p
ł

δ β
∆

∆ ∆ ≥ + ,          (16) 

where l  is the characteristic, large length scale pl l  and 
β  is a dimensionless real constant on the order of unity[14]. 
From EUP there is an absolute minimum in the momentum 
uncertainty:  

2
ip

l
β

∆ ≥ ,
                  (17) 

and EUP (16) may be rewritten as  
2 2

2
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Considering that in a theory with fixed pl l   
1l constα = ,               (19) 

(16),(18) may be written as  


22 1 1[1 ] [1 ]
i ii j ij l x ij xx p δ β α α δ αβ− −

∆ ∆∆ ∆ ≥ + = + ,      (20) 

where β  is redetermined as  


lβ β α β= .               (21) 
However, in this case β  may be left as it is, whereas α  

may be redetermined because 1
ixα −

∆  in (18),(20) is not a small 
parameter. In consequence we can redeterminate α  as  



1
ii l xx α αα

−
∆∆ = ,                 (22) 

where 
ixα ∆  is now a small parameter. 

Owing to such a duality, EUP (16), (18) may be rewritten 
in terms of a new small parameter α  similar to α  as fol-
lows:  



2[1 ]
ii j ij xx p δ β α ∆∆ ∆ ≥ + .           (23) 

Then in analogy with [14] (Section 3), for Hawking tem-
perature of the d -dimensional Schwarzshild-AdS black 
hole with the metric function we have  
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−
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       (24) 

in the metric of(5) and the cosmological constant 
2( 1)( 2) 2 AdSd d lΛ = − − − / . 

Therewith the α -representation of the Hawking tem-
perature EUPT [14] (formula (15)) takes the form  



1
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In the same way we can easily obtain the α - representa-
tion of the Hawking temperature for a Schwarzshild-AdS 
black hole and for a combined case ((formula (28) from 
the[14])) of GUP and EUP – (GEUP)  
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i.e. in the general case we get a Laurent series from α . 
Similarly, we can obtain the α -representation for the 

corresponding value of ( )GEUP dST  ((formula (32) from[14]) in 
the de Sitter (dS) space by the substitution 2 2

AdS dSl l→− .  
Note that, as it has been indicated in[33, 34], 1

rα +

−  has one 
more interesting feature  

21 2
r p BHl Srα
+

−
+ / .               (27) 

Here BHS  is the Bekenstein-Hawking semiclassical black 
hole entropy with the characteristic linear size r+ . For ex-
ample, in the spherically symmetric case r R+ =  - radius of 
the corresponding sphere with the surface area A , and  

2 2 1
24 4

4BH p rA r S A l ππ α
α +

−
+ ′= , = / = .         (28) 

In [15] GUP and EUP are combined by the principle called 
the Symmetric Generalized Uncertainty Principle (SGUP):  

2 2
2

2 2

( ) ( )1 x px p ł
L

 ∆ ∆
∆ ∆ ≥ + + , 

 




          (29) 

where l L  and l  defines the limit of the UV-cutoff (not 
being such up to a constant factor as in the case of 
GUP).Then a minimal length is determined as  

2 2
min 2 1 4x l ł L∆ = / − / ,  

whereas L  defines the limit for IR-cutoff i. e. we have a 
minimum momentum  

2 2
min 2 ( 1 4 )p L ł L∆ = / − / . 
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And using the Euclidian action formalism by Gibbons and 
Hawking[42], in[15] the corresponding correction of the 
Hawking temperature for an ordinary(not A(dS)) 
Schwarzshild-black hole is computed. This correction is 
given as SGUPT . In the notation of this work  

1
min 2 1 4 2 1 4l L lx l lα α α−∆ = / − = / − , 

where 

lα –small parameter introduced in conformity with 
(22). We can easily obtain the α -representation for SGUPT  
that is completely similar to the α -representation of 

( )GEUP AdST . 
It should be noted that in the realistic theories pl l , and it 

is obvious that 2 2( 1 4 ) 1ł L− / ≈ . Thus, min 2 2 px l l∆ ≈   and 
hence in this case we get a minimal length that is much the 
same (to withinα ) as in the case of GUP. It is seen that, with 
due regard for the requirement l L , minp∆  is derived close 
(to within β ) to minp∆  (17) in a theory with EUP. 

The question arises as to what for all these manipulations 
with writing and rewriting of the already derived expressions 
in the α -representation are necessary. 

1. Owing to this procedure, we can draw the conclusion 
that all the quantities within the scope of the stated problem 
are dependent on one and the same deformation parameter 
α  that is small, dimensionless (discrete in the case of GUP), 
and varying over the given interval. And, provided the in-
frared cutoff l  is defined, we have  

2 2 1 4l min orl lα α α= = / ≤ ≤ /  and or original pl l l≡  . 
If we primordially consider a theory with GUP only, then 

or minl l≡ . But in the arbitrary case it is required that 2or pl lα′= , 
where α  is a certain dimensionless constant on the order of 
unity. 

The property of discreteness is retained for α  in the cases 
when only GUP (without generalizations)is valid because in 
this case the length seems to be quantized, the lengths being 
considered from 2 minl  rather than from or minl l=  as a singu-
larity arises otherwise[23–30]. 

2. Actually, all the quantities may be represented as a 
Laurent series in terms of α , and a solution of the problem 
at hand may be understood as finding of the members in this 
series. 

3. When the problem has separate solutions for the cases 
including the UV- and IR-cutoffs, we can consider expan-
sion in each of the cases in terms of their own small pa-
rameters: α  in the case of UV-cutoff and α  in the case of 
IR-cutoff, where α  is a duality of α  



1
ll lα αα

−= ,




  
l  determines, to within a factor on the order of unity, the 

characteristic system’s size, and pl l . 

3. The Cosmological Constant Problem 
and QFT with GUP and SGUP 

In this section it is assumed that Λ  may be varying in 
time. Generally speaking, Λ  is referred to as a constant just 
because it is such in the equations, where it occurs: Einstein 

equations[43]. But in the last few years the dominating point 
of view has been that Λ  is actually a dynamic quantity, now 
weakly dependent on time[44–46]. It is assumed therewith 
that, despite the present-day smallness of Λ  or even its 
equality to zero, nothing points to the fact that this situation 
was characteristics for the early Universe as well. Some 
recent results[47–50] are rather important pointing to a po-
tentially dynamic character of Λ . Specifically, of great 
interest is the Uncertainty Principle derived in these works 
for the pair of conjugate variables ( )VΛ, :  

V∆Λ∆ ,                       (30) 
where Λ  is the vacuum energy density (cosmological con-
stant). It is a dynamic value fluctuating around zero; V  is 
the space-time volume. Here the volume of space-time V  
results from the Einstein-Hilbert action EHS [48]:  

4d x g VΛ − = Λ∫                 (31) 
where (31) is the term in the EHS . In this case the notion of 
conjugation is well-defined, but approximate, as implied by 
the expansion about the static Fubini–Study metric (Section 
6.1 of [47]). Unfortunately, in the proof per se (30), relying 
on the procedure with a non-linear and non-local Wheeler– 
de-Witt-like equation of the background-independent Matrix 
theory, some unconvincing arguments are used, making it 
insufficiently rigorous (Appendix 3 of[47]). But, without 
doubt, this proof has a significant result, though failing to 
clear up the situation. 

In [33, 34, 51] the Heisenberg Uncertainty Relation for the 
pair ( )VΛ,  (30) has been generalized to GUP  

22
p pV t Vα′

Λ

∆Λ
∆ ≥ +

∆Λ




         (32) 

or that is the same  
2

22
2

( )(1 )p pV t Vα′
Λ

∆Λ
∆ ∆Λ ≥ + .



    (33) 

where α′
Λ  is a new constant and 3

pp lV = .   
In the case of UV - limit: mint t→ , ∆Λ  becomes significant  

3

3

lim

lim
min

min

pmin pt t

min p p pt t

V lV V

V V V l t
→

→

= = ;

= = ,





          (34) 

where V  – spatial part of V   
The existence of min pV V  directly follows from GUP for 

the pair ( )p x,  (2) and GUP for the pair ( )E t, [24,30] as well 
as from solutions of the quadratic inequalities(32),(33). 

So, (32) is nothing else but  
2
pV Vα′

Λ

∆Λ
∆ ≥ + .

∆Λ




           (35) 

And in the case of UV – cutoff we have  

lim
min

UV p p p pt t
V E V→

Λ ≡ Λ Λ ≡ / = / .         (36) 

It is easily seen that in this case 4
UV pmΛ  , in agreement 

with the value obtained using a standard (i.e. without su-
per-symmetry and the like) quantum field theory[52,53]. 
Despite the fact that Λ  at Planck’s scales (referred to as 

UVΛ ) is also a dynamic quantity, it is not directly related to 
the familiar Λ  because the latter, as opposed to the first one, 
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is derived from Einstein’s equations  
1 8
2 NR g R G g Tµν µν µν µνπ  

 
 

− = −Λ + .       (37) 

However, Einstein’s equations (37) are not valid at the 
Planck scales and hence UVΛ  may be considered as some 
high-energy generalization (deformation) of the conven-
tional cosmological constant in the low-energy limit. 

The problem is whether a correct generalization of GUP 
for the pair ( )VΛ,  (33) to the Symmetric Generalized Un-
certainty Principle (SGUP) of the form given by (29) is 
possible. If the answer is positive, a theory also includes 

minΛ  that may be referred to as IRΛ  in similarity with UVΛ . 
Then, similar to Т (29), an additional term defining the 
IR-cutoff must be of the form  



2

2

( )
IR

V

V

∆
Ω = ,                   (38) 

where V  - certain space-time volume effectively specifying 
the IR-limit of the observable part of the Universe with the 
spatial part  3V L ; L  – radius of the observable part of the 
Universe. Now it is known that 2810L ≈ . Clearly, the intro-
duction of an additional term of the form (38) into the 
right-hand side of (33) leads to IR UVΛ Λ  and might lead to 
the value of Λ  close to the experimental value expΛ [54]. 
Note that the Holographic Principle[55–61] used to the 
Universe as a whole[61] gives expΛ [60]. In[62,63,33,34] it 
has been demonstrated that the α –representation ( α
–deformation) of QFT with GUP plays a significant role. In 
particular, consider  

exp L UVαΛ ≈ Λ ,                 (39) 
where 2810L ≈ .(39) is like (22). But the Holographic Princi-
ple imposes strict restrictions on the number of degrees of 
freedom in the Universe, and hence for us it is important to 
study the inferences of introducing the additional term of the 
form (38) in (33). 

4. GUP, EUP, and General Relativity 
Deformation 

In this Section we use the previously obtained results for 
some cases of high- energy and low-energy deformation of 
GR. Specifically, we demonstrate that in the cases when the 
Thermodynamics Approach[16–21] is applicable to the 
General Relativity the deformation of GR with GUP and 
EUP may be a natural result of the α -representation. 

4.1. α –Representation of Einstein’s Equations for 
Space with Horizon 

Let us consider α -representation and high energy α - 
deformation of the Einstein’s field equations for the specific 
cases of horizon spaces (the point (c) of Section 4). In so 
doing the results of the survey work ([20] p.p.41,42)are 
used. Then, specifically, for a static, spherically symmetric 
horizon in space-time described by the metric  

2 2 2 1 2 2 2( ) ( )ds f r c dt f r dr r d−= − + + Ω      (40) 
the horizon location will be given by simple zero of the 
function ( )f r , at r a= . 

It is known that for horizon spaces one can introduce the 
temperature that can be identified with an analytic con-
tinuation to imaginary time. In the case under consideration 
([20], eq.(116)) 

( )
4B

cf ak T
π
′

= .
                  (41) 

Therewith, the condition ( ) 0f a =  and ( ) 0f a′ ≠  must be 
fulfilled.  

Then at the horizon r a=  Einstein’s field equations  
4

21 1( ) 4
2 2

c f a a Pa
G

π ′ − =  
           (42) 

may be written as the thermodynamic identity ([20] formula 
(119))  

3 4
2

3

( ) 1 14
4 4 2

4
3

B

cf a c c dad a
G G

k T dEdS

Pd a

P dV

π
π

π

 
 
 
 
 

 
 
 
 
 

′
−

−

=





 





        (43) 

where r
rP T=  is the trace of the momentum-energy tensor 

and radial pressure. In the last equation da  arises in the 
infinitesimal consideration of Einstein’s equations when 
studying two horizons distinguished by this infinitesimal 
quantity a  and a da+  ([20] formula (118)). 

Now we consider (43) in a new notation, expressing a  in 
terms of the corresponding deformation parameter a . 
Hereinafter in this Section we write a  instead of aα  as 
we consider the same a . Then we have  

1 2
mina l α − /= .                  (44) 

Therefore,  
1 3 2( ) 2 ( )minf a l fα α− /′ ′= − .            (45) 

Substituting this into (42) or into (43), we obtain in the 
considered case of Einstein’s equations in the " a
–representation" the following:  

4
1 21( ( ) ) 4

2 min
c f P l
G

α α π α −′− − = .         (46) 

Multiplying the left- and right-hand sides of the last 
equation by a , we get  

4
2 21( ( ) ) 4

2 min
c f Pl
G

α α α π′− − = .          (47) 

But since usually min pl l  (that is just the case if the 
Generalized Uncertainty Principle (GUP) is satisfied), we 
have 2 2 3

min pl l G c= /  . When selecting a system of units, 
where 1c= = , we arrive at min pl l G= √ , and then (46) is 
of the form  

2 2 21( ) 4
2

f P Gα α α π ϑ′− − = ,         (48) 

where min pl lϑ = / . L. h. s. of (48) is dependent on a . Be-
cause of this, r. h. s. of (48) must be dependent on a  as well, 
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i. e. ( )P P α= .  
Analysis of a -Representation of Einstein’s Equations  
Now let us get back to (43). In[20] the low-energy case has 

been considered, for which ([20] p.42 formula (120))  
1 24 4

2
2 2

1 1(4 )
4 2 164

H H

p p

A Ac cS a E a
G Gl l

π
π

/
 = = ; = = , 
 

(49) 

where HA  is the horizon area. In our notation (49) may be 
rewritten as  

1 24 4
1 1 21

4 2 16 2
HAc cS E a

G G G
ϑπα α

π

/
− / = ; = = = .  √ 

(50) 

We proceed to two entirely different cases: low energy 
(LE) case and high energy (HE) case. In our notation these 
are respectively given by  

A) 0α →  (LE), B) 1 4α → /  (HE) 
C) a  complies with the familiar scales and energies. 
The case of C) is of no particular importance as it may be 

considered within the scope of the conventional General 
Relativity. 

Indeed, in point A) 0α →  is not actually an exact limit as a 
real scale of the Universe (Infrared (IR)-cutoff 2810maxl cm≈ ), 
and then  

2 2 12210min p maxl lα −/ ≈  

In this way A) is replaced by A1) minα α→ . In any case at 
low energies the second term in the left-hand side (48) may 
be neglected in the infrared limit. Consequently, at low en-
ergies (48) is written as  

2 2 2( ) 4 ( )f P Gα α π α ϑ′− = .            (51) 
Solution of the corresponding Einstein equation – finding 

of the function ( ) [ ( )]f f Pα α=  satisfying(51). In this case 
formulae (49) are valid as at low energies a semiclassical 
approximation is true. But from (51)it follows that  

2 2
2

( )( ) 4 Pf G dαα πϑ α
α

= − .∫             (52) 

On the contrary, knowing ( )f α , we can obtain ( ) r
rP Tα = .  

Possible High Energy a -Deformation of General Rela-
tivity  

Let us consider the high-energy case B). Here two variants 
are possible.  

I. First variant.  
In this case it is assumed that in the high-energy (Ultra-

violet (UV))limit the thermodynamic identity (43) is retained 
but now all the quantities involved in this identity become 
a -deformed. This means that they appear in the a
-representation with quantum corrections and are considered 
at high values of the parameter a , i.e. at a  close to 1/4. In 
particular, the temperature T  from equation (43) is changed 
by GUPT  (9), the entropy S  from the same equation given 
by semiclassical formula (49) is changed by GUPS  (13), and 
so forth:  

GUP GUPE E V V,  . 

Then the high-energy a -deformation of equation (43) 
takes the form  

( ) ( ) ( )
( ) ( )

B GUP GUP GUP

GUP

k T dS dE
P dV

α α α
α α

−
= .

          (53) 

Substituting into (53) the corresponding quantities 
( ) ( ) ( ) ( ) ( )GUP GUP GUP GUPT S E V Pα α α α α, , , ,  and expanding them 

into a Laurent series in terms of a , close to high values of 
a , specifically close to 1 4α = / , we can derive a solution for 
the high energy a -deformation of general relativity (53) as 
a function of ( )P α . As this takes place, provided at high 
energies the generalization of (43) to (53) is possible, we can 
have the high-energy a -deformation of the metric. Actually, 
as from (43) it follows that  

4
( ) 4B

B
kf a T k T
c

π
π′ = =



           (54) 

(considering that we have assumed 1c= = ), we get  
( ) 4 ( )B GUPGUP a k Tf π α′ = .          (55) 

L.h.s. of (55) is directly obtained in the a -representation. 
This means that, when f T′

 , we have GUPGUP Tf ′   with the 
same factor of proportionality. In this case the function GUPf  
determining the high-energy a -deformation of the spheri-
cally symmetric metric may be in fact derived by the ex-
pansion of GUPT , that is known from (9), into a Laurent series 
in terms of a  close to high values of a  (specifically close 
to 1 4α = / ), and by the subsequent integration. 

It might be well to remark on the following. 
1.1 As on going to high energies we use (GUP), ϑ  from 

equation (48)is expressed in terms of a –dimensionless 
constant from GUP (2): 2ϑ α′= .  

1.2 Of course, in all the formulae including pl  this quan-
tity must be changed by 1 2G /  and hence minl  by 

1 2 1 22G Gϑ α/ ′ /= .  
1.3 As noted in the end of subsection 6.1, and in this case 

also knowing all the high-energy deformed quantities 
( ) ( ) ( ) ( )GUP GUP GUP GUPT S E Vα α α α, , , , we can find ( )P α  at a  close 

to 1/4. 
1.4 Here it is implicitly understood that the Ultraviolet 

limit of Einstein’s equations is independent of the starting 
horizon space. This assumption is quite reasonable. Because 
of this, we use the well-known formulae for the modification 
of thermodynamics and statistical mechanics of black holes 
in the presence of GUP[36–39,14,15]. 

1.5 The use of the thermodynamic identity (53) for the 
description of the high energy deformation in General Rela-
tivity implies that on going to the UV-limit of Einstein’s 
equations for horizon spaces in the thermodynamic repre-
sentation (consideration) we are trying to remain within the 
scope of equilibrium statistical mechanics[64] (equilibrium 
thermodynamics)[65]. However, such an assumption seems 
to be too strong. But some grounds to think so may be found 
as well. Among other things, of interest is the result from[36] 
that GUP may prevent black holes from their total evapora-
tion. In this case the Planck’s remnants of black holes will be 
stable, and when they are considered, in some approximation 
the equilibrium thermodynamics should be valid. At the 
same time, by author’s opinion these arguments are rather 
weak to think that the quantum gravitational effects in this 
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context have been described only within the scope of equi-
librium thermodynamics[65]. 
II. Second variant. 

According to the remark of 4.1.5, it is assumed that the 
interpretation of Einstein’s equations as a thermodynamic 
identity (43) is not retained on going to high energies 
(UV–limit), i.e. at 1 4α → / , and the situation is adequately 
described exclusively by non-equilibrium thermodynamics 
[65,66]. Naturally, the question arises: which of the addi-
tional terms introduced in (43) at high energies may be 
leading to such a description? 

In the[51,33] it has been shown that in case the cosmo-
logical term Λ  is a dynamic quantity, it is small at low 
energies and may be sufficiently large at high energies. In the 
right-hand side of (48) in the a –representation the addi-
tional term ( ( ))GF αΛ  is introduced:  

2 2 21( ) 4 ( ( ))
2

f P G GFα α α π ϑ α′− − = − Λ ,       (56) 

where in terms of ( ( ))F αΛ  we denote the term including 
( )αΛ  as a factor. Then its inclusion in the low-energy case 

(42)(or in the a  -representation (48)) has actually no effect 
on the thermodynamic identity (43)validity, and considera-
tion within the scope of equilibrium thermodynamics still 
holds true. It is well known that this is not the case at high 
energies as the Λ -term may contribute significantly to make 
the "process" non-equilibrium in the end[65,66]. 

Is this the only cause for violation of the thermodynamic 
identity (43) as an interpretation of the high-energy gener-
alization of Einstein’s equations? Further investigations are 
required to answer this question. 

4.2. α –Representation for Friedmann Equations with 
GUP and EUP 

Thermodynamic interpretation of Section 4 has been also 
developed for Friedmann Equations (FEs) of the Friedmann- 
Robertson-Walker (FRW) Universe in[21]. In the process it 
is taken into consideration that in the FRW space-time, 
where the metric is given by the formula  

2
2 2 2 2 2

12( )
1 n

drds dt a r d
kr −= − + + Ω ,

−
          (57) 

and 2
1nd −Ω  denotes a line element of the ( 1n − )-dimensional 

unit sphere, a  is the scale factor, k  is the spatial curvature 
constant, there is a dynamic apparent horizon, the radius of 
which is as follows:  

2 2

1
Ar

H k a
= ,

+ /


               (58) 

where H a a≡ /  is the Hubble parameter. 
FEs in[21] have been derived proceeding from the as-

sumption that apparent horizon is endowed with the associ-
ated entropy and temperature such the event horizon in the 
black hole case  

1
4 2 A

AS T
G rπ

= , =


 ,             (59) 

and from the validity of the first low of thermodynamics, we 
have  

dE TdS= .                  (60) 
In[67] with the use of this thermodynamic interpretation 

of FEs the modifications of GUP and EUP (or more precisely 
the GUP and EUP deformations) of FEs have been obtained. 
It is clear that these (GUP and EUP)–deformed FEs may be 
written in the form of the a –representation. For simplicity, 
let us consider the case 3n = . 

Then for GUP the formula (26) from[67] takes the form  
2 2 2 2 2

2

1 1( )[1 2( )p p
kH l l
a A A

πα πα′ ′− + +  

2 2 2

3

1(4 ) ] 4 ( )d
d p d

d
c l G p

A
πα π ρ′

=

+ = − + ,∑    (61) 

whereas in the a –representation its form is more elegant  
21 1( )[1

16 32A Ar r

kH
a

α α− + +
 

  

3
] 4 ( )

4 A

dd
rd

d

c
G pα π ρ

=

+ = − + ,.∑


     (62) 

Also, more elegant is a –representation of the second 
Friedmann Equation (formula (27) from [67])  

2
2

2

8 1 1[
3 32 964

A

A A

r
r r

G απ ρ π α α
πα ′= + +

 

 

\
3

]
4 ( 1) A

dd
rd

d

c
d

α
=

+ ,
+∑



           (63) 

with the assumption that 1c= = . 
It is obvious that therewith familiar FEs appear at low 

energies, i.e. at 1 4
Arα /


 . 
In the nontrivial high-energy case one can obtain the so-

lution for FE and, in particular H pρ, ,  as a series in terms of 
a  close to 1/4. 

In the case of EUP the a –representation of the deformed 
FE[67] seems to be even simpler. Specifically, using (18) – 
(23), one can derive deformed first Friedmann equation of 
the form  

2 2 2
2

2 2 2 2 2

4( )(1 ) ( )(1 )A
or

or

k k rH A H l
a l a l l

β β π
π π

− + = − + 

   



2 1
2

2
2

( )(1 4 )

( )(1 4 ) 4 ( )

A or

A

lr

r

kH
a
kH G p
a

β α α

β π ρα

−= − +

= − + = − + ,









   (64) 

where, as expected, the deformation parameter  r Aα


 is 
small. 

In a similar way we can obtain the a –representation of 
the EUP-deformation for the second Friedmann equation. 

5. Some Comments and Problems of  
Interest 

In this Section some comments are given and some prob-
lems are stated. 

С1. The Laurent series expansion in terms of a  is 
asymmetric for UV and IR cutoffs. Indeed, as in the general 
case the variability domain 0 1 4α< ≤ / , in the UV-cutoff 
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when 1 4α ≈ /  the contribution is made by a -terms both 
with positive and with negative powers, while in the 
IR-cutoff ( 1 4α / ) only the a -terms with negative pow-
ers will be significant. 

C2. The external constant a  in the cases, where or minl l≠  
(EUP or SGUP is the case), is not found in the final expres-
sions, being reduced due to the substitution of (22). 

Several questions remain to be answered and necessitate 
further investigations. 

Q1) How far the a -representation may be extended for 
the General Relativity? As shown in this work, such a rep-
resentation exists for the General Relativity at High and Low 
Energies when the Thermodynamic Approach[16–21] is 
applicable or, that is the same, the Thermodynamic Inter-
pretation is the case. It is interesting whether the extension of 
the a -representation to the general case both at High and 
Low Energies is possible. The problem is whether, in some 
or other way, the general case may be reduced to the 
well-known ones. 

Q2) Considering Q1), for High Energy the problem is 
whether there is an effective description of the space-time 
foam [68–70] in terms of a . The results of[71] suggest that 
such a description should be existent. 

Q3) Proceeding from the results of E. Verlinde[72], the 
problem is whether the High-Energy deformation of the 
Entropic Force is obtainable. Provided the answer of Q1) 
positive, the problem concerns the form of this deformation 
in terms of a : we must find its a -representation. 

Note that the notion of Entropic Force, however, without 
the introduction of the term per se has been proposed by T. 
Padmanabhan in Conclusion of his paper[73] earlier than by 
E. Verlinde. 

6. Conclusions 
The essence of the principal result obtained in this work 

may be stated as follows.  
In the cases when Einstein equations have an explicit 

thermodynamic interpretation, their limiting transition 
to UV and IR cutoffs may be described within the scope 
of the same dimensionless deformation parameter that is 
naturally introduced in a quantum field theory with the 
fundamental length.  

In the case the problems stated in the previous Section will 
be solved positively, the small dimensionless discrete pa-
rameter a  must be at once introduced in Нigh-Energy 
Thermodynamics and Gravity, without its appearance in the 
low-energy limit at the scales under study. At the same time, 
at large scales GR has not been subjected to verification too 
[74]. The availability of Dark Matter and Dark Energy is a 
strong motivation for the IR-modification of GR [75–77]. 
The deformation of the General Relativity due to EUP seems 
to be one of the IR-modifications of Gravity possible. In this 
case an analysis of such a deformation in terms of the pa-
rameter a , of the corresponding variability domain, and the 
like may be important for studies of the IR-modified 

(IR-deformed) General Relativity. 
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