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Preface

This textbook is written based on lecture courses and practical classes
that were held at the Faculty of Physics of the Belarusian State Univer-
sity under the curriculum “Mathematical Analysis” and “Fundamentals of
Vector and Tensor Analysis”. It is intended for foreign students of physi-
cal, mathematical, engineering-physical and engineering-technical special-
ties and for those who independently study mathematics in English.

The training of future engineers, teachers of the specialties “Physics”,
“Chemistry”, “Biology” etc., is closely related to acquiring mathematical
knowledge and practical skills. Therefore, the authors of the book sought
to present the basics of mathematical information that a qualified natu-
ral scientist must have in an accessible and convenient form. The goal is
to assist with self-mastering important topics of higher mathematics for
students, as well as in preparing classes on these topics for teachers.

The book is also for those readers who want both to understand the
basics of higher mathematics and to learn how to apply them. The main
emphasis in the textbook is not on the theoretical aspect, but on explana-
tions of the fundamentals of the subject with the help of examples. The
authors, using illustrative examples, show the meaning of the most difficult
concepts, methods of their application, usefulness, and significance. Plenty
of exercises serves as a support for mastering skills.

Everything valuable in the book belongs to the mathematical commu-
nity, all errors, of course, belong to the authors. Comments and suggestions
can be sent to zhadaeva@bsu.by or timoshchenkoia@bsu.by.



Chapter 1

Introduction to tensor algebra

1.1. Index notation

In tensor calculus according to the method of root letters and indices
any tensor is specified by using a root letter and an ordered set of indices ,
which take a certain range, e. g., p, vi, wkl, tkil (i, k, l = 1, . . . , n). The
number, sequence and position (upper or lower) of indices define algebraic
and transformational properties of objects. If the index is assigned a certain
value, then this index is called fixed .

To simplify formula manipulation the Einstein summation convention
is assumed:

1) upper and lower identical indices are to be summed over their range.
The sum sign

∑
is omitted. Repeated indices are called dummy or sum-

mation indices . Pair of dummy indices can occur in a formula only once,
but can be easily renamed without changing the result of an expression:

aib
im = akb

km;

2) an index which is not a dummy index is called the free index . Free
indices in the different parts of an expression are to be the same:

correct expression : aikvi = bk;

incorrect expression : aikvi = bj.

Kronecker delta:

δ k
i = δki =

{
1, if i = k,
0, if i 6= k.

Example 1. Write the short expression aikx
k = bi, i, k = 1, 2, 3, in

the full form.
Solution. Let i = 1. Taking into account the summation convention we

can expand
b1 = a1kx

k = a11x
1 + a12x

2 + a13x
3.
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For the index values i = 2 and i = 3 the expansion is similar. Thus we
obtain the following full form of aikxk = bi: a11x

1 + a12x
2 + a13x

3 = b1,
a21x

1 + a22x
2 + a23x

3 = b2,
a31x

1 + a32x
2 + a33x

3 = b3.

Example 2. Factorize the expression ak − c j
k aj.

Solution. Using Kronecker delta we can express the single element ak as
ak = δ j

k aj. Therefore

ak − c j
k aj = δ j

k aj − c j
k aj = (δ j

k − c j
k )aj.

Exercises
Write expressions in the full form.

1.1. ai = b k
i ck, i, k = 1, 2, 3.

1.2. d = aikb
ibk, i, k = 1, 2.

1.3. d = akk, k = 1, 2, 3.

1.4. ci k
k = ai, i, k = 1, 2, 3.

1.5. cikja
j = aibk. i, j, k = 1, 2.

Simplify expressions.

1.6. aiδ k
i = bk.

1.7. δ l
i δ

m
k albm − aibk.

1.8. δ k
i δ

l
j a

ij = δ l
m bkcm.

Factorize expressions.

1.9. aikb
k − bi.

1.10. aikbic
k − aii.

1.11. aijkb
j − airsb

rbsck.

1.12. aijkb
jbk − alrsclb

idrs.

1.13. Show that δ k
k = n, k = 1, n.

Find the value of expressions (i, j, . . . = 1, n).

1.14. δ i
j δ

j
k δ

k
l δ

l
m . 1.15. δ i

j δ
j
l δ

l
k δ

k
i .
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1.2. Conjugate linear spaces

Let V n be a linear space of the dimension n containing elements ~x, ~y,
etc. Any ordered linearly independent set of n elements (~e1, ~e2, . . . , ~en),
~ei ∈ V n, i = 1, n, is called the basis of the space V n. Any element ~x in
V n can be uniquely expressed as a linear combination of vectors ~ei:

~x = x1~e1 + x2~e2 + . . . + xn~en = xi~ei.

Coefficients xi of this linear combination are called components or coordi-
nates of the element ~x in the basis (~ei).

Let Vn be another linear space of the dimension n containing elements

~
f,

~
g, etc. Suppose there is a functional that maps each pair of elements

~x ∈ V n and
~
f ∈ Vn into a real number 〈~x,

~
f〉 ∈ R having the following

properties:
a) 〈~x,

~
f〉 is linear with respect to each argument, that is ∀α,β ∈ R

〈α~x + β~y,
~
f〉 = α〈~x,

~
f〉+ β〈~y,

~
f〉;

〈~x,α
~
f + β

~
g〉 = α〈~x,

~
f〉+ β〈~x,

~
g〉;

b) 〈~x,
~
f〉 is homogeneous, that is if 〈~x,

~
f〉 = 0 for all

~
f , then ~x is the

null element of the space V n; and if 〈~x,
~
f〉 = 0 for all ~x, then

~
f is the null

element of the space Vn;
c) 〈~x,

~
f〉 is symmetric, that is 〈~x,

~
f〉 = 〈

~
f, ~x〉 for all ~x and

~
f .

A real number 〈~x,
~
f〉 is called the bundle.

Spaces V n and Vn, for elements of which the bundle is defined, are
called conjugate or dual spaces.

If a set of elements (
~
e1,

~
e2, . . .

~
en) is a basis in space Vn, then we can

express any element
~
f ∈ V n as

~
f = fi

~
ei.

Bases (~ei) and (
~
ek) satisfying conditions

〈~ei,
~
ek〉 = δ k

i

are called dual or reciprocal bases. In such bases we can calculate compo-
nents xi and fi as follows:

xi = 〈~x,
~
ei〉, fi = 〈

~
f,~ei〉, and 〈~x,

~
f〉 = xifi.
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A function f : V n 7→ R that maps an element of a linear space V n into
a real number satisfying ∀~x, ~y ∈ V n and ∀α ∈ R conditions

f(~x + ~y) = f(~x) + f(~y) and f(α~x) = αf(~x)

is called the linear function.
A set V ∗ of all linear functions defined in the space V n is also a linear

space of the dimension n, which is the conjugate space to V n, if the bundle
is 〈

~
f, ~x〉 = f(~x).

Example 1. Let V3 be a linear space of linear functions defined in a
space V 3. Find the reciprocal basis to

~e1 = (1, 0, 1), ~e2 = (0, 1, 1), ~e3 = (1, 2, 0).

Calculate coordinates of the element ~x = (2, 3, 2) in given basis.
Solution. The coordinates of vectors ~ei, i = 1, 2, 3, are given in some

other basis (~̂ei). Consider the basis (
~
êi),

~
êi ∈ V3, that is reciprocal to

the basis (~̂ei). Let a linear function has coordinates
~
f = (a1, a2, a3) in

reciprocal basis and
~
f = ai

~
êi. Then the bundle of

~
f ∈ V3 and ~x ∈ V 3

is equal to 〈
~
f, ~x〉 = aix

i. We are to find three elements
~
ei that satisfy

〈
~
ei, ~ek〉 = δik. Let

~ei = x
i

k ~̂ek,
~
ei =

i
ak
~
êk.

The coordinates x
i

k are known. Then we write the condition 〈
~
ei, ~ek〉 = δik

as

〈
~
e1, ~e1〉 =

1
ak x

1

k =
1
a1 · 1 +

1
a2 · 0 +

1
a3 · 1 = δ1

1 = 1;

〈
~
e1, ~e2〉 =

1
ak x

2

k =
1
a1 · 0 +

1
a2 · 1 +

1
a3 · 1 = δ1

2 = 0;

〈
~
e1, ~e3〉 =

1
ak x

3

k =
1
a1 · 1 +

1
a2 · 2 +

1
a3 · 0 = δ1

3 = 0.

This is a system of linear equations for variables 1
a1,

1
a2,

1
a3, which solu-

tion is
1
a1 =

2

3
,

1
a2 = −1

3
,

1
a3 =

1

3
or

~
e1 =

(
2

3
,−1

3
,
1

3

)
.

Doing the same for
~
e2 and

~
e3 we obtain

~
e2 =

(
−2

3
,
1

3
,
2

3

)
and

~
e3 =

(
1

3
,
1

3
,−1

3

)
.
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To find coordinates of ~x in the basis (~ei) we use the formula xi = 〈~x,
~
ei〉:

x1 = 〈
~
e1, ~x〉 =

2

3
· 2− 1

3
· 3 +

1

3
· 2 = 1;

x2 = 〈
~
e2, ~x〉 = −2

3
· 2 +

1

3
· 3 +

2

3
· 2 = 1;

x3 = 〈
~
e3, ~x〉 =

1

3
· 2 +

1

3
· 3− 1

3
· 2 = 1.

Thus ~x = 1 · ~e1 + 1 · ~e2 + 1 · ~e3.

Exercises
Let V3 be a linear space of linear functions defined in a space V 3. Find

the reciprocal basis to the basis (~e1, ~e2, ~e3) and calculate coordinates of the
element ~x = (2, 3, 2) in given basis.

1.16. ~e1 = (1, 2,−3), ~e2 = (2,−2, 0), ~e3 = (−2, 0, 1), ~x = (1, 2, 3).

1.17. ~e1 = (2,−1, 0), ~e2 = (−1, 0, 1), ~e3 = (0, 2,−1), ~x = (3,−2, 1).

1.18. ~e1 = (0,−1, 1), ~e2 = (2, 0, 1), ~e3 = (−1,−1, 2), ~x = (1, 1, 1).

1.19. ~e1 = (1, 1, 1), ~e2 = (1, 0, 0), ~e3 = (0, 1, 0), ~x = (−1, 1,−1).

1.20. Let ~x = (x1, x2) ∈ V 2 and
~
y = (y1, y2) ∈ V2. Define the bundle

as
〈~x,

~
y〉 = aikx

kyi,

where (aik) is a matrix 2× 2. Prove that spaces V 2 and V2 are dual.
Let a bundle for elements of spaces V 2 and V2 be defined as it done in

problem 1.20. Find the reciprocal basis to (~e1, ~e2). Calculate coordinates
of elements ~x and

~
y in given bases and their bundle.

1.21. ~e1 = (1, 2), ~e2 = (1, 1), (aik) =

(
1 1
2 1

)
, ~x = (2, 3),

~
y = (−1, 2).

1.22. ~e1 = (1, 0), ~e2 = (0, 1), (aik) =

(
3 −4
3 −2

)
, ~x = (1, 1),

~
y = (−2, 1).

1.23. ~e1 = (−2, 3), ~e2 = (1,−1), (aik) =

(
1 2
3 4

)
, ~x = (−1, 0),

~
y = (1,−2).
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1.24. ~e1 = (1,−1), ~e2 = (−2, 3), (aik) =

(
1 −1
1 1

)
, ~x = (−2, 1),

~
y = (1,−3).

1.25. Consider a space of polar vectors ~x, ~y, . . . and a space of lamellar
vectors

~
f,
~
g, . . . . Polar vector is defined by an ordered pair of points O and

M, the point O being common point for all vectors. A lamellar vector
~
f

is defined by an ordered pair of parallel planes ω and µ (or by a pair of
parallel lines in the two dimensional case) and the plane ω contains the
point O. Define the bundle of polar and lamellar vectors by following rule:

a) if O ∈ ω and M ∈ ω, then 〈~x,
~
f〉 = 〈

~
f, ~x〉 = 0;

b) if M /∈ ω, then 〈~x,
~
f〉 = 〈

~
f, ~x〉 is the coefficient of proportionality

between line segments OM and ON (fig. 1.1).

Fig. 1.1

The point N ∈ µ and the points M and N are on the same straight
line OM. In addition, 〈

~
f, ~x〉 > 0 if the points M and N are on the same

side of the plane ω and 〈
~
f, ~x〉 > 0 otherwise. Prove that spaces of polar

and lamellar vectors are dual.
1.26. Let P be some point in a three dimensional space and C1

P be a
set of all differentiable functions at P . Consider a set

T1(P ) = {df(P ) | f ∈ C1
P}.

The set T1(P ) is a linear space. Define a bundle of an element ~l ∈ V 3 and
df(P ) ∈ T1(P ) as1:

〈~l, df(P )〉 = |~l|∂f
∂l

.

Prove that spaces T1(P ) and V 3 are dual.
1The definition of directional derivative can be found in section 3.1.
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1.3. Changing of bases

Suppose that in a linear space V n there are an arbitrary “old” basis
(~ei), i = 1, . . . , n, and some “new” basis (~ei′), i′ = 1′, . . . , n′ = n. In the
tensor calculus the new basis elements are denoted by the same root letter
“e” but with primed indices. Since (~ei′) is a basis, we can expand its
elements ~ei as

~ei′ = Ai
i′~ei,

where n2 numbers Ai
i′ form a matrix, called the transformation matrix

from the “old” basis to the “new” one. The element of the ith row and the
i′th column of the matrix (Ai

i′) is the ith coordinate of the element ~ei′ in
the basis ~ei. The matrix (Ai

i′) is nondegenerate that is det(Ai
i′) 6= 0.

An “old” basis can be expressed through a “new” basis by inverse trans-
formation matrix (Ai′

i):
~ei = Ai′

i~ei′,where
Ak′

iA
i
j′ = δk

′

j′, Ak′

iA
j
k′ = δ j

i .

Coordinates of a vector ~x ∈ V n in an “old” and a “new” bases are
connected by the relation

xi
′
= Ai′

ix
i, xi = Ai

i′x
i′.

Let
~
ei and

~
ei
′ be an “old” and a “new” reciprocal bases in a dual space

Vn correspondingly. Then

~
ei
′
= A i′

i
~
ei,

~
ei = A i

i′
~
ei
′
;

fi′ = A i
i′ fi, fi = A i′

i fi′,

where (A i
i′ ) is the inverse transposed transformation matrix and (A i′

i ) is
the transposed transformation matrix:

A k′

i A i
j′ = δk

′

j′, A k′

i A j
k′ = δ j

i and Ai
k′A

j′

i = δj
′

k′.

You can see that coordinates of elements of a dual space Vn are changing
in the same way as basis elements of space V n, and vise versa, coordinates
of elements of an initial space V n are changing in the same way as basis
elements of the dual space Vn. Arithmetic vectors (xi) and (fi) (i. e.
ordered set of numbers) are called contravariant vectors and covariant
vectors or briefly vectors and covectors .

10



Example 1. Let ~ei and ~ei′ be an “old” and a “new” bases in a space V 2

correspondingly and ~e1 = (1, 2), ~e2 = (1, 3) and ~e1′ = (1, 1), ~e2′ = (3, 2).
Let V2 be the dual space of linear functions. Find coordinates of elements
~x ∈ V 2 and

~
f ∈ V2 in the “new” basis, if their coordinates in the “old”

bases are (xi) = (3, 1), (fi) = (2, 0). Show that xifj = xi
′
fj′.

Solution. First of all we are to find the “old” reciprocal basis. Following
Example 1 of the section 1.2 we obtain

~
e1 = (3,−1),

~
e2 = (−2, 1).

To calculate the transformation matrix we can use its definition namely
that the element Ai

i′ is the ith coordinate of the vector ~ei′ in the basis ~ei.
Therefore Ai

i′ is the bundle

Ai
i′ = 〈

~
ei, ~ei′〉.

Thus we obtain
A = (Ai

i′) =

(
2 7
−1 −4

)
.

Then transposed and inverse transformation matrices are

AT = (A i
i′ ) =

(
2 −1
7 −4

)
and A−1 = (Ai′

i) =

(
4 7
−1 −2

)
.

As far the transformation matrix is found we can easily calculate coor-
dinates

xi
′
= Ai′

ix
i, x1′ = 19, x2′ = −5;

fi′ = A i
i′ fi, f1′ = 4, f2′ = 14;

and the bundle

xifi = 3 · 2 + 1 · 0 = 6, xi
′
fi′ = 19 · 4− 5 · 14 = 6.

Exercises

Let ~ei and ~ei′ be an “old” and a “new” bases in a space V 2 correspond-
ingly. Let V2 be the dual space of linear functions. Find coordinates of
elements ~x ∈ V 2 and

~
f ∈ V2 in the “new” basis and show that xifj = xi

′
fj′.

1.27. ~e1 = (2,−1), ~e1′ = (−1, 1), (xi) = (1, 1),

~e2 = (1, 0), ~e2′ = (1,−2), (fi) = (−2, 5).
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1.28. ~e1 = (1, 0), ~e1′ = (1, 1), (xi) = (−1, 3),

~e2 = (0, 1), ~e2′ = (−1, 1), (fi) = (5, 1).

1.29. ~e1 = (3, 2), ~e1′ = (2,−1), (xi) = (3, 1),

~e2 = (−1, 2), ~e2′ = (−3, 1), (fi) = (−1, 3).

1.30. ~e1 = (1, 2), ~e1′ = (3,−2), (xi) = (10, 5),

~e2 = (1,−3), ~e2′ = (−2, 3), (fi) = (−5, 15).
1.31. Prove that for all xi and fi there are equalities Ai′

ix
i = A i′

i x
i

and A i
i′ fi = Ai

i′fi.
1.32. Let (x1, x2, x3) be curvilinear coordinates2 in a three dimensional

space and P is an arbitrary point. Then vectors

~e1 =
∂~r

∂x1
, ~e2 =

∂~r

∂x2
, ~e3 =

∂~r

∂x3

form a basis in V 3. Let (x1′, x2′, x3′) be another curvilinear coordinates
that induce the basis (~ei′). Find the transformation matrix from the basis
~ei to the basis ~ei′.

1.4. Definition of a tensor. Tensor algebra

An object characterized in each basis of a linear space V n by a set of
np+q numbers ai1...ipj1...jq

(i1, . . . , ip, j1, . . . , jq = 1, . . . , n) that at basis change
are transformed by the linear homogeneous rule

a
i′1...i

′
p

j′1...j
′
q

= A
i′1
i1
. . . A

i′p
ip
A j1

j′1
. . . A

jq
j′q

a
i1...ip
j1...jq

is called the tensor of the type (p, q) in the space V n. The number
r = p + q defines the tensor valence (rank), with the numbers p and q being
contravariant and covariant valences of the tensor. The numbers ai1...ipj1...jq

are
called tensor components in given basis.

Two tensors are called one-type if their contravariant and covariant
valences are equal. Tensors having indices of both types are called mixed .
Two one-type tensors are equal if their respective components are equal in
some basis. The tensor is called the null-tensor if all its components in
some basis are zero.

If we want to write down the components of some tensor, it is convenient
to use the matrix notation. In the matrix representation of the second

2The definition of curvilinear coordinates can be found in section 5.4.
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valence tensor we consider the first index to correspond to the matrix row
number, and the second index shows the column number. Components of
the third valence tensor can be written in the form of a three-dimensional
matrix. Fixing the last (third) index, we get a square matrix n× n, which
is called the two-dimensional section which first index corresponds to the
row number and the second one corresponds to the column number. The
resulting sections are aligned in the row matrix n × n2. For example, for
n = 2, tensor components aijk are written as(

a1
11 a1

21

a2
11 a2

21

∣∣∣∣ a1
12 a1

22

a2
12 a2

22

)
.

Similarly, writing down a tensor of valence 4 we fix last two indices (the
third and the forth) and obtain n2 two-dimensional sections aligned in the
rectangular matrix n2 × n2:

a11
11 a12

11

a21
11 a22

11

∣∣∣∣ a11
12 a12

12

a21
12 a22

12

a11
21 a12

21

a21
21 a22

21

∣∣∣∣ a11
22 a12

22

a21
22 a22

22

.

Algebraic operations
1. Summation. Sum of two one-type tensors a

i1...ip
j1...jq

and b
i1...ip
j1...jq

is the
tensor ci1...ipj1...jq

of the same type and valence, which components in each basis
are defined as

c
i1...ip
j1...jq

= a
i1...ip
j1...jq

+ b
i1...ip
j1...jq

.

2. Multiplication. Multiplication of a tensor a
i1...ip
j1...jq

of type (p, q) and
a tensor bk1...krl1...ls

of type (r, s) is the tensor of type (p + r, q + s), which
components in each basis are defined as

c
i1...ipk1...kr
j1...jql1...ls

= a
i1...ip
j1...jq

bk1...krl1...ls
.

The multiplication is not commutative.
3. Contraction and transvection. Contraction of a tensor a

i1...ip
j1...jq

of a
type (p, q) over upper index il, 1 6 l 6 p, and lower index jm, 1 6 m 6 q,
is the tensor of the type (p− 1, q− 1), which components in each basis are
defined as

c
i1...il−1il+1...ip
j1...jm−1jm+1...jq

= a
i1...il−1k il+1...ip
j1...jm−1k jm+1...jq

.
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Contraction is applicable only to tensors which contravariant and co-
variant valences are greater or equal to one. Contraction can be repeated
and the maximal number of these operations is equal to min(p, q). If p = q,
the resulting tensor obtained by the maximal number of contractions is a
tensor of valence zero, i. e. a scalar.

Transvection is the combination of tensor multiplication and contrac-
tion, for example

aikbl : aikbk or aikbi.

4. Building an isomer. An isomer is formed by interchanging upper or
lower indices. The resulting tensor has the same valence and type.

Direct tensor criterion: for any nondegenerate transformation of the
basis the tensor components are transformed according to rules conserving
the results of addition, multiplication, contraction, and also equality of
tensors.

Inverse tensor criterion: in order for a set of np+q numbers ai1 ldotsip
j1 ldotsjq

to
be a tensor of type (p, q), it is necessary and sufficient that the result of its
multiplication or transvection with any tensor of fixed valence and type is
the corresponding tensor.

A tensor ak......i...j... is called symmetrical with respect to a pair of upper
or lower indices i and j, if it is invariant for interchanging of these indices,
that is

ak......i...j... = ak......j...i..., i, j = 1, . . . , n.

A tensor b...i...j...k... is called antisymmetrical (alternating) with respect to
the pair of upper or lower indices i and j, if interchanging of these indices
results only in change of the sign

b...i...j...k... = −b...j...i...k... , i, j = 1, . . . , n.

Symmetry and antisymmetry properties of an tensor are defined only
by the position of indices but not by their name.

A tensor is called symmetrical with respect to a group of one-type in-
dices, if it is invariant for any permutation of indices within this group.
A tensor is called antisymmetrical with respect to a group of one-type in-
dices, if permutation of any pair of indices within this group results only
in changing the sign.

A tensor that is symmetrical (antisymmetrical) with respect to all in-
dices of a certain type is called completely symmetrical (completely an-
tisymmetrical). An antisymmetrical tensor of valence 2 is often called
bivector .
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5. Symmetrization. The symmetrization over m indices is the sum of
all different isomers obtained by permuting these indices divided by p!. For
example

a) over two indices:

a(ik) =
1

2
(aik + aki)

or
a(i|kj|m) =

1

2
(aikjm + amjki);

b) over three indices:

a(ikl) =
1

3!
(aikl + akli + alik + akil + ailk + alki).

The symmetrization is denoted by round brackets ( ).
6. Alternating. The alternating overm indices is the sum of all different

isomers, taken with positive sing if permutation is even and with negative
sign if it is odd, divided by p!. For example

a) over two indices:

a[ik] =
1

2
(aik − aki),

or
a[i|kj|m] =

1

2
(aikjm − amjki);

b) over three indices:

a[ikl] =
1

3!
(aikl + akli + alik − akil − ailk − alki).

The alternating is denoted by square brackets [ ].
Tensors a(ik) or a(ikl) are completely symmetric, tensors a[ik] or a[ikl] are

completely antisymmetric, and

aik = a(ik) + a[ik];

aikl 6= a(ikl) + a[ikl].

Example 1. Let aik be a mixed tensor. Prove that akk is a scalar.
Solution. Consider the transformation rule for an object akk:

ak
′

k′ = Ak′

kA
r

k′ a
k
r.

Since Ak′

kA
r

k′ = δrk, then ak
′

k′ = δrka
k
r = akk. Thus the object akk is

invariant for basis changing, therefore akk is a scalar.
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Example 2. Let bij = aijku
k be a tensor for any contravariant vector ui.

Prove that aijk is a tensor.
Solution. As far as bij is a tensor, it components are transformed as

bi
′

j′ = Ai′

iA
j

j′ b
i
j.

The transformation rule for vector ui is

uk
′
= Ak′

ku
k.

On the other hand in a “new” basis

bi
′

j′ = ai
′

j′k′u
k′.

Then

bi
′

j′ = ai
′

j′k′u
k′ = ai

′

j′k′A
k′

ku
k = Ai′

iA
j

j′ b
i
j = Ai′

iA
j

j′ a
i
jku

k

or
ai
′

j′k′A
k′

ku
k = Ai′

iA
j

j′ a
i
jku

k.

Factorizing this expression we obtain

(ai
′

j′k′A
k′

k − Ai′

iA
j

j′ a
i
jk)u

k = 0.

Since this equality is true for all vectors uk, the expression in brackets is
equal to zero, i. e.

ai
′

j′k′A
k′

k = Ai′

iA
j

j′ a
i
jk.

Multiplying both parts of above expression by A k
r′ and taking into account

that Ak′

kA
k

r′ = δ k′

r′ , we obtain

ai
′

j′k′A
k′

kA
k

r′ = ai
′

j′k′δ
k′

r′ = ai
′

j′r′ = Ai′

iA
j

j′ A
k

r′ a
i
jk.

Thus, the aijk is transformed according to tensor of type (1, 2) transfor-
mation rule.

Example 3. A tensor aij of type (1, 1), a contravariant vector xk and
a covariant vector yk in a certain basis have the following components:

(aij) =

(
1 −2
−3 4

)
, (xi) = (1, 2), (yi) = (−2, 1).

Find: a) aijxj; b) aijyi; c) aijxjyi; d) aii.
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Solution. Direct calculations give us
a) a1

jx
j = a1

1x
1 + a1

2x
2 = 1 · 1 + (−2) · 2 = −3,

a2
jx

j = a2
1x

1 + a2
2x

2 = (−3) · 1 + 4 · 2 = 5;

b) ai1yi = a1
1yi + a2

1y2 = 1 · (−2) + (−3) · 1 = −5,

ai2yi = a1
2yi + a2

2y2 = (−2) · (−2) + 4 · 1 = 8;

c) aijxjyi = a1
1x

1y1 + a1
2x

2y1 + a2
1x

1y2 + a2
2x

2y2 = 11;

d) aii = a1
1 + a2

2 = 1 + 4 = 5.

Example 4. Show that transvection of a symmetrical tensor aij and
an antisymmetrical tensor bij is zero, i. e. aijbij = 0.

Solution. Rename summation indices in the expression aijb
ij as i→ j,

and j → i :
aijb

ij = ajib
ji.

Taking into account that aij = aji and bij = −b ji, we obtain

aijb
ij = ajib

ji = −aijbij.

Since the bundle aijb
ij is a scalar, then from the equality of a number to

itself with opposite sign it follows from that it is equal to zero, that is,
aijb

ij = 0.

Exercises
1.33. Write the transformation rule for different tensors of valence 3.
1.34. How many independent components has: a) a symmetric tensor

of valence 2; b) an antisymmetric tensor of valence 2?
1.35. A tensor cijkl, i = 1, 2, 3, of valence 4 meets following symmetry

conditions: cijkl = cjikl = cijlk = cjilk. Show that these conditions result in
reducing of the number of independent components from 81 to 36. Show
that if in addition the tensor satisfies condition cijkl = cklij its number of
independent components is equal to 21.

1.36. A tensor ciklm, i = 1, 2, 3, 4, of valence 4 satisfies following anti-
symmetry conditions: ciklm = −cikml = −ckilm. Show that these conditions
result in reducing of the number of independent components from 256 to
36. Show that if in addition the tensor satisfies condition ciklm = clmik it
number of independent components is equal to 21.

1.37. Prove that if corresponding components of tensors are equal in a
certain basis they are equal in any other basis.
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1.38. Prove that if a tensor is symmetrical (antisymmetrical) in a cer-
tain basis, it is symmetrical (antisymmetrical) in a certain basis in any
other basis.

1.39. A tensor of the type (1, 1) has in a certain basis following com-
ponents:

δ k
i = δki =

{
1, if i = k,
0, if i 6= k.

Does the tensor δ k
i have different components in another basis?

1.40. Let aij and bij be tensors. Prove that the object cij = aij + bji,
is not a tensor.

1.41. Let aij be a mixed tensor and let ui and vi be contravariant and
covariant vectors respectively. Prove that aiju

j is a contravariant vector
and aijvi is a covariant vector.

Multiply following tensors:
1.42. (ai) = (1, 1), (bi) = (1,−1).

1.43. (ai) = (1, 1), (bi) = (−1, 1).

1.44. (ai) = (4,−2), (bjk) =

(
3 5
5 9

)
.

1.45. (aijk) =

(
3 4
5 7

∣∣∣∣ 2 5
1 3

)
, (bl) = (−1, 1).

1.46. (ai) = (−1, 1), (bjkl) =

(
1 1
1 1

∣∣∣∣ 1 −1
1 −1

)
.

1.47. A covariant tensor aij and a contravariant vectors xk and yk have
components:

(aij) =

 1 −2 −3
5 2 4
3 0 7

, (xi) = (−1, 2,−5), (yi) = (2, 3,−1).

Compute: a) aijxj; b) aijxi; c) aijxiyj; d) aijxjyi.
1.48. A mixed tensor aij, a contravariant vector xk and a covariant

vector yk have components:

(aij) =

 1 3 0
2 4 1
3 5 1

, (xi) = (1, 1, 0), (yi) = (0, 1, 1).

Compute: a) aijxj; b) aijyi; c) aijxjyi; d) aii.
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1.49. Is it possible to build transvection of: a) a vector and a covector;
b) a vector and a vector; c) pair of covectors?

1.50. Let aij and bkl be tensors. With the help of multiplication and
transvection build various scalars from them.

1.51. Let aij and bklm be tensors. With the help of multiplication and
transvection build from them various tensors of valences 1, 3 and 5.

1.52. A mixed tensor aijk has components:

a)
(

1 5
3 7

∣∣∣∣ 2 6
4 8

)
; b)

(
0 −2
1 3

∣∣∣∣ 2 5
3 2

)
.

Calculate components of contravariant vectors aiji and aijj.
1.53. A mixed tensor aijkl has components:

−3 −4
−5 −7

∣∣∣∣ 3 4
5 7

−2 −5
−1 −3

∣∣∣∣ 2 5
1 3

.
Calculate: a) aijil; b) a

ij
kj; c) a

ij
ki; d) a

ij
jl; e) a

ij
ij; f) a

ij
ji.

1.54. Let ai1...in be a covariant tensor.
a) How many isomers can be build from this tensor?

b) For n = 3 the tensor aijk has components
(

1 2
5 6

∣∣∣∣ 3 4
7 8

)
. Write

down the matrix of all isomers.

Write down components of following tensors in space V 2 in the matrix
form.

1.55. xiyk.

1.56. x(iyk).

1.57. x[iyk].

1.58. xiajk.

1.59. xiaik.

1.60. xiakk.

1.61. x(i
a
k)
k.

1.62. x[i
a
k]
k.

1.63. aiia
k
k.

1.64. ai(ia
k
k).

1.65. ai[ia
k
k].

1.66. δija
k
i.

1.67. δija
j
k.

1.68. δika
k
i.

1.69. δija
k
l.

1.70. aijδ
k
l.
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Symmetrize and alternate following tensors.

1.71. (aij) =

 1 2 7
4 0 3
5 1 6

.
1.72. (aij) =

 4 1 2
5 3 1
0 6 3

.
1.73. (aij) =

 1 2 0
2 3 5
1 0 1

.
1.74. (aij) =

 2 −3 5
3 4 −4
−3 2 6

.
1.75. Let aijk be a tensor with components (aijk) =

(
3 4
5 7

∣∣∣∣ 2 5
1 3

)
.

Find components of the following tensors: a) a(ij)k; b) a(i|j|k).

1.76. Find tensors a[ij]
kl, aij[kl], a

[ij]
[kl], if

(aijkl) =


1 2
−4 −3

∣∣∣∣ 3 4
−2 −1

−4 −3
5 6

∣∣∣∣ −2 −1
7 8

.
Find tensors a(ijk) and a[ijk], if tensor aijk has the following components:

1.77.

 1 2 3
4 3 2
9 8 7

∣∣∣∣∣∣
4 5 6
1 5 9
6 5 4

∣∣∣∣∣∣
7 8 9
8 7 6
3 2 1

.
1.78.

 2 4 6
6 2 8
4 6 2

∣∣∣∣∣∣
4 6 2
2 6 4
8 2 4

∣∣∣∣∣∣
6 8 4
4 6 2
2 4 6

.
Find out whether the following tensors are symmetric or antisymmetric

and with respect to what indices.

1.79.

 0 0 0
0 0 2
0 −2 0

∣∣∣∣∣∣
0 0 −2
0 0 0
2 0 0

∣∣∣∣∣∣
0 2 0
−2 0 0
0 0 0

.
1.80.

 0 0 0
1 −2 1
−1 2 −1

∣∣∣∣∣∣
−1 2 −1
0 0 0
1 −2 1

∣∣∣∣∣∣
1 −2 1
−1 2 1
0 0 0

.
1.81.

 0 −1 1
1 0 −1
−1 1 0

∣∣∣∣∣∣
0 2 −2
−2 0 2
2 −2 0

∣∣∣∣∣∣
0 −1 1
1 0 −1
−1 1 0

.
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Calculate invariants akk, a
i
[ia

k
k] and ai[ia

j
ja

k
k], if the tensor aij has

components:

1.82. (aij) =

(
1 −2
−2 5

)
. 1.83. (aij) =

 1 2 0
2 5 −2
0 −2 5

.
1.84. Let aijk be a tensor that is symmetrical over the first and the

second indices. Show that the antisymmetric over the last two indices
tensor cijk = ai[jk] looses symmetry over the first two, i. e. cijk 6= cjik.

1.85. Prove that if a tensor is symmetrical over a certain pair of in-
dices, the symmetrization over this pair does not change the tensor and
alternating gives null-tensor.

1.86. Prove that if a tensor is antisymmetrical over a certain pair of
indices, the alternating over this pair does not change the tensor and sym-
metrization gives null-tensor.

1.87. Prove that a(ij)b
ij = aijb

(ij) = a(ij)b
(ij).

1.88. Prove that a[ij]b
ij = aijb

[ij] = a[ij]b
[ij].

1.89. Let a tensor aijk be symmetrical over the first to indices. Prove

that a(ikl) =
1

3
(aikl + akli + alik).

1.90. Let a tensor aijk be antisymmetrical over the first to indices.

Prove that a[ikl] =
1

3
(aikl + akli + alik).

1.91. Prove that in a linear space V 3 any completely antisymmetric
tensor of valence greater that 3 is a null-tensor.

1.92. Prove that a[ijbkl] =
1

4
(aijbkl − aikbjl − aljbki + alkbji).

1.93. Let aijk + aikj be a tensor. Prove that if the object aijk is sym-
metrical over the second and the third indices, then aijk is a tensor.

1.94. Let aiku
iuk be a scalar for any contravariant vector ui. Prove

that a(ik) is a tensor.
1.95. Let bjikw

ik be a contravariant vector for any contravariant bivec-
tor wik. Prove that bj[ik] is a tensor.

1.96. Prove that if covariant tensor aijk satisfies conditions aijk = ajik
and aijku

iujuk for any contravariant vector uk, then aijk + ajki + akij = 0.
1.97. Prove that if a covariant tensor aijkl satisfies conditions

aijklu
ivjukvl = 0 for any contravariant vectors uk and vk, then aijkl +

+akjil +ailkj +aklij = 0, and if in addition aijkl +ajikl = 0, aijkl +aijlk = 0,
aijkl + ajkil + akijl = 0 then aijk is a null-tensor.
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1.98. Prove that if a tensor a i
jk satisfies conditionsa i

jk u
jukvi = 0 for

any vectors uk and vi such that ukvk = 0, then a i
(jk) = s(jδ

i
k) , where sj is

a vector.
1.99. Prove that if the equality ujivj = σvi is true for any covariant

vector vi, then uji = σδji, where σ does not depend on vi.
1.100. Let tensor aijkl satisfy conditions aijkl = aijlk and aijkl + aiklj +

+ailjk = 0. Prove that
a) if aijkl − aikjl = 0, then aijkl = 0;
b) if aijkl + aikjl = 0, then aijkl = 0.
1.101. Prove that if aij is a nondegenerate covariant symmetrical tensor

(det(aij) 6= 0), then an object bij, defined by equations aijb
ik = δ k

i , is
contravariant symmetrical tensor.

1.5. Tensor product of linear spaces

Let V and Ṽ be linear spaces with elements x ∈ V and x̃ ∈ Ṽ . An
ordered pair x⊗ x̃ is called dyad .

Consider elements x
k
∈ V , and x̃

k
∈ Ṽ , k = 1, 2, 3, . . . . and build a set

T containing elements

t = x
1
⊗ x̃

1
+ x

2
⊗ x̃

2
+ . . . + x

k
⊗ x̃

k
,

which ∀α ∈ R satisfy following conditions:
1) a sum x

1
⊗ x̃

1
+ x

2
⊗ x̃

2
+ . . . + x

k
⊗ x̃

k
does not depend on the order of

summands;
2) (x + y)⊗ x̃ = x⊗ x̃ + y ⊗ x̃;
3) (αx)⊗ x̃ = x⊗ (αx̃).

A sum of two elements t = x
1
⊗ x̃

1
+ x

2
⊗ x̃

2
+ . . . + x

k
⊗ x̃

k
and

s = y
1
⊗ ỹ

1
+ y

2
⊗ ỹ

2
+ . . . + y

m
⊗ ỹ

m
is the element

t + s = x
1
⊗ x̃

1
+ x

2
⊗ x̃

2
+ . . . + x

k
⊗ x̃

k
+ y

1
⊗ ỹ

1
+ y

2
⊗ ỹ

2
+ . . . + y

m
⊗ ỹ

m
.

A product of an element t and a number α is the element

α t = (αx
1
)⊗ x̃

1
+ (αx

2
)⊗ x̃

2
+ . . . + (αx

k
)⊗ x̃

k
.
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The set T with above operation of summation and multiplication on a
number is a linear space called tensor product of linear spaces V and Ṽ
and is denoted as

T = V ⊗ Ṽ .

Elements of the space T are called tensors of valence 2 over spaces V
and Ṽ . The dimension of tensor product is

dim (V ⊗ Ṽ ) = dimV dim Ṽ .

Let (ei) and (ẽi) be a bases in spaces V and Ṽ respectively. Then a set
of dyads (ei ⊗ ẽj) forms a basis in he space T = V ⊗ Ṽ .

Consider T = T 1
1 = V n⊗ Vn, where V n and Vn are dual linear spaces.

Then an expansion of a tensor t ∈ T 1
1 over the basis (ei ⊗ ẽj) can be

written as
t = tik~ei ⊗

~
ek,

where numbers tik are called components of tensor t. Similarly

t = t k
i
~
ei ⊗ ~ek, if t ∈ Vn ⊗ V n;

t = tik~ei ⊗ ~ek, if t ∈ V n ⊗ V n;

t = tik
~
ei ⊗

~
ek, if t ∈ Vn ⊗ Vn.

Let
1

V ,
2

V ,
3

V be arbitrary linear spaces. If we add to properties 1)–3)
the following one

4) ∀
(j)
x ∈

j

V : (
(1)
x ⊗

(2)
x )⊗

(3)
x =

(1)
x ⊗ (

(2)
x ⊗

(2)
x ),

then
(

1

V ⊗
2

V )⊗
3

V =
1

V ⊗ (
2

V ⊗
3

V ) =
1

V ⊗
2

V ⊗
3

V .

A tensor product of spaces
1

V ⊗
2

V ⊗ . . . ⊗
r

V is called the space

T = (
1

V ⊗
2

V ⊗ . . .⊗
r−1

V )⊗
r

V with elements

t =
(1)
x
1
⊗ . . .⊗

(r)
x
1

+ . . . +
(1)
x
k
⊗ . . .⊗

(r)
x
k
,

(j)
x
m
∈

j

V , j = 1, r, m = 1, k.

If elements
(j)
e i form a basis in spaces

j

V respectively, then a set of
polyads

1
ei1 ⊗ . . .⊗ r

eir

form a basis in the space
1

V ⊗
2

V ⊗ . . .⊗
r

V .
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Let V n and Vn be a dual linear spaces of dimension n. An element of
the linear space

T p
q = (V n ⊗ . . .⊗ V n)︸ ︷︷ ︸

p times

⊗ (Vn ⊗ . . .⊗ Vn)︸ ︷︷ ︸
q times

.

is called tensor of type (p, q) and numbers ti1...ipj1...jq
in expansion

t = t
i1...ip
j1...jq

~ei1 ⊗ . . .⊗ ~eip ⊗
~
ej1 ⊗ . . .⊗

~
ejq .

are called elements of the tensor t in given basis.

Algebraic operations
1. Summation. The sum of two one-type tensors a ∈ T p

q and b ∈ T p
q is

the tensor
c = a + b ∈ T p

q

of the same type and valence.
2. Multiplication. Multiplication of tensors a ∈ T p

q and b ∈ T r
s is the

tensor
c = a⊗ b ∈ T p+r

q+s .

3. Contraction. Let us illustrate by examples:

a = ~x⊗ ~y ⊗
~
f ; aikk : 〈~y,

~
f〉~x.

b = ~x⊗
~
g ⊗

~
f ⊗ ~y; bi k

jk : 〈~y,
~
f〉~x⊗

~
g,

bi l
ik : 〈~x,

~
g〉
~
f ⊗ ~y,

bi k
ik : 〈~x,

~
g〉
〈
~y,
~
f
〉
.

Example 1. Find components of a tensor c = ~a⊗~b in a basis (~e1, ~e2),
if ~a = ~e1 + ~e2 and ~b = ~e1 − ~e2.

Solution. Taking into account properties 1)–3), we can write:

c = ~a⊗~b = (~e1 + ~e2)⊗ (~e1 − ~e2) =

= ~e1 ⊗ ~e1 − ~e1 ⊗ ~e2 + ~e2 ⊗ ~e1 − ~e2 ⊗ ~e2 = cik~ei ⊗ ~ek.

Thus
(cik) =

(
1 −1
1 −1

)
.
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Exercises
1.102. Specify which of the below expressions make sense, if ~a1, ~a2,~a3

are vectors and
~
b1,

~
b2,

~
b3 are covectors:

a) ~a1 ⊗ ~a2 + ~a2 ⊗ ~a3;

b) ~a1 ⊗ ~a2 ⊗ ~a3 + ~a2 ⊗ ~a3;

c) ~a1 ⊗
~
b1 − 2

~
b1 ⊗ ~a1;

d) ~a1 ⊗
~
b2 +

~
b1 ⊗

~
b2;

e) ~a1 ⊗
~
b2 + ~a2 ⊗

~
b1;.

f)
~
b1 ⊗ ~a1 ⊗ ~a2 + ~a2 ⊗ ~a3 ⊗

~
b2;

g) ~a1 ⊗ ~a2 + ~a3 ⊗ ~a3 − ~a1 ⊗ ~a1;

h)
~
b1 ⊗

~
b2 − 3

~
b2 ⊗

~
b3.

1.103. Find components of below tensors in a basis (~e1, ~e2), if ~a1 = ~e2,
~a2 = ~e1 + ~e2, ~a3 = 2~e1 + 4~e2 and

~
b1 = −

~
e1 +

~
e2,

~
b2 = −4

~
e1 + 6

~
e2,

~
b3 = 14

~
e1 − 9

~
e2:

a) ~a1 ⊗ ~a2 + ~a2 ⊗ ~a3;

b) ~a1 ⊗
~
b2 + ~a2 ⊗

~
b1;

c)
~
b1 ⊗ ~a2 + 2

~
b3 ⊗ ~a1;

d)
~
b1 ⊗

~
b2 + 3

~
b2 ⊗

~
b3.

1.104. Let a vector ~x ∈ V 3 and a covector
~
y ∈ V3 have components

~x = ~e1,
~
y =

~
e2 in an “old” basis and let A =

 1 2 0
2 5 −2
0 −2 5

 be a

transformation matrix to a “new” basis. Find components of tensor ~x⊗
~
y

in “old” and “new” bases.
1.105. Write a tensor aik =

(
2 −1
−4 2

)
in dyad form.

1.106. Write a tensor aijk =

(
1 −1
1 −1

∣∣∣∣ 2 −2
2 −2

)
in triad form.

1.6. The metric tensor

A dot product ~a ·~b of vectors ~a and ~b in a linear space V n is called the
abstract operation that satisfies conditions:

1) invariance — ~a ·~b ∈ R;
2) symmetry — ~a ·~b = ~b · ~a;
3) bilinearity — (µ~a + γ~c) ·~b = µ(~a ·~b) + γ(~c ·~b) and ~a · (µ~b + γ~d) =

= µ(~a ·~b) + γ(~a · ~d);

4) homogeneity — if ~a ·~b = 0 for all ~a, then ~b = ~0; and if ~a ·~b = 0 for
all ~b, then ~a = ~0.
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This definition is similar to the definition of a bundle with the essential
difference that the scalar product is defined for two elements of one linear
space, while the bundle is specified for elements belonging to dual spaces.

Let g : V n → Vn be a non-degenerate single-valued linear mapping of
an element ~x ∈ V n to an element

~
x ∈ Vn: xi = gikx

k, det(gik) 6= 0.
Define the dot product ~a ·~b as the bundle of one of vectors ~a or ~b with

a corresponding vector
~
b or

~
a:

~a ·~b = 〈~a,
~
b〉 = 〈

~
a,~b〉 = gika

ibk.

Symmetry property of the dot product yields gki = gik.
Similarly, if g−1 is an inverse linear mapping g−1 : Vn → V n, then

xi = gikxk and

~
a ·

~
b = gikaibk.

The tensor gik is also symmetrical and

gikg
kj = δji .

The tensors gik and gik are called fundamental metric tensors of the
space V n.

Lowering of index operation:

xi = gikx
k.

Raising of index operation:

xi = gikxk.

The operation of lowering and raising of indices can be applied to ten-
sors of an arbitrary valence:

Pikl = gimP
m
kl = gkmP

m
i l , Qik = gimQ k

m = gimgknQmn.

Norm of a vector xi:
‖xi‖2 = gikx

ixk.

If the quadratic form gikx
ixk is positive (negative) definite then the

space is called Euclidean space and denoted as En. A space with the in-
definite quadratic form gikx

ixk is called Pseudo–Euclidean space.
If the dot product is defined independently then the components of the

metric tensor gik in the basis (~ei) are defined as

gik = ~ei · ~ek, gik =
~
ei ·

~
ek.
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The basis in which gik = 0 at i 6= k is called orthogonal ; if in addition

gik =

{
±1, i = k,
0, i 6= k

the basis is called orthonormal .
In a orthonormal basis of Pseudo–Euclidean Minkowski space the metric

tensor is:

(gik) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
Vectors ~x having ‖~x‖2 < 0 are called time-like; vectors ~x having

‖~x‖2 > 0 are called space-like and finally vectors ~x that norm ‖~x‖2 = 0 for
~x 6= ~0 are called isotropic.

Changes of basis that conserve the form gik =

{
±1, i = k,
0, i 6= k

of the

metric tensor are called orthogonal transformations . Orthogonal continu-
ous transformations of a basis are rotations in euclidean spaces and they
are called Lorentz transformation in Minkowsky space.

Example 1. A fundamental tensor of a space V 2 has in some basis
the following components:

(gik) =

(
1 1
1 2

)
.

Determine whether the space V 2 is Euclidean or Pseudo–Euclidean. Find
dot product of vectors (xi) = (−1, 3) and (yi) = (2,−5), their norm,
components of a covariant bivector wik = x[iyk] and mixed tensor
vik = xiyk + yixk.

Solution. The components of metric tensor gik are the coefficients of
quadratic form gikx

ixk. Therefore according to Sylvester’s criterion the
quadratic form gikx

ixk is positive-definite and thus the space V 2 is Eu-
clidean.

The contravariant metric space components gik can be found by any of
methods of matrix inversion known from linear algebra:

(gik) =

(
2 −1
−1 1

)
.
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Then lowering the index of xi and raising of the index of yi yields:

xi = gikx
k :

x1 = g1kx
k = g11x

1 + g12x
2 = 1 · (−1) + 1 · 3 = 2;

x2 = g2kx
k = g21x

1 + g22x
2 = 1 · (−1) + 2 · 3 = 5.

yi = gikyk :
y1 = g1kyk = g11y1 + g12y2 = 2 · 2 + (−1) · (−5) = 9;
y2 = g2kyk = g21y1 + g22y2 = (−1) · 2 + 1 · (−5) = −7.

Dot product and norms are

~x · ~y = gikx
iyk = g11x

1y1 + g12x
1y2 + g21x

2y1 + g22x
2y2 = −17,

‖~x‖2 = gikx
ixk = 13, ‖~y‖2 = giky

iyk = 53.

To find the bivector wik = x[iyk] = 1
2(xiyk − xkyi) it is sufficient to

calculate the only component w12:

w12 =
1

2
(x1y2 − x2y1) =

1

2
(2 · (−5)− 5 · 2) = −10.

Then
(wik) =

(
0 −10
10 0

)
.

And components of the tensor vik = xiyk + yixk are

(vik) =

(
16 50
−8 −50

)
.

Example 2. Let (~e1, ~e2) be a basis on Euclidean plane E2, |~e1| =
= |~e2| = 1, and the angle between basis vectors be α (0 < α < π

2 ).
Construct the reciprocal basis (

~
e1,

~
e2). Illustrate geometrical sense of con-

travariant and covariant components of a vector ~x.
Solution. The bases (~e1, ~e2) and (

~
e1,

~
e2) are reciprocal if

~e1 ·
~
e1 = 1, ~e1 ·

~
e2 = 0, ~e2 ·

~
e1 = 0, ~e2 ·

~
e2 = 1.

Therefore ~e1 ⊥
~
e2 and ~e2 ⊥

~
e1, and their norms are

|
~
e1| = 1

sinα
, |

~
e2| = 1

sinα
,

~
e1 ·

~
e2 = −cosα

sinα
.
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Fig. 1.2

To find coordinates of an arbitrary vector
~x geometrically in the unit basis (~e1, ~e2) we
are to place the basis in the beginning of the
vector, then to draw through the end of the
vector ~x two lines that are parallel to the
basis vectors and finally to find the length of
the corresponding segments cut off by above
lines on the extension of the basis vectors.
In this way the coordinate x1 of the vector ~x
in the basis (~e1, ~e2) is length of the segment
OA, and the coordinate x2 is length of the
segment OD as it is shown on fig. 1.2. In the
non-unity basis (

~
e1,

~
e2) the coordinate x1 of

the vector ~x of is the length of the segment
OC divided by norm of the vector

~
e1 :

x1 =
OC

|
~
e1|

= OC sinα = OB.

Similarly we find that the coordinate x2 is length of the segment OF .
Thus, covariant coordinates of a vector in an unity basis are the seg-

ments cut off by lines that are perpendicular to the basis vectors. If the
angle α between the basis vectors tends to π/2, then xi tends to xi and
the difference between covariant and contravariant coordinates vanishes.

From geometrical approach it is easy to calculate that

x1 = OA + AB = x1 + x2 cosα;

x2 = OD + DF = x1 cosα+ x2.

To find coordinates xi algebraically we are preliminary to find covariant
metric tensor components:

(gik) =

(
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

)
=

(
1 cosα

cosα 1

)
.

Then lowering the index of the vector xi we obtain the same result:

x1 = g1kx
k = x1 + x2 cosα;

x2 = g2kx
k = x1 cosα+ x2.
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Example 3. Let (~e1, ~e2, ~e3) be an arbitrary basis in E3. Find the
reciprocal basis (

~
e1,

~
e2,

~
e3).

Solution. The condition for bases in E3 to be reciprocal is

~e1 ·
~
e1 = 1, ~e2 ·

~
e1 = 0, ~e3 ·

~
e1 = 0 and so forth.

Then it is clear that
~
e1 ⊥ ~e2 and

~
e1 ⊥ ~e3, therefore the vector

~
e1 is collinear

to the vector ~e2 × ~e3:

~
e1 = k(~e2 × ~e3).

The coefficient k can be found from the condition ~e1 ·
~
e1 = 1:

~e1 · k(~e2 × ~e3) = 1 ⇒ k =
1

~e1~e2~e3
.

The other vectors can be found by the same way. Finally the reciprocal
basis is

~
e1 =

~e2 × ~e3

~e1~e2~e3
,

~
e2 =

~e3 × ~e1

~e1~e2~e3
,

~
e3 =

~e1 × ~e2

~e1~e2~e3
.

Exercises
Let gik be a fundamental metric tensor. Determine whether the space

V 2 is Euclidean or Pseudo–Euclidean. Find dot product of vectors xi and
yi, their norm, components of a covariant bivector wik = x[iyk] and mixed
tensor vik = xiyk + yixk.

1.107. (gik) =

(
1 −1
−1 2

)
, (xi) = (2, 1), (yi) = (−2, 3).

1.108. (gik) =

(
1 −1
−1 −3

)
, (xi) = (2, 1), (yi) = (1,−3).

1.109. (gik) =

 1 0 −1
0 2 1
−1 1 2

, (xi) = (1,−1, 1), (yi) = (−1, 0, 2).

1.110. (gik) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, (xi) = (1,−1, 1, 1), (yi) = (1, 1, 0, 0).
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Find components aij, a j
i , aij of the following tensors:

1.111. (aij) =

(
9 −5
−5 3

)
, (gij) =

(
2 3
3 5

)
.

1.112. (aij) =

(
1 2
3 4

)
, (gij) =

(
2 5
5 13

)
.

1.113. (aij) =

 0 1 3
2 3 5
3 5 7

, (gij) =

 21 −10 −4
−10 5 2
−4 2 1

.
Find components aijkl and aijkl of the following tensors:

1.114. (aijkl) =


1 1
0 1

∣∣∣∣ 1 1
0 1

1 1
0 1

∣∣∣∣ 2 2
0 2

, (gij) =

(
2 5
5 13

)
.

1.115. (aijkl) =


1 2
−4 −3

∣∣∣∣ 3 4
−2 −1

−4 −3
5 6

∣∣∣∣ −2 −1
7 8

, (gij) =

(
1 1
1 2

)
.

1.116. Find components g k
i and gki of the metric tensor.

1.117. Show that the metric tensor (gik) = diag(1, 1) of Euclidean
plane is invariant to transformation

~e1′ = ~e1 cosϕ+ ~e2 sinϕ,
~e2′ = −~e1 sinϕ+ ~e2 cosϕ.

1.118. Show that the metric tensor (gik) = diag(−1, 1) of Pseudo–
Euclidean plane is invariant to transformation

~e1′ = ~e1 coshϕ+ ~e2 sinhϕ,
~e2′ = ~e1 sinhϕ+ ~e2 coshϕ.

Let (~i,~j,~k) be an orthonormal basis in E3. Find the reciprocal basis to
the basis (~e1, ~e2, ~e3).

1.119. ~e1 =~i− 2~j, ~e2 = −~i +~j.

1.120. ~e1 = −~i +~j, ~e2 = 2~i + 3~j.

31



1.121. ~e1 = 3~i− 4~j, ~e2 = −~i + 2~j + 2~k, ~e3 =~i +~j + ~k.

1.122. ~e1 =~i− 2~j − ~k, ~e2 = 4~i + 2~j − ~k, ~e3 = −3~i +~j + ~k.

1.7. Tensors in Euclidean space E3

In Euclidean spaces covariant and contravariant components are equal
in orthonormal bases. In this case there is no difference between upper and
lower indices and all indices are considered to be lower for convenience.
Therefore the summation convention assumes summation over two identical
indices.

Levi-Civita’s symbol if a completely antisymmetrical object εijk that

εijk =

 0, if any tow indices are equal;
+1, if ijk is an even permutation of 1, 2, 3;
−1, if ijk is an odd permutation of 1, 2, 3.

Properties of Levi-Civita’s symbol :

1) εijk =

∣∣∣∣∣∣
δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣∣∣∣∣∣;
2) εijk · εmnl =

∣∣∣∣∣∣
δim δin δil
δjm δjn δjl
δkm δkn δkl

∣∣∣∣∣∣;
3) εijkεklm = δilδjm − δimδjl;
4) εijkεjkl = 2δil;

5) εijkεijk = 6.

Vector algebraic operation can be written in an orthonormal basis ~ei as
follows:

1) basis decomposition:
~a = ai~ei;

2) dot product:
~a ·~b = akbk;

3) cross product:
~a×~b = ~eiεijkajbk;
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4) scalar triple product:

(~a×~b) · ~c = εijkaibjck.

Example 1. Write down components of the vector ai = εijkbjk.
Solution. The first component of the vector ai is equal to a1 = ε1jkbjk.

Since Levi-Civita’s symbol equals zero if any two indices are identical there
are only two nontrivial summands:

a1 = ε123b23 + ε132b32 = b23 − b32.

Similarly we obtain

a2 = ε213b13 + ε231b31 = b31 − b13,

a3 = ε312b12 + ε321b21 = b12 − b21.

Example 2. Find an antisymmetric tensor bjk from the equation

bi =
1

2
εijkbjk.

Solution. First we transvect the vector bi with εpqi and apply prop-
erty 3) of Levi-Civita’s symbol:

εpqibi =
1

2
εpqiεijkbjk =

1

2
(δpjδqk − δpkδqj)bjk =

bpq − bqp
2

.

Since the tensor bpq is antisymmetric, i. e. bpq = −bqp, then bpq = εpqibi.
The antisymmetric tensor bpq = εpqibi is called dual tensor to the vector bi.

Example 3. Expand the double cross product ~a× (~b× ~c).
Solution. Write down the product ~a× (~b× c) in orthonormal basis and

use property 3) of Levi-Civita’s symbol as follows:

~a× (~b× ~c) = ~eiεijkaj(~b× ~c)k = ~eiεijkajεklmblcm = ~eiεijkεklmajblcm =

= ~ei(δilδjm − δimδjl)ajblcm = ~eiajbicj − ~eiajblci =

= (~eibi)(ajcj)− (~eici)(ajbj) = ~b(~a · ~c)− ~c(~a ·~b).

Example 4. Show that the determinant of a matrix 3 × 3 can be
written as

det(aij) = εijka1ia2ja3k.
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Solution. It is known that

(~a×~b) · ~c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = εijkaibjck.

If we assume ai = a1i, bi = a2i, ci = a3i, we obtain required expression.
Example 5. Write down in a brief form the solution of an inhomoge-

neous system of linear equations aikxk = bi, i, k = 1, 3, if det(aik) 6= 0.
Solution. According to Cramer’s rule and Example 4 the solution can

be written as

x1 =
1

det(aik)

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣ =
εijkbia2ja3k

εpqra1pa2qa3r
,

x2 =
εijka1ibja3k

εpqra1pa2qa3r
, and x3 =

εijka1ia2jbk
εpqra1pa2qa3r

.

Exercises
1.123. Write down components of a tensor bpq = εpqibi.
1.124. Let a = det(aik). Show that aεijk = εmnpaimajnakp and

a =
1

2
εijkεmnpaimajnakp.

1.125. Let a = det(aik). Show that the algebraic adjunct of an element

aik can be written as Ars =
∂a

∂ars
=

1

2
εrjkεsnpajnakp, and then a =

1

3
Arsasr.

1.126. Show that in an orthonormal basis (~e1, ~e2, ~e3) Levi-Civita’s sym-
bol is equal to

εijk = (~e1 × ~e3) · ~e3.

1.127. Let (~e1, ~e2, ~e3) an arbitrary basis in a space E3 and g = det(gik).
Prove that

a)
1

g
= det(gik), b) g = |(~e1 × ~e3) · ~e3|.

1.128. Prove that g = det(gik) is not a scalar.
1.129. Expand the double cross product (~a×~b)× ~c.
1.130. Prove Lagrange’s identity: (~a × ~b) · (~c × ~d) = (~a · ~c)(~b · ~d) −

−(~a · ~d)(~b · ~c). Find (~a×~b)2.
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Prove the following identities:

1.131. (~a×~b)× (~c× ~d) = ~b(~a~c~d)− ~a(~b~c~d) = ~c(~a~b~d)− ~d(~a~b~c).

1.132.
(
(~a×~b)× (~b× ~c )

)
· (~c× ~a) =

(
~a~b~c
)2
.

1.133. ~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = 0.

1.134. (~a×~b) · (~c× ~d) + (~b× ~c) · (~a× ~d) + (~c× ~a) · (~b× ~d) = 0.

1.135. Write the given expression in a vector form:
a) εinlεirsεlmpεstpanarbmct; b) εinlεkrsεlmpεstpara

′
narbkb

′
ictc

′
m.

1.136. Let a cartesian coordinate system (x1, x2, x3) be firstly rotated
by the angle π/6 around the x3 axis, and then be rotated by the angle π/2
around x1′ axis in such a way that the axis x2′ coincides with the axis x3.
Find the transformation matrix.

1.137. Let (~ei) and (~ei′) be orthonormal bases. Euler angles are intro-
duced as follows (fig. 1.3):

a) an angle θ is the angle between vectors ~e3 and ~e3′;
b) an angle ϕ is the angle between vectors ~e1 and ~u, where the vector ~u

is the unit vector along the line of intersection of planes containing vectors
(~e1, ~e2) and (~e1′, ~e2′). Three vectors ~u, ~e3 and ~e3′ have to form a right-hand
triple;

c) an angle ψ is the angle between vectors ~u and ~e1′.
Find the transformation matrix from the basis (~ei) to (~ei′).

Fig. 1.3



Chapter 2

Differential geometry

2.1. Vector function of a real variable

Let T be a connected set of R (segment, interval, etc.) A vector function
of a real variable is the mapping of each number t ∈ T onto a vector
~r(t) ∈ E3.

Hodograph of vector function ~r(t) is the locus of the end of ~r(t) for
different values of parameter t, the beginning of ~r(t) being constant.

The vector ~r0 is called limit of vector function ~r(t) at a point t0 (as
t → t0), if for all ε > 0 there exists δ > 0 such that for all t ∈ T ,
0 < |t− t0| < δ, implies |~r(t)− ~r0| < ε and written

lim
t→t0

~r(t) = ~r0.

If vector functions ~r(t), ~R(t) and a scalar function λ(t) have limits ~r0,
~R0 and λ0 as t→ t0 correspondingly there exist the following limits:

1) lim
t→t0

(~r(t)± ~R(t)) = ~r0 ± ~R0;

2) lim
t→t0

λ(t)~r(t) = λ0~r0;

3) lim
t→t0

~r(t) · ~R(t) = ~r0 · ~R0;

4) lim
t→t0

~r(t)× ~R(t) = ~r0 × ~R0.

A vector function ~r(t) is called continuous at the point t0 ∈ T , if it is
defined in neighborhood of this point and

lim
t→t0

~r(t) = ~r(t0).

A vector function ~r(t) is called continuous on a set T , if it is continuous
in every point of T .

If vector functions ~r(t), ~R(t) and a scalar function λ(t) are continuous
on a set T , then functions ~r(t)± ~R(t), λ(t)~r(t), ~r(t) · ~R(t) and ~r(t)× ~R(t)
are continuous on the set T .
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A vector function ~r(t) is called differentiable at the point t0 ∈ T , if
there exists the limit

lim
t→t0

~r(t)− ~r(t0)

t− t0
,

which is called the derivative of the vector function at this point and written
as ~r ′(t0). A vector function ~r(t) is called differentiable on a set T , if it is
differentiable at every point of T .

If vector functions ~r(t), ~R(t) and a scalar function λ(t) are differentiable

on a set T , the following functions are differentiable and

1) (~r(t)± ~R(t))
′
= ~r ′(t)± ~R′(t);

2) (λ(t)~r(t))
′
= λ′(r)~r(t) + λ(r)~r ′(t);

3) (~r(t) · ~R(t))
′
= ~r ′(t) · ~R(t) + ~r(t) · ~R′(t);

4) (~r(t)× ~R(t))
′
= ~r ′(t)× ~R(t) + ~r(t)× ~R′(t).

The second derivative of a vector function ~r is the first derivative of ~r ′(t)
and denoted as ~r ′′(t). Similarly the third derivative ~r ′′′(t) = (~r ′′(t))′, etc.

The regularity class Cn(T ) is a set of all vector functions having n
continuous derivatives on the set T .

In any basis (~i,~j,~k) in E3 a vector function is defined by three functions
x(t), y(t), z(t) as

~r(t) = x(t)~i + y(t)~j + z(t)~k,

and if basis does not depend on t, the combination of properties 1) and 2)
of derivative yields

lim
t→t0

~r(t) =~i lim
t→t0

x(t) +~j lim
t→t0

y(t) + ~k lim
t→t0

z(t),

~r ′(t) = x′(t)~i + y′(t)~j + z′(t)~k.

If a vector function ~r(t) has n continuous derivatives in a neighborhood
of the point t0, the Taylor’s formula with the remainder in Peano’s form
is true:

~r(t) = ~r(t0) + ~r ′(t0)(t− t0) +
1

2!
~r ′′(t0)(t− t0)

2 + . . .+

+
1

n!
~r (n)(t0)(t− t0)

n + ~o
(
(t− t0)

n
)
,
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~o
(
(t− t0)

n
)

= o
(
(t− t0)

n
)
~i + o

(
(t− t0)

n
)
~j + o

(
(t− t0)

n
)
~k.

Riemann’s integral of vector function is defined in the same way as for
real function and possesses the same properties. Indefinite and definite
integrals of vector function can be calculated coordinate-wise:

w
~r(t)dt =~i

w
x(t)dt +~j

w
y(t)dt + ~k

w
z(t)dt.

Example 1. Find the hodograph of the vector function

~r(t) =
2t

t2 + 2
~i +

2t

t2 + 2
~j +

t2 − 2

t2 + 2
~k.

Solution. The vector function ~r(t) has components:

x =
2t

t2 + 2
, y =

2t

t2 + 2
, z =

t2 − 2

t2 + 2
.

To eliminate parameter t from these equations we raise each equality
to the second power and sum them. In the result we obtain the equation
of the sphere

x2 + y2 + z2 = 1.

Moreover, components x and y satisfy equation x− y = 0, that is the
equation on the plane, passing through the origin of coordinates. Thus the
hodograph is the circle that is intersection locus of above sphere and plane.

Example 2. Find the trajectory of a particle if its radius vector satis-
fies the differential equation

~r ′ = ~ω× ~r,

where ~ω ia a constant vector.
Solution. First, calculate dot product of both part of the differential

equation and the vector ~r:

~r · ~r ′ = ~r · (~ω× ~r) = 0.

Therefore the vector ~r is orthogonal to the velocity of the particle ~r ′ at
any time. Since

2~r · ~r ′ = (~r · ~r )′ = 0,

the norm |~r(t)| is constant. This means that the trajectory belongs to a
sphere. Then the end of the radius vector moves in the direction of the
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velocity ~r ′ vector, which is perpendicular to the constant vector ~ω at any
time and thus trajectory belongs to the plane with normal vector ~ω. Finally
the trajectory is an intersection locus of described sphere and plane, that
is the circle being perpendicular to the vector ~ω. The radius and position
of this circle depends on initial conditions.

Exercises
Evaluate the limit of vector functions.

2.1. lim
t→0

~r(t), where ~r(t) =
sin t

t
~i +

cos t− 1

2t
~j + et

2~k.

2.2. lim
t→π

~r(t), where ~r(t) =
sin t

t− π
~i +

t

π
~j +

1 + cos t

t
~k.

2.3. lim
t→1

~r(t), where ~r(t) =
et − e

t− 1
~i +

ln t

1− t
~j + (t− 1) sin

1

t− 1
~k.

2.4. lim
t→∞

~r(t), where ~r(t) = t2
(

cosh
1

t
− 1

)
~i+

t

ln(cosh 2t)
~j+

t3 − 1

t3 + 2
~k.

Find the derivative of vector functions.

2.5. ~r(t) =~ia cos t +~jb sin t + ~kct.

2.6. ~r(t) =~ia cosh t +~jb sinh t + ~kct2.

2.7. ~r(t) =~iet cos t +~jet sin t + ~ket.

2.8. ~r(t) =~i(t− sin t) +~j(1− cos t) + ~k4 sin
t

2
.

Find the integral of vector functions.

2.9.
w
~r(t)dt, where ~r(t) =~itet +~j sin2 t −

~k

1 + t2
.

2.10.
w
~r(t)dt, where ~r(t) =~i

t

1 + t2
+~jtet

2

+ ~k cos t.

2.11.
1w

0

~r(t)dt, where ~r(t) =~i
te−t/2

2
+~j

et/2

2
+ ~k et.

2.12.
πw

0

~r(t)dt, where ~r(t) =~i2t +~jπt sin t + ~k π.
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Find hodographs of vector functions.

2.13. ~r(t) = 2~i + t2~j − t2~k.

2.14. ~r(t) =
t2 + 1

(t + 1)2
~i +

2t

(t + 1)2
~j.

2.15. ~r(t) =~i cos t +~j sin t + ~k.

2.16. ~r(t) = t~i +
t2

3
~j +

t3

9
~k.

Find derivatives (here ~r = ~r(t)).

2.17. ~r 2.

2.18. ~r ′2.

2.19. ~r ′ × ~r ′′.

2.20. ~r ′~r ′′~r ′′′.

2.21. (~r ′ × ~r ′′)× ~r ′′′.

2.22.
√
~r 2.

2.23. A vector function ~r (t) is a solution of the differential equation
~r ′′ = ~r ′×~a, where ~a is a constant vector. Express quantities a) (~r ′×~r ′′)2;
b) ~r ′~r ′′~r ′′′ by means of vectors ~a and ~r ′.

2.24. Show that the vector function ~r (t) = ~a cosωt +~b sinωt, where
~a and ~b are constant vectors, satisfies the equations: a) ~r ×~r ′ = ω(~a×~b);
b) ~r′′ +ω2~r = ~0.

2.25. Show that the vector function ~r (t) = ~aeωt +~be−ωt, where ~a and
~b are constant vectors, satisfies the equation ~r′′ −ω2~r = ~0.

2.26. A trajectory of a particle in the cylindrical coordinates is given by

~r(t) = ρ(t)~eρ(ϕ(t)) + z(t)~k,

where ~eρ(ϕ) = ~i cosϕ + ~j sinϕ. Find the square of the instantaneous
velocity ~r ′2.

2.27. A trajectory of a particle in the spherical coordinates is given by

~r(t) = r(t)~er(θ(t),ϕ(t)),

where ~er(θ,ϕ) = (~i cosϕ+~j sinϕ) sin θ+ ~k cos θ. Find the square of the
instantaneous velocity ~r ′2.

2.28. Let (~i,~j,~k) and (~ex(t), ~ey(t), ~ez(t)) be orthonormal bases of sta-
tionary and moving reference frames respectively. Then consider the radius
vector of a particle with respect to the stationary frame of reference as
~r = ~r0 + ~ρ, where the vector ~r0 describes the motion of the origin of the
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moving frame of reference and the ~ρ(t) = x(t)~ex(t) + y(t)~ey(t) + z(t)~ez(t)
is the radius vector of the particle with respect to the moving frame of
reference. Using Poison’s formulas

d~ei(t)

dt
= ~ω(t)× ~ei(t), |~ei(t)| = 1, i = x, y, z,

find the acceleration of the particle.

Find the trajectory of a particle, if the radius vector satisfies the fol-
lowing differential equation.

2.29. ~r ′ = ~e× (~r × ~e), where ~e is a constant unit vector.
2.30. ~r ′ = a~e+~e×~r , where a = const and ~e is a constant unit vector.

2.31. ~r ′ =
1

2
~r 2~e− ~r (~r · ~e), where ~e is a constant unit vector.

2.32. ~r ′′ = ~r ′ × ~a, where ~a is a constant vector.
2.33. Is it possible to state that an arbitrary nonzero vector func-

tion ~r (t) satisfies the equalities: a) |~r ′(t)| = |~r (t)|′; b) ~r (t) · ~r ′(t) =
= |~r (t)||~r (t)|′?

2.34. Prove that if ~e(t) is an unit vector function collinear to a vector
function ~a(t) at any point t, then

~e× d~e =
~a× d~a

~a 2
.

2.35. Suppose ~r (t) and l(t) are three times continuously differentiable
functions on an interval (a, b) and l(t) in addition is a monotonous function.

Denote ~r ′ =
d~r

dt
and ~̇r =

d~r

dl
. Change the variable t to l in the following

expressions: ~r ′, ~r ′′, ~r ′′′, ~r ′2, ~r ′ × ~r ′′, ~r ′~r ′′~r ′′′.
2.36. Prove that continuity of a vector function is equivalent to conti-

nuity of its components.
2.37. Prove that continuity of a function |~r(t)| follows from continuity

of the vector function ~r(t). Is the inverse proposition correct?
2.38. Prove if for all t ∈ [a, b] the norm of a vector function ~r(t) is

constant, then ∀t ∈ [a, b] : ~r ⊥ ~r ′. Is the inverse statement correct?
2.39. Prove if |~r ′(t)| = 0 for all t ∈ [a, b], then ~r(t) = const, ∀t ∈ [a, b].

Is the inverse statement correct?
2.40. Prove that for vectors ~r(t) and ~r ′(t) to be collinear it is necessary

and sufficient for the vector ~r(t) to have a constant direction.
2.41. Prove that a necessary condition for vectors ~r(t) to be parallel to

a fixed plane for all t ∈ (a, b) is that (~r × ~r ′) · ~r ′′ = 0 for all t ∈ (a, b). Is
this condition sufficient?
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2.2. Curves

Let T be a connected set of R (segment, interval, etc). The equations

x = x(t), y = y(t), z = z(t), t ∈ T, (2.1)

where x(t), y(t), z(t) are continuous functions of the parameter t, define
the locus L ∈ E3 that is called a curve. If

(x(t1), y(t1), z(t1)) 6= (x(t2), y(t2), z(t2))

for t1 6= t2, then the curve L is called the simple curve and equations (2.1)
are called parametric equations of the curve L.

The equation

~r = ~r(t) or ~r = x(t)~i + y(t)~j + z(t)~k, t ∈ T,

is called the vectorial parametric equation of the curve L.
For T = [a, b] the points ~r(a) and ~r(b) are called the boundary points

of the curve. If the boundary points are the same and all other points
of the curve are different then the curve is called the simple closed curve.
The single curve can be parameterized in various ways, if the parameter t is
considered as a continuous strictly monotone function of another parameter
l: x = x(t(l)), y = y(t(l)), z = z(t(l)) or ~r = ~r(t(l)).

The system of equations{
F1(x, y, z) = 0,
F2(x, y, z) = 0,

defines the curve as the locus of common points of surfaces F1(x, y, z) = 0
and F2(x, y, z) = 0 if vectors

∂F1

∂x
~i +

∂F1

∂y
~j +

∂F1

∂z
~k and

∂F2

∂x
~i +

∂F2

∂y
~j +

∂F2

∂z
~k

are not collinear.
A curve L : ~r = ~r(t), t ∈ T is called the smooth curve at a point

t0 ∈ T if ~r(t) ∈ C1 and ~r ′(t0) 6= ~0. If ~r(t) ∈ Cn, n > 2, and ~r ′ 6= 0, then
the curve is called the regular curve.

The length of a smooth simple curve ~r = ~r(t), t ∈ [a, b] is

l =

bw

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

bw

a

|~r ′(t)|dt.
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A continuous strictly increasing and positive for all t > a function

l(t) =

tw

a

|~r ′(ξ)|dξ

is called the natural parameter of a curve. We denote the derivative of a
vector function ~r(t(l)) in respect of the natural parameter as

~̇r =
d~r

dl
.

Example 1. Write a parametric equation of the curve

cosx− x + y2 = 0, y 6 0.

Solution. We can solve the equation cosx − x + y2 = 0 in respect
of the variable y: y = ±

√
cosx− x. The condition y 6 0 allows us to

choose an appropriate branch of the square root namely the negative one.
In addition in order to the real function y(x) to be defined, the radicand
are to be nonnegative. It is possible for all x ∈ (−∞, x0], where x0 is the
solution of the equation cosx = x. Finally the parametric equation of the
curve is:

x = x, y = −
√

cosx− x, x ∈ (−∞, x0].

Example 2. Write a parametric equation of the curve

x3 = axy − ay2.

Solution. Functions x3 and axy − ay2 are homogeneous. In this case
it can be convenient to use a parametrisation as y = xt. Substituting y in
the curve equation we obtain

x3 = ax2(t− t2),

and finally

x = at(1− t), y = at2(1− t), t ∈ (−∞,+∞).

Example 3. Write a parametric equation of the curve

(x2 + y2)3 = 2a4(x2 − y2).
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Solution. Me t h o d 1. Similarly to the Example 2 we can notice that
functions (x2 + y2)3 and x2 − y2 are homogeneous and it is possible to
introduce a parameter t as y = xt. In this case we obtain

x = ±a 4

√
2(1− t)2

(1 + t2)3
, y = ±at 4

√
2(1− t)2

(1 + t2)3
, |t| 6 1.

A certain pair of signs before variables x and y specify the part of the
curve which belongs to a certain quadrant. Therefore the whole curve is a
union of the following four simple curves:

x = +a 4

√
2(1− t)2

(1 + t2)3
, y = +at 4

√
2(1− t)2

(1 + t2)3
, |t| 6 1,

x = −a 4

√
2(1− t)2

(1 + t2)3
, y = +at 4

√
2(1− t)2

(1 + t2)3
, |t| 6 1,

x = −a 4

√
2(1− t)2

(1 + t2)3
, y = −at 4

√
2(1− t)2

(1 + t2)3
, |t| 6 1,

x = +a 4

√
2(1− t)2

(1 + t2)3
, y = −at 4

√
2(1− t)2

(1 + t2)3
, |t| 6 1.

Of course the parametrization y = xt is not very convenient.
M e t h o d 2. In this example it is better to use polar coordinates:

x = aρ(ϕ) cosϕ, y = aρ(ϕ) sinϕ.

Substituting these x and y into the curve implicit equation we obtain

(a2ρ2(cos2ϕ+ sin_2ϕ))3 = 2a6ρ2(cos2ϕ− sin2ϕ),

and ρ4 = 2 cos 2ϕ. Thus the parametric equation is,

x = a
4
√

2 cos 2ϕ cosϕ, y = a
4
√

2 cos 2ϕ sinϕ.

The functions x(ϕ) and y(ϕ) are 2π-periodical and defined at

ϕ ∈
[
−π

4
,
π

4

]⋃[
3π

4
,
5π

4

]
.
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Example 4. Write a parametric equation of the curve

x2 + y2 = cz,
y

x
= tan

z

c

between points A
(
c

2

√
π

2
,
c

2

√
π

6
,
cπ

6

)
and B(x0, y0, z0), z0 > 0.

Solution. Introduce a parameter t as z = ct. Then substitution of the
second equation y = x tan t into the first yields

x2(1 + tan2 t) = c2t.

Hence x = ±c
√
t cos t, y = ±c

√
t sin t. Since we are to find the part of

the curve between points A and B, the coordinates x and y are positive.
The point A corresponds to the parameter value t =

π

6
, and B to t =

z0

c
.

Finally the parametric equation is

x = c
√
t cos t, y = c

√
t sin t, z = t, t ∈

[π
6
,
z0

c

]
.

Example 5. Write a parametric equation of the curve

x2 + y2 = R2, 2xy = z.

Solution. The curve consists of common points of the cylinder x2 +
+ y2 = R2 and hyperbolic paraboloid 2xy = z. Since the first equation
does not contain the coordinate z it is convenient to use a parametrization
as x = R cos t, y = R sin t. Substituting x and y to the second equation
we find z = 2R2 sin t cos t. Finally we have

x = R cos t, y = R sin t, z = R2 sin 2t, t ∈ [0, 2π].

Example 6. Write a parametric equation of the curve

x = y2 + z2, x− 2y + 4z = 4.

Solution. Elimination of the variable x results in

y2 + 2y + z2 − 4z = 4.

This is the equation of the projection of the cure onto the plane yOz.
Completing squares in both variables we obtain the equation of a circle in
the form (y + 1)2 + (z − 2)2 = 9, that can be parameterized as

y + 1 = 3 cos t, z − 2 = 3 sin t.
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Then finding the x from, for example, the equation of plane we obtain

x = 6(cos t−2 sin t−1), y = −1+3 cos t, z = 2+3 sin t, t ∈ [0, 2π].

Example 7. Show that the curve

x = at cos t, y = at sin t, z =
a2t2

2p

belongs to the paraboloid of revolution and the projection of the curve onto
the plane xOy is the Archimedean spiral.

Solution. Raising the first two equation to the second power and then
adding them we obtain

x2 + y2 = a2t2(cos2 t + sin2 t) = a2t2 = 2pz.

Therefore coordinates x, y, and z are related by the expression

x2 + y2 = 2pz,

that is the equation of a paraboloid of revolution.
The projection of the curve onto the plane xOy is

x = at cos t, y = at sin t.

In polar coordinates this equation looks as ρ = aϕ, that is the equation of
a Archimedean spiral.

Example 8. Find natural parametrization of the curve

x = t, y =
√

2 ln t, z =
1

t
.

Solution. A natural parameter l is the length of a curve arc between
an arbitrary fixed point corresponding t = a and variable point t = t. The
dependence l(t) is found by the formula

l(t) =

tw

a

|~r ′(ξ)|dξ.

Calculation gives us

x′ = 1, y′ =

√
2

t
, z′ = − 1

t2
,

hence

|~r ′(t)| =
√

1 +
2

t2
+

1

t4
= 1 +

1

t2
.
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Suppose a = 1. Then

l(t) =

tw

1

(
1 +

1

ξ2

)
dξ = t− 1

t
.

Find parameter t as a function of l: t =
l ±
√
l2 + 4

2
. Since t > 0, then

we choose the plus sign.
Finally the natural parametrization can be written as

x =
l +
√
l2 + 4

2
, y =

√
2 ln

l +
√
l2 + 4

2
, z =

2

l +
√
l2 + 4

.

Exercises
2.42. A point M rotates around a fixed straight line with constant

angular velocity and simultaneously moves parallel to the line with constant
velocity. The trajectory of the point is called cylindrical helix. Write
a parametric equation of the curve and find projections onto coordinate
planes.

2.43. A point M moves along the generatrix of a circular cylinder with
a speed proportional to the path traveled. The cylinder rotates around its
axis with a constant angular velocity. Write a parametric equation of the
trajectory of the point M.

2.44. A line OT is located at an acute angle to the Oz axis and rotates
around it with a constant angular velocity ω. A point M moves along the
line OT with a constant speed. The trajectory of a point is called a conical
helix. Write a parametric equation for this curve.

2.45. A line OT is located at an acute angle to the Oz axis and rotates
around it with a constant angular velocity ω. A point M moves along the
line OT with a speed proportional to the distance OM between the moving
point M and the fixed point O. The point M describes the conical spiral.
Write a parametric equation of the curve.

2.46. A circle of radius a rolls along a straight line without slipping.
A point M is rigidly connected to the circle and is at a distance d from its
center. For d = a the trajectory of the point is called cycloid, for d < a —
curtailed cycloid, for d > a — elongated cycloid . Write a parametric
equation of the trajectory of the point M.
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2.47. A circle of radius r rolls without slipping along a circle of radius
R, remaining outside it. The trajectory of a point M, of the first circle is
called epicycloid. Write a parametric equation for this curve.

2.48. A circle of radius r rolls without slipping along a circle of radius
R, remaining inside it. The trajectory of a point M, of the first circle is
called hypocycloid. Write a parametric equation for this curve.

2.49. The axes of two circular cylinders of radii a and b intersect at right
angle. Two closed curves are formed at the intersection of the cylinders,
the set of which is called bicylindrics. Write a parametric equation of the
curve. What happens when a = b?

2.50. A sphere of radius 2a is intersected by a circular cylinder of
diameter a so that one of the generators of the cylinder passes through the
center of the sphere. The line obtained in the section is called the Viviani’s
curve. Write its parametric equation.

Find a parametric equation of the following plane curves.
2.51. The segment AB, connecting points A(1,−2) and B(4,−3).
2.52. A part of the parabola y = 2x2, connecting points A(−1, 2) and

B(2, 8).
2.53. x3 + 2x2 + y2 = 3, y > 0.

2.54. lnx− y + sinx = 0.

2.55. Ellipse
x2

a2
+

y2

b2
= 1.

2.56. Hyperbola
x2

a2
− y2

b2
= 1.

2.57.
√

x

a
+

√
y

b
= 1 from the point A(a, 0) to B(0, b).

2.58. Astroid x2/3 + y2/3 = a2/3.

2.59. (x + y)2/3 − (x− y)2/3 = a2/3.

2.60. x(x− y)2 + y = 0, x > 0.

2.61. 2(x + y) = (x− y)2.

2.62. (y − x)2 = a2 − x2.

2.63. x4 = axy2 + ay3.

2.64. a4y4 = x4(a2 − x2).

2.65. x6 + y6 = a2x4 + b2y4.
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2.66. y2(a− x) = x2(a + x).

2.67. (x2 + y2)2 = 2a2xy.

2.68. x4−y4 +xy = 0 from the point A
(√

2/15, 2
√

2/15
)
to B(0, 0).

Find a parametric equation of the following curves.
2.69. The segment AB, connecting points A(1, 3,−1) and B(2, 3, 0).

2.70. x2 + y2 = R2, z = h.

2.71. x2 + y2 = R2, x + y = z.

2.72. y2 = 2px, x + y − z = 0.

2.73. x2 + y2 + z2 = R2, x2 + y2 =
R2

2
, z > 0.

2.74. x2 + y2 + z2 = 2ax, x2 + y2 = z2.

2.75. x2 + y2 + z2 = R2, x + y + z = 0.

2.76. x2 − y2 + z2 = 1, y2 + z2 − x2 = 1.

2.77. z = x2 − y2, x + y − z = 0.

2.78. x2 − y2 =
9

8
z2, (x− y)2 = a(x + y) from the point A(0, 0, 0) to

B(x0, y0, z0).
2.79. x2 + y2 + z2 = a2,

√
x2 + y2 cosh

(
arctan

y

x

)
= a, z>0, from

the point A(a, 0, 0) to B(x0, y0, z0).
2.80. Show that the curve x = a cos t, y = b sin t, z = ct belongs to

the elliptic cylinder.
2.81. Show that the curve x = a cosh t, y = b sinh t, z = ct belongs to

the hyperbolic cylinder.
2.82. Show that the curve x = et cos t, y = et sin t, z = 2t belongs to

the surface x2 + y2 = ez.
2.83. Show that the curve x = a cos3 t, y = a sin3 t, z = a cos 2t

belongs to the cylinder whose directrix is an astroid and the generatrix is
parallel to the Oz axis.

2.84. Show that the curve x = sin 2t, y = 1 − cos 2t, z = 2 cos t
belongs to the sphere and is the intersection of the parabolic and circular
cylinders.

2.85. Show that the curve x = a sin2 t, y = b sin t cos t, z = c cos t
belongs to the ellipsoid.

2.86. To what class of regularity belongs the curve

x =

{
et, t < 0,
0, t > 0;

y = t; z =

{
0, t 6 0,
e−1/t, t > 0.
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2.87. Determine whether the following parameterizations are equiva-
lent:  x = a cos t,

y = a sin t,
z = ht

and

 x = a cos(τ3 + 1),
y = a sin(τ3 + 1),
z = h(τ3 + 1),

where t ∈ [0, 2π], τ ∈ [−1, 3
√

2π− 1].
2.88. Prove that parameterizations

x = a cos t, y = a sin t, z = ht, t ∈ [0, 4π]

and
x = a cos τ2, y = a sin τ2, z = 2hτ, τ ∈ [0, 2π]

are not equivalent, i. e. these are different curves.
2.89. Show that the length of a curve ρ = ρ(ϕ), ϕ1 6 ϕ 6 ϕ2 in

polar coordinates is calculated as l =

ϕ2w

ϕ1

√
ρ2 + (ρ′)2dϕ.

Find the length of the following curves.
2.90. y = a cosh

x

a
, x ∈ [−a, a].

2.91. x = a(cos t + t sin t), y = a(sin t− t cos t), t ∈ [0, 2π].

2.92. x = a(2 cos t + cos 2t), y = a(2 sin t + sin 2t), t ∈ [0, 2π].

2.93. x = a

(
ln cot

t

2
− cos t

)
, y = a sin t, t ∈

[π
4
,
π

2

]
.

2.94. ρ = a cosϕ, ϕ ∈ [0, 2π].

2.95. ρ = a(1 + cosϕ), ϕ ∈ [0, 2π].

2.96. ρ = a sin3 ϕ

3
, ϕ ∈ [0,π].

2.97. ρ = aϕ, ϕ ∈ [0, 2π].

2.98. ρ = a tanh
ϕ

2
, ϕ ∈ [0,π].

2.99. ρ =
a

1 + cosϕ
, ϕ ∈

[
−π

2
,
π

2

]
.

2.100. x =

√
3

2
t2, y = 2− t, z = t3, t ∈ [0, 1].

2.101. x = t, y =
t3

3
, z = − 1

2t
, t ∈ [1, 2].
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Write the natural parametrization of the following curves.
2.102. x = a cos t, y = a sin t, z = ht.

2.103. x = cos3 t, y = sin3 t, z = cos 2t.

2.104. x = a cosh t, y = a sinh t, z = at.

2.105. x = t− sin t, y = 1− cos t, z = 4 sin
t

2
.

2.106. x = et, y = e−t, z =
√

2t.

2.3. Frenet trihedron. Curvature and torsion

Let L ∈ C2 have a natural equation ~r = ~r(l), l ∈ [0, l0]. Then at any
point M of the curve L it is possible to build the moving trihedron of the
curve or Frenet trihedron comprising tangent, principal normal, binormal,
normal plane, osculating plane and rectifying plane (fig. 2.1).

The line through the point M of the curve L parallel to the vector ~̇r
is called the tangent to the curve at M . The unit directing vector of the
tangent ~τ is

~τ = ~̇r.

The plane through the point M of the curve L perpendicular to the
tangent is called the normal plane.

The line through the point M of the curve L parallel to the vector ~̈r is
called the principal normal of the curve at the point M . The unit directing
vector of the principal normal ~n is

~n =
~̈r

|~̈r |
.

Fig. 2.1
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The plane through the point M of the curve L spanned over the vectors
~̇r and ~̈r or ~τ and ~n is called the osculating plane of the curve. A plane
curve belongs to its osculating plane.

The line through the point M of the curve L perpendicular to the oscu-
lating plane is called binormal . The unit directing vector of the binormal
is chosen in such a way that the triple (~τ, ~n, ~β) is right-handed:

~τ× ~n = ~β, ~n× ~β = ~τ, ~β× ~τ = ~n.

Thus the vector ~β can be calculated as

~β =
~̇r × ~̈r

|~̈r |
.

The plane through the pointM of the curve L spanned over the tangent
and binormal is called the rectifying plane.

Let M0 and M be to points of the curve L, ∆l the length of the arc
between these points and ∆θ the angle of the tangents at M0 and M and
∆ϑ the angle of the binormal at M0 and M . The curvature k and torsion
κ of the curve L at the point M0 are the rate of change of direction of the
tangent and binormal at M0 respectively:

k = lim
M→M0

∣∣∣∣∆θ∆l

∣∣∣∣ , κ = lim
M→M0

∆ϑ

∆l
.

The curvature of a curve in space is always positive and the torsion is
considered negative if vectors ~n and ~̇β are codirectional. The formulas for
calculation of curvature and torsion differs in dependence on whether the
parametrisation is natural or not:

k = |~̈r| or k =
|~r ′ × ~r ′′|
|~r ′|3

;

κ =
~̇r ~̈r

...
~r

|~̈r |2
or κ =

~r ′~r ′′~r ′′′

|~r ′ × ~r ′′|2
.

The value R =
1

k
is called the radius of curvature. The circle in the

osculating plane with center at the point ~r +
1

k
~n is called the circle of

curvature or osculating circle and its center the center if curvature. The
circle of curvature of a curve at a point of the curve has the contact of the
second order (~̇r = ~̇rC , ~̈r = ~̈rC) with the curve.
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The equations 
~̇τ = k~n,

~̇n = κ~β− k~τ,

~̇β = −κ~n,
are called Frenet formulas and are fundamental in the theory of curves.

Example 1. Prove that for the curve ~r = ~r(t), t ∈ T, the second
derivative ~r ′′ belongs to the osculating plane, and the vector ~r ′ × ~r ′′ is
co-directional with the binormal vector ~β.

Solution. It is known that (see problem 2.35)
~r ′ = ~̇r l′ = l′~τ,

~r ′′ = ~̈r l′2 + ~̇r l′′ = kl′2~n + l′′~τ.

Thus the vector ~r ′′ is a linear combination of the vectors ~n and ~τ and
belongs to the osculating plane.

Then calculation of ~r ′ × ~r ′′ yields

~r ′ × ~r ′′ = kl′
3
(~τ× ~n).

Since the curvature is k > 0 and l′ > 0, hence ~r ′ × ~r ′′ � ~β.
Example 2. Write equations of elements of Frenet trihedron for the

curve
r = ~r(t) =~ia cos t +~ja sin t + ~k bt

at the point M0 : t0 = π/4.
Solution. Recall in the beginning basic equations of a line and plane.

A straight line is uniquely defined by a point (x0, y0, z0) and a directing
vector ~a = ax~i + ay~j + az~k. The equation

x− x0

ax
=

y − y0

ay
=

z − z0

az
. (2.2)

is the canonical equation of the line. The general equation of a plane is
written as

A(x− x0) + B(y − y0) + C(z − z0) = 0, (2.3)

where (x0, y0, z0) is a point of the plane and ~N = A~i + B~j + C~k is its
normal vector.

In this example the vector equation of the curve is equivalent to the
system of equations

x = a cos t, y = a sin t, z = bt.
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Substituting the value of the parameter t0 =
π

4
in this system we obtain

the cartesian coordinates of the point M0:

x0 =
a√
2
, y0 =

a√
2
, z0 =

bπ

4
.

Then the directing vector of the tangent of the curve at an arbitrary
point is the vector ~r ′(t):

~r ′(t) = −a sin t~i + a cos t~j + b~k,

and its value at the point t0 is

~r ′(t0) = − a√
2
~i +

a√
2
~j + b~k.

Using formula (2.2) we can write the equation of the tangent at the pointM0:

x− a√
2

− a√
2

=

y − a√
2

a√
2

=
z − bπ

4
b

.

The vector ~r ′(t0) is the perpendicular of the normal plane at the point t0.
Then rewriting the equation (2.3) for our case we obtain the equation of
the normal plane in the form

− a√
2

(
x− a√

2

)
+

a√
2

(
y − a√

2

)
+ b

(
z − bπ

4

)
= 0.

In order to simplify further calculations we find the norm of the vector
~r ′(t). If |~r ′(t)| is constant for all t, then ~r ′(t) ⊥ ~r ′′(t), and the vector
~r ′′(t0) in this case is directing vector of the principal normal. Thus

|~r ′(t)| =
√

a2 sin2 t + a2 cos2 t + b2 =
√

a2 + b2 = const, ∀t;

~r ′′(t) = −~ia cos t−~ja sin t,

and
~r ′′(t0) = − a√

2
~i− a√

2
~j ‖ ~i +~j.
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Finally the equation of the principal normal at the point t0 is

x− a√
2

1
=

y − a√
2

1
=

z − bπ

4
0

or after simplifying

x = y, z =
bπ

4
.

Since the principal normal coincides with the normal of the rectifying plane,
the equation of the latter is(

x− a√
2

)
+

(
y − a√

2

)
= 0,

or
x + y =

√
2a.

It was shown in Example 1 that vectors ~r ′(t) and ~r ′′(t) belong to the
osculating plane. Thus to write the equation of this plane we are to expand
the following determinant which is equal to zero:

(~r − ~r0)~r
′(t0)~r

′′(t0) =

∣∣∣∣∣∣∣∣∣
x− a√

2
y − a√

2
z − bπ

4

− a√
2

a√
2

b

1 1 0

∣∣∣∣∣∣∣∣∣ = 0.

Finally the equation of the osculating plane is

−b
(
x− a√

2

)
+ b

(
y − a√

2

)
− a
√

2

(
z − bπ

4

)
= 0.

Coefficients before parentheses are coordinates of the normal vector to the
osculating plane and this vector ~N = −b~i + b~j − a

√
2~k is collinear with

the binormal. Thus the equation of the binormal is

x− a√
2

−b
=

y − a√
2

b
=

z − bπ

4
−a
√

2
.
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Example 3. Write equations of elements of Frenet trihedron for the
curve

r = ~r(t) = et~i + e−t~j +
√

2t~k

at the point M0 : t0 = 0.
Solution. As it was done in Example 2 we find firstly the coordinates

of the point M0

x0 = 1, y0 = 1, z0 = 0.

The directing vector of the tangent is

~r ′(t) = et~i− e−t~j +
√

2~k

and
~r ′(t0) =~i−~j +

√
2~k.

Therefore we easily can write the equations of the tangent at the point t0:

x− 1

1
=

y − 1

−1
=

z√
2
,

and the normal plane:

(x− 1)− (y − 1) +
√

2z = 0 or x− y +
√

2z = 0.

Then, calculation of |~r ′(t)| yields:

|~r ′(t)| =
√

e2t + e−2t + 2 = 2 cosh t 6= const,

that means that ~r ′′(t) is not collinear to the principal normal.
In that case we find the equations of the osculating plane and binormal.

For that purpose we calculate ~r ′′(t) :

~r ′′(t) = et~i + e−t~j, and ~r ′′(t0) =~i +~j.

And then the equation of the osculating plane is∣∣∣∣∣∣
x− 1 y − 1 z

1 −1
√

2
1 1 0

∣∣∣∣∣∣ = −
√

2(x− 1) +
√

2(y − 1) + 2z = 0

or finally
−x + y +

√
2z = 0.
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The normal vector to the osculating plane ~N1 = −~i + ~j +
√

2~k is the
directing vector of the binormal that readily give us the equation of the
binormal

x− 1

−1
=

y − 1

1
=

z√
2
.

The binormal and the tangent belongs to the rectifying plane therefore
the equation of the latter can be written in the form∣∣∣∣∣∣

x− 1 y − 1 z

1 −1
√

2

−1 1
√

2

∣∣∣∣∣∣ = −2
√

2(x− 1)− 2
√

2(y − 1) = 0,

and finally
x + y = 2.

Finding the normal vector to the rectifying plane ~N2 =~i +~j we write the
equation of the principal normal

x− 1

1
=

y − 1

1
=

z

0
.

Example 4. Write equations of elements of Frenet trihedron for the
line of intersection of the sphere x2 + y2 + z2 = 9 and hyperbolic cylinder
x2 − y2 = 3 at the point M(2, 1, 2).

Solution. The given curve is defined by a system{
F1(x, y, z) = 0,
F2(x, y, z) = 0.

(2.4)

Taking as a parameter for example x we can find from the system (2.4)
functions y(x) and z and write a parametric equation of the curve in the
form

~r = x~i + y(x)~j + z(x)~k.

Differentiating the system (2.4) with respect to x, we can find functions
y′(x), z′(x) and y′′(x), z′′(x) and finally obtain

~r ′x =~i + y′x~j + z′x
~k, (2.5)

~r ′′xx = y′′xx~j + z′′xx
~k. (2.6)
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The system (2.4) in our case is{
x2 + y2 + z2 = 9,
x2 − y2 = 3.

(2.7)

Differentiating each of equations in (2.7) with respect to x and simpli-
fying yields {

x + yy′ + zz′ = 0,
x− yy′ = 0.

(2.8)

At the point M(2, 1, 2) we have{
2 + y′ + 2z′ = 0,
2− y′ = 0,

and solfing this system we find y′ = 2, z′ = −2. Then according to (2.5)

~r ′(M) =~i + 2~j − 2~k.

Similarly we find the second derivative:{
1 + (y′)2 + yy′′ + (z′)2 + zz′′ = 0,
1− (y′)2 − yy′′ = 0.

(2.9)

Substituting into the system (2.9) the point M and the previously found
vector ~r ′(M), we obtain{

1 + 4 + y′′ + 4 + 2z′′ = 0,
1− 4− y′′ = 0,

and finally y′′ = z′′ = −3. Hence

~r ′′(M) = −3~j − 3~k ‖ ~j + ~k.

Then we act as in Example 2 or Example 3. The equation of the
tangent:

x− 2

1
=

y − 1

2
=

z − 2

−2
;

the normal plane

(x− 2) + 2(y − 1)− 2(z − 2) = 0, or x + 2y − 2z = 0;
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the osculating plane∣∣∣∣∣∣
x− 2 y − 1 z − 2

1 2 −2
0 1 1

∣∣∣∣∣∣ = 4(x− 2)− (y − 1) + (z − 2) = 0,

or
4x− y + z − 9 = 0;

the binormal
x− 2

4
=

y − 1

−1
=

z − 2

1
;

the rectifying plane∣∣∣∣∣∣
x− 2 y − 1 z − 2

1 2 −2
4 −1 1

∣∣∣∣∣∣ = −9(y − 1)− 9(z − 2) = 0,

or
y + z − 3 = 0.

the principal normal

x− 2

0
=

y − 1

1
=

z − 2

1
.

Example 5. Calculate the curvature and the torsion of the curve

x = a cosh t, y = a sinh t, z = bt.

at an arbitrary point. For what values of a and b does the torsion of the
curve equal its curvature at all points?

Solution. The formulas for calculating the curvature k and the torsion
κ are

k =
|~r ′ × ~r ′′|
|~r ′|3

, κ =
~r ′~r ′′~r ′′′

|~r ′ × ~r ′′|2
. (2.10)

Since
~r(t) =~ia cosh t +~ja sinh t + ~kbt,

we find
~r ′(t) =~ia sinh t +~ja cosh t + ~kb,

~r ′′(t) =~ia cosh t +~ja sinh t,

~r ′′′(t) =~ia sinh t +~ja cosh t.
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Then calculate the cross product ~r ′ × ~r ′′ :

~r ′ × ~r ′′ =

∣∣∣∣∣∣
~i ~j ~k

a sinh t a cosh t b
a cosh t a sinh t 0

∣∣∣∣∣∣ = −ab sinh t~i + ab cosh t~j − a2~k.

Here for simplification we used the property cosh2 t− sinh2 t = 1. Find the
norms of required vectors:

|~r ′(t)| =
√

a2 sinh2 t + a2 cosh2 t + b2 =
√

a2 cosh 2t + b2,

|~r ′(t)× ~r ′′(t)| =
√
a2b2 sinh2 t + a2b2 cosh2 t + a4 = a

√
b2 cosh 2t + a2.

Substituting the found quantities into the first formula (2.10) we obtain
the curvature:

k =
a
√
b2 cosh 2t + a2

(
√
a2 cosh 2t + b2)3

.

To find the torsion calculate firstly scalar triple product ~r ′~r ′′~r ′′′:

~r ′~r ′′~r ′′′ = (~r ′ × ~r ′′) · ~r ′′′ =

=
(
−~iab sinh t +~jab cosh t− a2~k

)
·
(
~ia sinh t +~ja cosh t

)
= a2b.

Therefore the torsion is

κ =
b

b2 cosh 2t + a2
.

To answer the second question of the problem, we equate the curvature
of the curve with its torsion:

b
(√

a2 cosh 2t + b2
)3

= a
(√

b2 cosh 2t + a2
)3

,

or
b2/3

(
a2 cosh 2t + b2

)
= a2/3

(
b2 cosh 2t + a2

)
.

Since this equality have to be true for all t, we write the system{
a2b2/3 = b2a2/3,
a2/3 = b2/3,

from which it immediately follows that a = b.
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Exercises
Write equations of elements of Frenet trihedron, curvature and torsion

of the following curves at the specified points.
2.107. x = t, y = t3, z = t2 + 4, t0 = 1.

2.108. x = t, y =
t3

3
, z = − 1

2t
, t0 = 1.

2.109. x =

√
3

2
t2, y = 2− t, z = t3, t0 = 1.

2.110. x = t, y =
√
at− t2, z =

√
a2 − at, t0 =

a

2
.

2.111. x = cos3 t, y = sin3 t, z = cos 2t, t0 =
π

4
.

2.112. x = a cosh t, y = a sinh t, z = ht, t0 = 0.

2.113. x = ln(cos t), y = ln(sin t), z =
√

2t, t0 =
π

4
.

2.114. x = t− sin t, y = 1− cos t, z = 4 sin
t

2
, t0 =

π

2
.

2.115. x = et cos t, y = et sin t, z = et, t0 = 0.

2.116. x = sin t, y = cos t, z = tgt, t0 =
π

4
.

2.117. x = t cos t, y = t sin t, z = at, t0 = 0.

2.118.
{

x2 + y2 + z2 = 3,
x2 + y2 = 2,

M0(1, 1, 1).

2.119.
{

y2 + z2 = 25,
x2 + y2 = 10,

M0(1, 3, 4).

2.120.
{

x2 + y2 + z2 = 1,
x2 + y2 = x,

M0

(
1

2
,
1

2
,

1√
2

)
.

2.121.
{

x2 + y2 = z2,
1 + x = y,

M0(3, 4, 5).

2.122.
{

y2 = x,
x2 = z,

M0(1, 1, 1).

2.123.
{

x2 + y2 + z2 = 3,
xy = z,

M0(1, 1, 1).

2.124.
{

x2 + z2 − y2 = 1,
y2 − 2x + z = 0,

M0(1, 1, 1).

2.125.
{

x + sinhx = sin y + y,
z + ez = x + ln(1 + x) + 1,

M0(0, 0, 0).
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2.126. Prove that all normal planes of the curve x = a sin2 t,
y = a sin t cos t, z = a cos t pass through the origin of coordinates.

2.127. Prove that all normal planes of the curve x = a cos t,
y = a sinα sin t, z = a cosα sin t pass through the straight line x = 0,
z + y tanα = 0.

2.128. Find tangents to the curve x = 3t − t3, y = 3t2, z = 3t + t3

that are perpendicular to the vector ~a(3, 1, 1).
2.129. Find tangents to the curve x = t2, y = t, z = et, that are

parallel to the plane x− 2y − 5 = 0.
2.130. Find osculating planes of the curve x = t, y = t2, z = t3

passing through the point M0(2,−1/3,−6).
2.131. Show that the straight line passing through an arbitrary point

M of the curve x = t, y = t2, z = t3 and the axis Oz parallel to the plane
z = 0 belongs to the osculating plane of the curve at the point M.

2.132. Find points of the curve x = 2/t, y = ln t, z = −t2 at which
the binormal is parallel to the plane x− y + 8z + 2 = 0.

2.133. Suppose N is a point on the binormal of the helix at the Point
M , the length of the segment NM being equal for each point M of the
curve. Prove that the locus formed by point N is another helix.

2.134. Let L be a smooth closed curve. Prove that for all vectors ~a
there is a point M ∈ L that the tangent to the curve at this point is
perpendicular to the vector ~a.

2.135. Prove that if all normal planes of the spatial curve pass through
a fixed point, then the curve belongs to a sphere (such curves are called
spherical).

2.136. Prove that if all osculating planes of the spatial curve pass
through a fixed point, then this curve is flat.

2.137. Prove that if all osculating planes of the spatial curve are per-
pendicular to some fixed straight line, the curve is flat.

2.138. Show that for the curve ~r = ~r(l) the following relations hold:

|
...
~r | = k4 + k2κ2 + k̇2,

~̇r · ~̈r = 0, ~̇r ·
...
~r = −k2, ~̈r ·

...
~r = kk̇.

2.139. Prove that Frenet formulas can be written in the form

~̇τ = ~ω× ~τ, ~̇n = ~ω× ~n, ~̇β = ~ω× ~β.

Find Darboux vector ~ω and explain its kinematic meaning.
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2.140. Prove that
a) ~τ ~β ~̇β = κ; b) ~̇β ~̈β

...
~β = κ5 d

dl

(
k

κ

)
; c) ~̇τ ~̈τ

...
~τ = k5 d

dl

(κ
k

)
.

2.141. Prove that if the principal normals of a curve form a constant
angle with some fixed straight line, then

d

dl

 k2 + κ2

k
d

dl

(κ
k

)
+ κ = 0.

2.142. Prove that if the curvature and torsion of a curve ~r = ~r(l) are
not zero then the curve is spherical then and only then

k

κ
=

d

dl

(
k̇

κk2

)
.

2.143. Find the formula for the curvature of a flat curve with the
equation y = f(x).

2.144. Find the formula for the curvature of a flat curve with the
equation in polar coordinates ρ = ρ(ϕ).

2.145. Prove that a curve is the straight line if and only if its curvature
is zero.

2.146. Prove that a curve is flat if and only if its torsion is zero.
2.147. Prove that the curvature of a curve L at a point M is equal to

the curvature of the projection of the curve onto the osculating plane at
the point M.

2.148. Prove that for all closed curve lying on the sphere there is a
point at which the torsion of the curve is zero.

2.149. Prove that the radius of curvature of the conical spiral

x = aekt cos t, y = aekt sin t, z = bekt

is proportional to the distance from the point of the spiral to the cone axis.
2.150. Prove that the curve x = a1t

2 + b1t + c1, y = a2t
2 + b2t + c2,

z = a3t
2 + b3t + c3 is flat and find the plane which contains this curve.

2.151. Find all functions f(t) for which the curve x = a cos t,
y = a sin t, z = f(t) is flat.

2.152. Find all functions f(t) for which the curve x = et, y = 2e−t,
z = tf(t) is flat.
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2.153. Prove that the torsion of the curve ~r(t) = a

tw

0

~e (ξ)× ~e ′(ξ)dξ,

where ~e(t) is a vector function satisfying |~e(t)| = 1 and ~e ′(t) 6= 0, is
constant.

2.4. Smooth surfaces

Let D ⊂ E2 be a closed finite domain of a plane, (u, v) be a carte-
sian coordinate system of the plane and (x, y, z) be cartesian system of
Euclidean space E3. If F : D → E3 is a mapping that

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) ∈ D, (2.11)

where functions x(u, v), y(u, v), z(u, v) are continuously differentiable in
the domain D and

rang

(
x′u
x′v

y′u
y′v

z′u
z′v

)
= 2,

then this mapping F is called the smooth mapping, and the locus Ω =
= F (D) is called the smooth surface. If the mapping F is biunique, then the
surface is called the simple surface, and equations (2.11) is called parametric
equations of the surface or parametrization.

The image of the boundary of the domain D at mapping F is called
the surface boundary. A surface composed of a finite number of smooth
surfaces is called a piecewise smooth surface.

Equation

~r = ~r(u, v) or ~r = x(u, v)~i + y(u, v)~j + z(u, v)~k, (u, v) ∈ D

is called vectorial parametric equation of a smooth surface.
Equations

Φ(x, y, z) = 0 and z = f(x, y)

are called implicit and explicit equations of a surface correspondingly.
Coordinates (u, v) are called curvilinear coordinates on a surface. The

curves
~r = ~r(u, v0) and ~r = ~r(u0, v),

64



where (u, v0) ∈ D, (u0, v) ∈ D are called the coordinate curves in the
surface (u-curve and v-curve). The tangent vectors to the coordinate curves
at a point M0 are

~ru =
∂~r

∂u
= x′u~i + y′u~j + z′u

~k,

~rv =
∂~r

∂v
= x′v~i + y′v~j + z′v

~k.

From the definition of a smooth surface it follows that ~ru ∦ ~rv.
A plane through a point M of a surface Ω parallel to vectors ~ru(M)

and ~rv(M), is called the tangent plane to the surface Ω at the point M.
A straight line perpendicular to the tangent plane is called the normal to
the surface. The directing vector of the normal can be calculated as

~N = ~ru × ~rv.

If a surface is defined implicitly by Φ(x, y, z) = 0, then the normal is

~N =
∂Φ

∂x
~i +

∂Φ

∂y
~j +

∂Φ

∂z
~k.

Example 1. Write the parametric equation of a surface of revolution
that is result of rotation of a curve L : x = ϕ(u), z = ψ(u), around the
axis Oz.

Solution. Suppose the point M0 ∈ L has coordinates
(
ϕ(u), 0,ψ(u)

)
(fig. 2.2). Let v be an angle of revolution around the axis Oz. Then the
point M0 moves to the point M(x, y, z) with coordinates

Fig. 2.2
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M
(
ϕ(u) cos v,ϕ(u) sin v,ψ(u)

)
. Then the equation of the surface of rev-

olution is
x = ϕ(u) cos v, y = ϕ(u) sin v, z = ψ(u).

Example 2. Find the tangent plane and the normal to the pseudo-
sphere

x = a cos v sinu, y = a sin v sinu, z = a cosu + a ln tan
u

2

at the point M0 : u0 =
π

4
, v0 =

π

4
.

Solution. To start we write the vectorial parametric equation of the
surface:

~r = ~r(u, v) = a cos v sinu~i + a sin v sinu~j + a
(

cosu + ln tan
u

2

)
~k.

Then we find two tangent vectors at the point M :

~ru(u, v) = a cos v cosu~i + a sin v cosu~j + a
cos2 u

sinu
~k,

~rv(u, v) = −a sin v sinu~i + a cos v sinu~j.

Since the point M0(u = u0, v = v0) and vectors ~ru(u0, v0) and ~rv(u0, v0)
belong to the tangent plane to find the equation of the plane is

(~r − ~r0)~ru(u0, v0)~rv(u0, v0) = 0.

Therefore performing calculations we obtain∣∣∣∣∣∣∣∣∣∣
x− a

2
y − a

2
z − a

(
ln tan

π

8
+

1√
2

)
a

2

a

2

a√
2

−a
2

a

2
0

∣∣∣∣∣∣∣∣∣∣
=

= − a2

2
√

2

(
x− a

2

)
− a2

2
√

2

(
y − a

2

)
+

a2

2

[
z − a

(
ln tan

π

8
+

1√
2

)]
= 0,

and finally √
2z − x− y =

√
2a ln tan

π

8
.
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The normal vector to the tangent plane is ~N = −~i−~j +
√

2~k, thus the
equation of the normal can be written as

x− a

2
−1

=
y − a

2
−1

=

z − a

(
ln tan

π

8
+

1√
2

)
√

2
.

Example 3. Find the tangent plane and the normal to the surface
x2 − 2y2 − 3z2 − 4 = 0 at the point M0(3, 1,−1).

Solution. The surface is given by an implicit equation, therefore it
is more convenient to calculate the direction vector of the normal by the
formula

~N =
∂Φ

∂x
~i +

∂Φ

∂y
~j +

∂Φ

∂z
~k,

where Φ(x, y, z) = x2 − 2y2 − 3z2 − 4. Then

~N(x, y, z) = 2x~i− 4y~j − 6z~k and ~N(M0) = 6~i− 4~j + 6~k.

Therefore the equation of the normal is

x− 3

3
=

y − 1

−2
=

z + 1

3
,

and we can readily write the equation of the tangent plane:

3(x− 3)− 2(y − 1) + 3(z + 1) = 0, or 3x− 2y + 3z − 4 = 0.

Exercises
2.154. Write a parametric equation of the torus, obtained by rotating

the circle (x− a)2 + z2 = b2, a > b, around the Oz axis.
2.155. Write a parametric equation of the catenoid, obtained by rotat-

ing the chain line x = a cosh(u/a), y = 0, z = u around Oz axis.
2.156. Write a parametric equation of the pseudosphere, obtained by

rotating the tractrix x = a sinu, y = 0, z = a cosu + a ln tan
u

2
around

Oz axis.
2.157. Write a parametric equation of the hyperbolic paraboloid

x2

a2
−

−y
2

b2
= 2z, if its coordinate lines are its rectilinear generators. How will
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these equations be written if the equation of the surface is taken in the
form z = pxy?

2.158. Write a parametric equation of a cylindrical surface whose gen-
eratrices are parallel to the Oz axis, and the directrix is given by equation
x = ϕ(u), y = ψ(u), z = 0.

2.159.Write a parametric equation of a cylindrical surface whose direc-
trix has polar equation ~ρ = ~ρ(u) and generatrices are parallel to a vector ~e.

2.160. Write a parametric equation of a cylindrical surface whose di-
rectrix is x = u, y = u2, z = u3 and generatrices are parallel to the vector
~a(1, 2, 3).

2.161. Prove that the equation of a cylindrical surface whose genera-
trices are parallel to a vector ~a(l,m, n) is f(nx− lz, ny −mz) = 0.

2.162. Write the implicit equation of a cylindrical surface whose direc-
trix is x = cosu, y = sinu, z = 0 and generatrices are parallel to the
vector ~a(−1, 3,−2).

2.163. Write a parametric equation of a cylindrical surface whose di-
rectrix is x2 + y2 = ay, z = 0 and generatrices are parallel to a vector
~a(l,m, n).

2.164. Write a parametric equation of a cone whose vertex is M(a, b, c)
and directrix is a curve x = ϕ(u), y = ψ(u), z = χ(u).

2.165. Write an equation of a cone formed by straight lines passing
through a point M(a, b, c) and intersecting the parabola y2 = 2px, z = 0.

2.166. Write an equation of a cone with the vertex M(−1, 0, 0) cir-
cumscribed around the paraboloid 2y2 + z2 = 4x.

2.167. Write a parametric equations of a circular cylinder in such a
way that the coordinate lines are: a) helices and circles; b) helices and
rectilinear generators; c) two families of helices.

2.168. Write a parametric equations of a figure formed by the tangents
to the curve ~ρ = ~ρ(u).

2.169. Write a parametric equations of a figure formed by the tangents
to the helix x = a cosu, y = a sinu, z = bu. Is this figure a surface?

2.170. A helicoid of general form is a figure formed by a curve rotating
around the axis and simultaneously moving in the direction of this axis,
the speeds of these movements being proportional. Write the equations of
a helicoid of general form.

2.171. A helicoid whose profile is a straight line intersecting the axis is
called right if the line is perpendicular to the axis, and oblique otherwise.
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Write down the equations of these helicoids, taking the Oz axis as the axis
of rotation.

2.172. Find the equation of a surface formed by the principal normals
of a helix.

2.173. A right conoid is a figure obtained by rotating a straight line
around an axis orthogonal to it and simultaneously translating this line
along the axis. Write the equation of the conoid whose axis coincides with
the axis Oz.

2.174. Prove that the coordinates x and y of the point of an arbitrary
second-order surface can always be expressed by rational functions of two
parameters u and v.

Find the unit direction vector of the normal at an arbitrary point to
the following surfaces.

2.175. x = a cos v sinu, y = b sin v sinu, z = c cosu.

2.176. x = (a+b cosu) cos v, y = (a+b cosu) sin v, z = b sinu, a > b.

2.177. x =
√
u2 + a2 cos v, y =

√
u2 + a2 sin v, z = au.

2.178. x =
√
u2 + a2 cos v, y =

√
u2 + a2 sin v, z = ln

(
u +
√
u2 + a2

)
.

2.179. x = coshu cos v, y = coshu sin v, z = u.

2.180. x = u2 + v2, y = u2 − v2, z = uv, |u|+ |v| 6= 0.

2.181. x = u cos v, y = u sin v, z = v.

2.182. x = u cos v, y = u sin v, z = u + v.

Write the equation of the tangent plane to the surface at the point M0.

2.183. x = u cos v, y = u sin v, z = u, M0(0, 1, 1).

2.184. x = 2u− v, y = u2 + v2, z = u3 − v3, M0(3, 5, 7).

2.185. x = u + v, y = u− v, z = uv, M0(3, 1, 2).

2.186. x = u, y = u2 − 2uv, z = u3 − 3u2v, M0(1, 3, 4).

2.187. x =
u

u2 + v2
, y =

v

u2 + v2
, z =

1

u2 + v2
, M0(1, 1, 2).

2.188. z = x3 + y3, M0(1, 2, 9).

2.189. x2 + y2 + z2 = 169, M0(3, 4, 12).

2.190.
x2

a2
+

y2

b2
+

z2

c2
= 1, M0(x0, y0, z0).
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2.191. Find the tangent plane to the surface xyz = 1 parallel to the
plane x + y + z = 3.

2.192. Prove that the volume of a tetrahedron formed by any tangent
plane to the surface xyz = a3 and planes x = 0, y = 0, z = 0 is constant.

2.193. Show that the tangent plane to a cone at an arbitrary point
pass through its vertex.

2.194. Show that all tangent planes to the surface z = x3 +y3 at points
M(α,−α, 0) form a sheaf of planes.

2.195. Find the points of the torus

x = (a + b cosu) cos v, y = (a + b cosu) sin v, z = b sinu, a > b,

at which the normal is perpendicular to the plane Ax+By +Cz +D = 0.
2.196. Find the points of the torus

x = (3 + 2 cosu) cos v, y = (3 + 2 cosu) sin v, z = 2 sinu,

at which the normal is parallel to the plane x + y +
√

2z + 5 = 0.
2.197. Investigate the sign change of the function ~n·~r for a torus, where

~r is the radius vector of the torus point, ~n directing vector of the normal
to the torus. Find the locus of the torus satisfying ~n · ~r = 0 (choose the
torus center sa the origin of coordinates).

2.198. Show that the tangent plane at an arbitrary point of the surface
f(x− az, y − bz) = 0 is parallel to a specific direction.

2.199. Show that the tangent planes of the surface z = xϕ(y/x) pass
through the origin of coordinates.

2.200. Show that surfaces z = tan(xy) and x2− y2 = a are perpendic-
ular each other at intersection points.

Prove that the following families of surfaces are pairwise orthogonal
(λ,µ,ν are parameters of families).

2.201. 4x + y2 + z2 = λ, y = µz, y2 + z2 = νex.

2.202. x2 + y2 + z2 = λ, x2 + y2 + z2 = µy, x2 + y2 + z2 = νz.

2.203. xy = λz2, x2 + y2 + z2 = µ, x2 + y2 + z2 = ν(x2 − y2).

2.204. Show that the tangent plane to the surface x = u cos v, y =
= u sin v, z = f(v) + au, at any point of the line v = c pass through a
fixed straight line.

2.205. Prove that if all normals to a surface pass through one point,
then this surface is a sphere or a region of the sphere.
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2.206. Prove that the normal to the surface of revolution coincides with
the principal normal of the meridian and intersects the axis of rotation.

2.207. Prove that if all normals to a surface intersect the same straight
line, then the surface is a surface of revolution.

2.5. The first quadratic form of a surface

Let Ω be a smooth surface with an equation ~r = ~r(u, v). The positive
definite quadratic form of differentials du and dv

d~r 2 = Edu2 + 2Fdudv + Gdv2,

where
E = ~r 2

u, F = ~ru · ~rv, G = ~r 2
v, EG− F 2 > 0,

is called the first quadratic form of a surface. Functions E,G, F of u and
v are called coefficients of the first quadratic form of a surface.

The length of a curve u = u(t), v = v(t), t ∈ [a, b], in a smooth surface
~r = ~r(u, v) (or ~r = ~r(u(t), v(t)), t ∈ [a, b]) is calculated by the formula

l =

bw

a

√
E(u(t), v(t))u′2 + 2F (u(t), v(t))u′v′ + G(u(t), v(t))v′2dt.

The angle between two intersecting curves L1 : u = u1(t1), v = v1(t1)
and L2 : u = u2(t2), v = v2(t2) in a surface ~r = ~r(u, v) is the angle
between their tangents at the intersection point and can be calculated as

cosϕ =
Edu1du2 + F (du1dv2 + du2dv1) + Gdv1dv2√

Edu2
1 + 2Fdu1dv1 + Gdv2

1

√
Edu2

2 + 2Fdu2dv2 + Gdv2
2

.

The coefficients of the first quadratic form are taken in the intersection
point.

The area of a smooth surface ~r = ~r(u, v), (u, v) ∈ D, where D is
squarable domain is

S =
x

D
|~ru × ~rv|dudv =

x

D

√
EG− F 2dudv.
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Example 1. Find the first quadratic form of a surface of revolution.
Solution. The parametric equation of a surface of revolution is (example

1 in section 2.4)

~r = ~r(u, v) = ϕ(u) cos v~i +ϕ(u) sin v~j +ψ(u)~k.

To find the coefficients of the first quadratic form we calculate partial
derivatives:

~ru(u, v) = ϕ′(u) cos v~i +ϕ(u)′ sin v~j +ψ(u)′~k,

~rv(u, v) = −ϕ(u) sin v~i +ϕ(u) cos v~j.

Then

E = ~r 2
u = ϕ′(u)2 +ψ′(u)2, F = ~ru · ~rv = 0, G = ~r 2

v = ϕ(u)2,

and finally
d~r 2 =

(
ϕ′(u)2 +ψ′(u)2

)
du2 +ϕ(u)2dv2.

Example 2. Express the angle between coordinate curves u and v of
a surface ~r = ~r(u, v) in terms of coefficients of the first quadratic form.

Solution. The parametric equation of the coordinate curve u is
u1(t1) = t1, v1(t1) = const, and du1 = dt1, dv1 = 0. The similar is for the
coordinate curve v: u2(t2) = const, v2(t2) = t2, and du2 = 0, dv2 = dt2.
then cosine of the angle between coordinate curves is

cosϕ =
Fdu1dv2√
Edu2

1

√
Gdv2

2

=
F√
EG

.

It follows from this formula that a necessary and sufficient condition
that at each point of a surface the coordinate curves meet at right angles,
is that F = 0.

Example 3. Find the perimeter and angles of the triangle formed by
lines

u =
av2

2
, u = −av

2

2
, v = 1,

in the surface with the first quadratic form

d~r 2 = du2 + (u2 + a2)dv2.

72



Fig. 2.3

Solution. Fist we find that coeffi-
cients of the first quadratic form
d~r 2 = du2 + (u2 + a2)dv2 are

E = 1, F = 0, G = u2 + a2.

The triangle in the plane (u, v) is
shown on fig. 2.3. The coordinates
of vertexes can be easily found and
they are

A(u = 0, v = 0), B
(
u = −a

2
, v = 1

)
, C

(
u =

a

2
, v = 1

)
.

Write parametric equation of sides of the triangle

L1 : u = −at
2
1

2
, v = t1, t1 ∈ [0, 1], u′ = −at1, v′ = 1;

L2 : u =
at22
2
, v = t2, t2 ∈ [0, 1], u′ = at2, v′ = 1;

L3 : u = t3, v = 1, t3 ∈
[
−a

2
,
a

2

]
, u′ = 1, v′ = 0.

Then the length of image of the curve L1 is

l1 =

1w

0

√√√√(−at1)2 +

((
−at

2
1

2

)2

+ a2

)
dt1 = a

1w

0

√
1 + t21 +

t41
4

dt1 =

= a

1w

0

(
1 +

t21
2

)
dt1 =

7a

6
.

Similarly we find that l2 =
7a

6
, l3 = a. Thus the perimeter is p =

10a

3
.

Then find ∠C between curves L1 and L3. From the curves parametriza-
tion we obtain du1 = −at1dt1, dv1 = dt1, du3 = dt3, dv3 = 0. At the

intersection point t1 = 1, E = 1, F = 0, G =
(a

2

)2

+ a2 =
5a2

4
. Then

cos∠C =
−adt1dt3√

(−a)2dt21 +
5a2

4
dt21
√

dt23

= −2

3
.

Similarly cos∠B =
2

3
, cos∠A = 1.
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Example 4. Find the area of the curvilinear triangle formed by the
curves

u = av, u = −av, v = 1,

in the surface with the first quadratic form

d~r 2 = du2 + (u2 + a2)dv2.

Fig. 2.4

Solution. Firstly we find that E = 1, F = 0,
G = u2 + a2 . The triangle in the plane (u, v)
(fig. 2.4) is the integration domain D.

Then the area is calculated as follows:

S =
x

D

√
EG− F 2dudv =

=
x

D

√
u2 + a2dudv =

= 2

aw

0

√
u2 + a2du

1w

u/a

dv = 2

aw

0

√
u2 + a2du− 2

aw

0

u

a

√
u2 + a2du =

=

[
u
√

u2 + a2 + a2 ln(2(u +
√
u2 + a2))− 2

(u2 + a2)3/2

3a

]∣∣∣∣a
0

=

= a2(
√

2 + ln(1 +
√

2)− 2

3
(2
√

2− 1)).

Exercises
Find the first quadratic form of the following surfaces.

2.208. x = a cos v sinu, y = b sin v sinu, z = c cosu.

2.209. x =
√
u2 + a2 cos v, y =

√
u2 + a2 sin v, z = au.

2.210. x =
√
u2 + a2 cos v, y =

√
u2 + a2 sin v, z = ln(u+

√
u2 + a2).

2.211. x = u2 + v2, y = u2 − v2, z = uv, |u|+ |v| 6= 0.

2.212. x = sinhu cos v, y = sinhu sin v, z = coshu.

2.213. x = u cos v, y = u sin v, z = f(u) + av.

2.214. z = z(x, y).
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2.215. Indicate which of the below quadratic forms can not be the first
quadratic form of a surface:

a) d~r 2 = du2 + 4dudv + dv2;

b) d~r 2 = du2 + 4dudv + 4dv2;

c) d~r 2 = du2 − dudv + 6dv2;

d) d~r 2 = du2 + 4dudv − 2dv2.

2.216. Find the formulas connecting the coefficients of the first quadratic
form and the expressionH =

√
EG− F 2 in different curvilinear coordinate

systems.
2.217. Show that for an appropriate choice of curvilinear coordinates

in the surface of revolution, its first quadratic form can be of the form
d~r 2 = du2 + G(u)dv2.

2.218. Transform the first quadratic form of a sphere, torus, catenoid,
and pseudo-sphere to the form d~r 2 = dũ2 + G(ũ)dṽ2.

2.219.A curvilinear coordinates are called isothermal if the first quadra-
tic form of the surface in these coordinates has the form d~r 2 = A(u, v)(du2+
+dv2). Find the isothermal coordinates of a pseudosphere.

2.220. Find the length of the curve u = a in the right helicoid
x = u cos v, y = u sin v, z = av between points M1(u = a, v1) and
M2(u = a, v2).

2.221. Find the length of the curve v = ln(u±
√
u2 + a2) in the right

helicoid x = u cos v, y = u sin v, z = av between points M1(u1, v1) and
M2(u2, v2).

2.222. Find the length of the curve u = v in the oblique helicoid
x = u cos v, y = u sin v, z = u + v between points M1(u = 0, v = 0) and
M2(u = 1, v = 1).

2.223. Find the length of the curve u + v = 0 in the catenoid
x = coshu cos v, y = coshu sin v, z = u between points M1(u1, v1)
and M2(u2, v2).

2.224. Find the length of the curve v2 = u in the cone x = u cos v,
y = u sin v, z = u between points M1(u = 0, v = 0) and M2(u = 1, v = 1).

2.225. Find the length of the curve v = 2u in the surface with the first

quadratic form d~r 2 = du2 +
1

4
sinh2 udv2 between points M1(u1, v1) and

M2(u2, v2).
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2.226. Suppose two families of curves v = ±a ln tan
u

2
+ C are given

in the pseudosphere

x = a cos v sinu, y = a sin v sinu, z = a cosu + a ln tan
u

2
.

Prove that the length of arc of curves belonging to the one family between
two fixed curves of another family is constant.

2.227. Prove that the coordinate curves of the surface

x = u

(
3v2 − u2 − 1

3

)
, y = v

(
3u2 − v2 − 1

3

)
, z = 2uv

are orthogonal.
2.228. Find the angle between curves u + v = 0 and u − v = 0 in

the oblique helicoid x = u cos v, y = u sin v, z = u + v at the point of
intersection.

2.229. Find the angle between curves u + v = 0 and u − v = 0 in
the catenoid x = coshu cos v, y = coshu sin v, z = u at the point of
intersection.

2.230. Find the angle between curves v = u + 1 and v = 3− u in the
surface x = u cos v, y = u sin v, z = u2 at the point of intersection.

2.231. Find the angle between curves 2u = v and 2u = −v in the
surface with the first quadratic form dl2 = du2 + dv2 at the point of
intersection.

2.232. Find the angle between rectilinear generatrices of hyperbolic
paraboloid z = axy.

2.233. Find the perimeter, angles and the area of curvilinear trian-
gle formed by the lines u = ±v2 and v = 2 in the surface x = u cos v,
y = u sin v, z = 2v.

2.234. Find the perimeter, angles and the area of curvilinear triangle
formed by the lines u = ±v and v = 1 in the surface with the first quadratic
form dl2 = du2 + (u2 + 1)dv2.

2.235. Find the area of the torus

x = (a + b cosu) cos v, y = (a + b cosu) sin v, z = b sinu, a > b.

2.236. Find the area of the region on a sphere limited by Viviani’s
curve.
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2.337. Prove that the area of regions of paraboloids z = a(x2 + y2)/2
and z = axy, having the same projection onto the plane xOy are equal.

2.238. Prove that the curves, which at each points divide the angles
between the coordinate curves in half, are defined by differential equations

√
Edu±

√
Gdv = 0.

2.239. Find the equation of curves in the right helix x = u cos v,
y = u sin v, z = av,bisecting the angles between the coordinate curves.

2.240. Find the equations of curves intersecting the meridians of the
surface of revolution at a constant angle α (loxodromes).

2.241. Find loxodromes in a sphere.
2.242. Write a differential equation of the orthogonal trajectories of

the family of curves ϕ(u, v) = const in the surface.
2.243. Find orthogonal trajectories of the family of curves u+v = const

in the sphere x = R cos v sinu, y = R sin v sinu, z = R cosu.
2.244. Find orthogonal trajectories of the family of curves u = Cev, in

the oblique helicoid x = u cos v, y = u sin v, z = u + v.
2.245. Write the equation of the oblique trajectory x = u cos v,

y = u sin v, z = u + v, with curves v = const and their orthogonal trajec-
tories as coordinate curves.

2.246. Find orthogonal trajectories of the rectilinear generatrices of the
surface z = axy.

2.6. The second quadratic form of a surface

The quadratic form of differentials du and dv

d2~r · ~n = Ldu2 + 2Mdudv + Ndv2,

where ~n in a unit normal vector to a surface, is called the second quadratic
form of the surface.

Coefficients of the second quadratic form are defined by

L =
(~ru × ~rv) · ~ruu√

EG− F 2
, M =

(~ru × ~rv) · ~ruv√
EG− F 2

, N =
(~ru × ~rv) · ~rvv√

EG− F 2
.

The normal section of a surface Ω at a pointM for the direction du : dv
is called the locus of intersection of the surface and a plane through the
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normal to the surface at this point and the tangent in the direction du : dv.
The curvature of the normal section is called the normal curvature and is
calculated by the formula

kn =
Ldu2 + 2Mdudv + Ndv2

Edu2 + 2Fdudv + Gdv2
.

The direction du : dv is called a principle direction if the normal curva-
ture achieve its extremum (maximum or minimum) in this direction. The
extremal values of the normal curvature are called principal curvatures of
the surface and can be found from the equation∣∣∣∣ L− kE M − kF

M − kF N − kG

∣∣∣∣ = 0. (2.12)

If the equation (2.12) has two different solutions k1 and k2, then there are
two orthogonal principal directions (ξ1,η1) and (ξ2,η2), defined by the
system

(L− kiE)ξi + (M − kiF )ηi = 0,
(M − kiF )ξi + (N − kiG)ηi = 0,

i = 1, 2.

If the equation (2.12) has two equal solutions k1 = k2, then each direction
is considered principal.

If a normal section forms an angle ϕ with the first principal direction,
then the normal curvature kn of this section obeys Euler formula

kn = k1 cos2ϕ+ k2 sin2ϕ.

Gaussian curvature of the surface is called the quantity

K = k1k2 =
LN −M 2

EG− F 2
.

Mean curvature of the surface is called the quantity

H =
k1 + k2

2
=

EN + GL− 2FM

2(EG− F 2)
.

Example 1. Find principal directions and principal curvatures of the
right helicoid x = u cos v, y = u sin v, z = av.

Solution. The vectorial parametric equation of the surface is:

~r = ~r(u, v) = u cos v~i + u sin v~j + av~k.
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Find first partial derivatives of ~r(u, v) and then coefficients of the first
quadratic form and the normal vector ~ru × ~rv to the surface and its norm:

~ru(u, v) = cos v~i + sin v~j,

~rv(u, v) = −u sin v~i + u cos v~j + a~k,

~ru × ~rv =

∣∣∣∣∣∣
~i ~j ~k

cos v sin v 0
−u sin v u cos v a

∣∣∣∣∣∣ = a sin v~i− a cos v~j + u~k,

E = ~ru
2 = 1, F = ~ru · ~rv = 0, G = ~rv

2 = u2 + a2.

|~ru × ~rv| =
√
EG− F 2 =

√
u2 + a2.

To calculate coefficients of the second quadratic form we find the second
partial derivatives of ~r(u, v):

~ruu(u, v) = ~0,

~ruv(u, v) = − sin v~i + cos v~j,

~rvv(u, v) = −u cos v~i− u sin v~j.

Thus

L =
(~ru × ~rv) · ~ruu√

EG− F 2
= 0,

M =
(~ru × ~rv) · ~ruv√

EG− F 2
=
−a sin2 v − a cos2 v√

u2 + a2
= − a√

u2 + a2
,

N =
(~ru × ~rv) · ~rvv√

EG− F 2
=
−ua sin v cos v + ua cos v sin v√

u2 + a2
= 0.

Constructing the corresponding determinant and equating it to zero

∣∣∣∣ L− kE M − kF
M − kF N − kG

∣∣∣∣ =

∣∣∣∣∣∣∣
−k − a√

u2 + a2

− a√
u2 + a2

−k(u2 + a2)

∣∣∣∣∣∣∣ =

= k2(u2 + a2)− a2

u2 + a2
= 0,

we find
k1 = −k2 =

a

u2 + a2
.
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The first principal direction is the solution of the equation

(L− k1E)ξ1 + (M − k1F )η1 = − a

u2 + a2
ξ1 −

a√
u2 + a2

η1 = 0,

thus
ξ1

η1
=

du1

dv1
= −

√
u2 + a2.

Similarly we find the second principal direction:

ξ2

η2
=

du2

dv2
=
√

u2 + a2.

Example 2. Find gaussian and mean curvatures of the pseudosphere

x = a cos v sinu, y = a sin v sinu, z = a cosu + a ln tan
u

2
at an arbitrary point.

Solution. In the beginning we write the vectorial parametric equation:

~r = ~r(u, v) = a cos v sinu~i + a sin v sinu~j + a
(

cosu + ln tan
u

2

)
~k.

Then we calculate the first and second partial derivatives of the function
~r(u, v):

~ru(u, v) = a cos v cosu~i + a sin v cosu~j + a
cos2 u

sinu
~k,

~rv(u, v) = −a sin v sinu~i + a cos v sinu~j,

~ruu(u, v) = −a cos v sinu~i + a sin v sinu~j − a
cosu

sin2 u
(sin2 u + 1)~k,

~ruv(u, v) = −a sin v cosu~i + a cos v cosu~j,

~rvv(u, v) = −a cos v sinu~i− a sin v sinu~j.

Combining found derivatives as necessary we find coefficients of the first
and second quadratic form:

~ru × ~rv =

∣∣∣∣∣∣∣∣
~i ~j ~k

a cos v cosu a sin v cosu a
cos2 u

sinu
−a sin v sinu a cos v sinu 0

∣∣∣∣∣∣∣∣ =
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= −a2 cos2 u cos v~i− a2 cos2 u sin v~j + a2 cosu sinu~k,

|~ru × ~rv| =
√

EG− F 2 = a2| cosu|,
E = ~r 2

u = a2 cot2 u, F = ~ru · ~rv = 0, G = ~r 2
v = a2 sin2 u.

L =
(~ru × ~rv) · ~ruu√

EG− F 2
= −a sgn(cosu) cotu,

M =
(~ru × ~rv) · ~ruv√

EG− F 2
= 0,

N =
(~ru × ~rv) · ~rvv√

EG− F 2
= a sgn(cosu) cosu sinu.

Now we can find the gaussian curvature of the pseudosphere:

K =
LN −M 2

EG− F 2
= − 1

a2
.

As it is seen the pseudosphere is a surface with constant negative gaussian
curvature.

And finally we calculate the mean curvature:

H =
EN + GL− 2FM

2(EG− F 2)
=

sgn(cosu)

2a
(cotu− tanu).

Exercises
2.247. Prove that the second quadratic form is identically zero then

the surface is a plain or its part.
2.248. Express the normal curvatures of a surface in the direction of co-

ordinate curves in terms of coefficients of the first and the second quadratic
forms.

2.249. Find the normal curvature of coordinate curves of the catenoid

x =
√
u2 + a2 cos v, y =

√
u2 + a2 sin v, z = ln(u +

√
u2 + a2).

2.250. Calculate the curvature of the normal section of the surface

x = u2 + v2, y = u2 − v2, z = uv

at the point M(2, 0, 1), passing through the tangent to the curve v = u2.
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Find the principal curvatures of the surfaces.

2.251.
x2

a2
− y2

b2
− z2

c2
= 1 at the vertexes of the two-sheeted hyperboloid.

2.252. z = xy at the point M(1, 1, 1).

2.253.
x2

p
− y2

q
= 2z at the point M(0, 0, 0).

2.254. x = u2 + v2, y = u2 − v2, z = uv, at the point M(2, 0, 1).
2.255. x = cos v−u sin v, y = sin v+u cos v, z = u+v at an arbitrary

point.
2.256. Prove that the principal directions of a right helicoid bisect the

angles between the directions of generatrix and helix.

Find the gaussian and mean curvatures.
2.257. x = a cos v sinu, y = a sin v sinu, z = c cosu.

2.258. x = (a+b cosu) cos v, y = (a+b cosu) sin v, z = b sinu, a > b.

2.259. x = coshu cos v, y = coshu sin v, z = sinhu.

2.260. x = sinhu cos v, y = sinhu sin v, z = coshu.

2.261. x = u cos v, y = u sin v, z = u2.

2.262. x = coshu cos v, y = coshu sin v, z = u.

2.263. x = u cos v, y = u sin v, z = v.

2.264. A surface of revolution z = f(
√

x2 + y2).
2.265. Find the gaussian curvature of a surface: a) F (x, y, z) = 0;

b) z = z(x, y).

2.266. Choose the function f(u) in the parametrization of the surface
of revolution

x = u, y = f(u) cos v, z = f(u) sin v, f(u) > 0.

in such a way that the mean curvature of the surface is equal zero.
2.267. Find the gaussian curvature of the surface with the first quadratic

form d~r 2 = du2 + e2udv2.
2.268. Prove that the gaussian curvature of the surface with the first

quadratic form d~r 2 =
du2 + dv2

(u2 + v2 + c2)2
is constant.
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2.269. Find the expression for the Gaussian curvature of a surface
referred to isothermal coordinates.

2.270. Show that if the first quadratic of a surface is as

dl2 = du2 + 2 cosω(u, v)dudv + dv2,

then its gaussian curvature is

K =
1

sinω

∂2ω

∂u∂v
.

2.271. There are n equiangular straight lines in the tangent plane pass-
ing through a point M of a surface. Show that

1

n
(k1 + k2 + ... + kn) = H,

where ki, i = 1, n, are the normal curvatures of the lines in the surface
contacting these straight lines.

2.272. Suppose that surfaces Ω1 and Ω2 intersect along the curve L.
Let k be the curvature of this curve at the point M , and λi, i = 1, 2, are
the normal curvatures of the surfaces Ωi at the point M for the direction
of the curve L, θ is the angle between the normals to the surfaces Ωi at
the point M . Prove that

k2 sin θ = λ2
1 + λ2

2 − λ1λ2 cos θ.



Chapter 3

Scalar and vector fields

3.1. Scalar fields

Let D be a domain in the three-dimensional Euclidean space E3. If a
scalar u is uniquely assigned to each point M of the domain D the function
u(M) is said to define the scalar field in D. Another notation for the scalar
field can be u(~r) or u(x1, x2, x3), if any coordinate system is given.

A scalar field u(M) is differentiable at M0, if the increment of the field
∆u in the neighborhood of the point M0 can be written as

∆u = u(M)− u(M0) = ~c ·∆~r + o(|∆~r|), while M →M0 (∆~r → 0),

where the vector ~c does not depend on ∆~r. The vector ~c is called the
derivative of the scalar field at the point M0 or the gradient of the scalar
field and is denoted ~c = gradu. The scalar field is differentiable in the
domain G, if it is differentiable at each point of D.

In cartesian coordinates (x, y, z) the gradient is

gradu =
∂u

∂x
~i +

∂u

∂y
~j +

∂u

∂z
~k.

Let ~l be a unit vector. The derivative of the scalar field u(M) in the
direction of ~l at M0 is the limit

∂u

∂l
= lim
ε→0

u(M)− u(M0)

ε
,
−−−→
M0M = ~lε.

The directional derivative
∂u

∂l
shows the rate of change of the scalar field u

in the direction ~l and is the projection of the gradient onto this direction:

∂u

∂l
= ~l · gradu.

The gradient of a scalar field is directed along the direction in which
the directional derivative is maximal. The derivative of a scalar field in the
direction of a curve is equal to the derivative in the direction of its tangent.
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A scalar field may be described graphically by a family of level surfaces
which are the surfaces of constant value of the scalar field u(M), i. e.
u(x, y, z) = const. If a scalar field is defined on a plane, the equation
u(x, y) = const defines a family of lines which are called level curves.

The gradient of a scalar field is perpendicular to a level surface at an
arbitrary point of this surface.

Example 1. Draw level surfaces of the scalar field

u(x, y, z) = x2 + y2 − z2.

Solution. The equation of a family of level surfaces is

u(x, y, z) = x2 + y2 − z2 = C,

where C = const. If C = 0, then the surface is the cone which axis is Oz.
For C > 0 there is the family of coaxial one-sheet hyperboloids, and for
C < 0 the level surfaces are the family of coaxial two-sheet hyperboloids.
The axis of hyperboloids is Oz (fig. 3.1).

Fig. 3.1

Example 2. Compute the gradient of the scalar field u = x3y2z.
Solution. To calculate the gradient we us the formula

gradu =
∂u

∂x
~i +

∂u

∂y
~j +

∂u

∂z
~k.

The partial derivatives of the field u are

∂u

∂x
= 3x2y2z,

∂u

∂y
= 2x3yz,

∂u

∂z
= x3y2.
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Therefore the gradient is

gradu = 3x2y2z~i + 2x3yz~j + x3y2~k.

Example 3. Find the derivative of the scalar field u = xey + yex− z2

at the point M0(3, 0, 2) in the direction to the point M1(4, 1, 3).
Solution. First we find the unit vector ~l specifying the direction of

differentiation:

~l =

−−−→
M0M1∣∣∣−−−→M0M1

∣∣∣ =
1√
3
~i +

1√
3
~j +

1√
3
~k.

Then we calculate the gradient of the scalar field at any point

gradu = (ey + yex)~i + (xey + ex)~j − 2z~k,

and at the point M0(3, 0, 2):

gradu(M0) =~i + (3 + e3)~j − 4~k.

Therefore the directional derivative is

∂u

∂l
= ~l · gradu =

(
1√
3
~i +

1√
3
~j +

1√
3
~k

)
· (~i + (3 + e3)~j − 4~k) =

e3

√
3
.

Example 4. Find the derivative of the scalar field u = ln(x2 +y2 + z2)

at the point M0

(
0, R,

πa

2

)
in the direction of the curve L : x = R cos t,

y = R sin t, z = at.
Solution. Since the derivative of a scalar field in the direction of a curve

is the derivative in the direction of its tangent we first find the unit tangent
vector to the curve at the point M0. Analysing the parametric equation
of the curve we conclude that the point M0 corresponds to the parameter
value t0 =

π

2
. Therefore

~τ(t) =
~r ′(t)

|~r ′(t)|
= −~i R√

R2 + a2
sin t +~j

R√
R2 + a2

cos t +
a√

R2 + a2
~k.

~τ
(π

2

)
= − R√

R2 + a2
~i +

a√
R2 + a2

~k.
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Then we find the gradient of the scalar field u:

gradu =
2x

x2 + y2 + z2
~i +

2y

x2 + y2 + z2
~j +

2z

x2 + y2 + z2
~k,

gradu(M0) =
8R

4R2 + π2a2
~j +

4πa

4R2 + π2a2
~k.

Finally the directional derivative is

∂u

∂τ
= ~τ · gradu =

1√
R2 + a2

4πa

4R2 + π2a2
.

Exercises
Find level lines of the following scalar fields defined on a plane.

3.1. u = 2x− y. 3.5. u =
y2

x
.

3.2. u = ex
2−y2. 3.6. u =

2x− y + 1

x2
.

3.3. u = ln

√
y

2x
. 3.7. u =

x2

y
.

3.4. u =
2x

x2 + y2
. 3.8. u = ln(x2 + y2).

Find level surfaces of the following scalar fields.

3.9. u = x2 + y2 − z.

3.10. u = ln |~r|.
3.11. u = x− y2 + z2.

3.12. u =
x2 + y2

z
.

3.13. u = 3x+2y−z.

3.14. u = e~a·~r, where ~a is a constant, ~r is a radius-vector.

3.15. u =
~a · ~r
~b · ~r

, where ~a,~b are constant vectors, ~r is a radius-vector.

3.16. u =
√

x2 + y2 + (z + 8)2 +
√

x2 + y2 + (z − 8)2.

3.17. Find level lines of implicitly defined scalar field: u+x lnu+y = 0.
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Prove the following formulae.

3.18. grad c = ~0, c = const.

3.19. grad cu = c gradu, c = const.

3.20. grad(u + v) = gradu + grad v.

3.21. grad(uv) = v gradu + u grad v.

3.22. grad
u

v
=

v gradu− u grad v

v2
.

3.23. grad f(u) = f ′(u) gradu.

3.24. grad f(u, v, w) =
∂f

∂u
gradu +

∂f

∂v
grad v +

∂f

∂w
gradw.

Find the gradient of the following scalar fields.

3.25. u = ln(x2 + y2 + z2).

3.26. u = x3 + y3 + z3 − 3xyz.

3.27. u = zex
2+y2+z2.

3.28. u = (x− y)(y − z)(z − x).

3.29. u = xyzex+y+z.

3.30. u = (x− 1)(y − 2)(z − 3).

3.31. u = arctan
x + y + z − xyz

1− xy − yz − xz
.

Find the gradient of the following implicitly defined scalar fields.
3.32. u3 − 3xyu = a2.

3.33. x + y + u = eu.

3.34. x + y + u = e−(x+y+u).

Find the derivative of a scalar field u at a point M0 in the direction to
a point M1.

3.35. u = xyz, M0(1,−1, 1), M1(2, 3, 1).

3.36. u = x2y + xz2 − 2, M0(1, 1,−1), M1(2,−1, 3).

3.37. u =
√

x2 + y2 + z2, M0(1, 1, 1), M1(3, 2, 1).

3.38. u =
x

y
− y

x
, M0(1, 1), M1(4, 5).
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Find the derivative of a scalar field u at a point M0 in the direction of
a curve L.

3.39. u = x2 + y2, M0(1, 2), L : x2 + y2 = 5.

3.40. u = 2xy + y2, M0(
√

2, 1), L :
x4

4
+

y2

2
= 1.

3.41. u = x2 − y2, M0(5, 4), L : x2 − y2 = 9.

3.42. u = ln(x2 + y2), M0(1, 2), L : y2 = 4x.

3.43. u = arctan
y

x
, M0(2,−2), L : x2 + y2 = 4x.

3.44. u = ln(xy+ yz+xz), M0(0, 1, 1), L : x = cos t, y = sin t, z = 1.

Find the points where directional derivative of a scalar field u is equal
to zero in any direction.

3.45. u = x3 + y3 − 3xy.

3.46. u = x2 + 2y2 + 3z2 + xy + 3x− 2y − 6z.

3.47. u = 2y2 + z2 − xy − yz + 2x.

3.48. u = x2 + 2y2 + 3z2 − xz − yz − xy.

3.49. Find the angle between the gradients of the field u = (x+ y)ex+y

at the points M1(0, 0) and M2(1, 1).
3.50. Find the angle between the gradients of the field u =

x

x2 + y2 + z2

at the points M1(1, 2, 2) and M2(−3, 1, 0).
3.51. Find the angle between the gradient of the fields u =

√
x2 + y2 + z2

and u = ln(x2 + y2 + z2) at the point M0(0, 0, 1).
3.52. Find the derivative of the scalar field

u =
x2

a2
+

y2

b2
+

z2

c2

at the point M(x, y, z) in the direction of its radius-vector ~r. In what
direction the derivative is equal to the norm od the gradient?

3.53. Find the derivative of the scalar field u = yzex in the direction
of its gradient.

3.54. Find the derivative of a scalar field u = u(x, y, z) in the direction
of the gradient of a function v = v(x, y, z). In what direction is it zero?
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3.2. Vector fields

If a vector ~a is uniquely assigned to each point M of a domain D ⊂ E3

the vector function~(M) is said to define the vector field in D. In Cartesian
coordinate system (x, y, z) whose orthonormal basis is (~i,~j,~k) the vector
field can be written as

~a(x, y, z) = ax(x, y, z)~i + ay(x, y, z)~j + az(x, y, z)~k.

A vector field may be described graphically by vector lines which are
the lines at each point M of which the tangent is collinear to the vector
~a(M). Vector lines are the solution of the system of differential equations

dx

ax
=

dy

ay
=

dz

az
.

A vector field ~a(M) is differentiable at M0, if the increment of the field
∆~a in the neighborhood of the point M0 can be written as

∆~a = ~a(M)− ~a(M0) = A∆~r + ~o(|∆~r|), M →M0 (∆~r → 0),

where A is a linear operator that does not depend on ∆~r. The linear op-
erator a A is called the derivative of the vector field. The vector field is
differentiable in the domain G, if it is differentiable at each point of D.

In Cartesian coordinates the operator A is

Aij =
∂ai
∂xj

, i, j = 1, 2, 3.

The derivative of a vector field ~a(M) in the direction of an unit vector
~l at a point M0 is called the limit:

∂~a

∂l
= lim
ε→0

~a(M)− ~a(M0)

ε
,
−−−→
M0M = ~lε.

In Cartesian coordinates the directional derivative is calculated as follows
∂~a

∂l
=

(
lx

∂

∂x
+ ly

∂

∂y
+ lz

∂

∂z

)
~a = lx

∂~a

∂x
+ ly

∂~a

∂y
+ lz

∂~a

∂z
.

The divergence of a vector field ~a is the scalar field div~a that in cartesian
coordinates is given by the formula

div~a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

.
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The curl of a vector field ~a is the vector field curl~a that in cartesian
coordinates is given by the formula1

curl~a =

(
∂az
∂y
− ∂ay

∂z

)
~i +

(
∂ax
∂z
− ∂az

∂x

)
~j +

(
∂ay
∂x
− ∂ax

∂y

)
~k.

It is more convenient to rewrite the above formula as a formal determinant

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
ax ay az

∣∣∣∣∣∣∣∣.
A vector field is uniquely specified by giving its divergence and curl

within a domain and its normal component over the boundary of the do-
main, a result known as Helmholtz’s theorem.

Example 1. Find vector lines of the field ~a = (x2 + 1)~i + (y2 + 1)~j.

Fig. 3.2

Solution. Since the vector field is flat the
system of differential equation for vector lines
reduces to one equation

dx

x2 + 1
=

dy

y2 + 1
.

The general solution gives a one-parameter
family of vector lines. The given equation is a
differential equation with separated variables,
therefor the direct integration yields

arctanx = arctan y + C.

Changing the value of the constant C we obtain the family of vector lines
presented on fig. 3.2.

Example 2. Find the divergence of the vector field

~a = xyz~i + (2x + 3y − z)~j + (x2 + z2)~k.

Solution. The divergence in Cartesian coordinate is

div~a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

.

1There is another notation rot~a ≡ curl~a.
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Then

div~a =
∂

∂x
(xyz) +

∂

∂y
(2x + 3y − z) +

∂

∂z
(x2 + z2) = yz + 3 + 2z.

Example 3. Find the curl of the vector field

~a = (z − y)~i + (z − x)~j + (y − x)~k.

Solution. Expanding the formal determinant we obtain

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
z − y z − x y − x

∣∣∣∣∣∣∣∣ =

=~i (1− 1)−~j ((−1)− 1) + ~k((−1)− (−1)) = 2~j.

Exercises
Find vector lines of the following vector fields.
3.55. ~a = x~i + 2y~j.

3.56. ~a = x2~i + y2~j.

3.57. ~a = z~j − y~k.

3.58. ~a = x~i + z~k.

3.59. ~a = x~i + y~j + 2z~k.

3.60. ~a = x2~i + y2~j + z2~k.

3.61. ~a = (z − y)~i + (x− z)~j + (y − x)~k.

3.62. ~a = x2~i− y3~j + z2~k.

Prove the following formulas.
3.63. div~c = 0, ~c = const.

3.64. div(c~a) = c div~a, c = const.

3.65. div(~a +~b) = div~a + div~b.

3.66. curl~c = 0, ~c = const.

3.67. curl(c~a) = c curl~a, c = const.

3.68. curl(~a +~b) = curl~a + curl~b.
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Find the divergence of the following vector fields.
3.69. ~a = (x− y)(y − z)~i + (y − z)(z − x)~j + (z − x)(x− y)~k.

3.70. ~a = (y2 + z2)(x + y)~i + (z2 + x2)(y + z)~j + (x2 + y2)(z + x)~k.

3.71. ~a = (x2 + y2)(y − z)~i + (y2 + z2)(z − x)~j + (z2 + x2)(x− y)~k.

3.72. ~a = f1(y, z)~i + f2(x, z)~j + f3(x, y)~k.

3.73. ~a = (x + f1(y, z))~i + (y + f2(x, z))~j + (z + f3(x, y))~k.

3.74. ~a = xf1(y, z)~i + yf2(x, z)~j + zf3(x, y)~k.

Find the curl of the following vector fields.
3.75. ~a = yz~i + zx~j + xy~k.

3.76. ~a = yz~i + z(x + 2y)~j + y(x + y)~k.

3.77. ~a =
y

x2
~j − 1

x
~k.

3.78. ~a = y2z3~i + 2xzy2~j + 3xy2z2~k.

3.79. ~a = yz2~i− x~k.

3.80. ~a =
y

x
~i +

z

y
~j +

x

z
~k.

3.81. ~a = y2z~i + z2x~j + x2yk.

3.82. ~a = xyz~i + (2x + 3y − z)~j + (x2 + z2)~k.

3.83. Find the derivatives of the vector field ~a = xy~i + yz~j + zx~k in

the directions ~l1 =~i, ~l2 =
~i +~j√

2
, ~l3 =

~j + ~k√
2

, ~l4 =
1√
3

(~i +~j + ~k).

3.3. The operator ~∇

The operator ~∇, read “nabla” of “del”, is the operator that combines
properties of a vector and derivative and in cartesian coordinates takes the
form

~∇ =
∂

∂x
~i +

∂

∂y
~j +

∂

∂z
~k.

Using the ~∇ operator the vector differential operations can be written
as follows:

gradu = ~∇u, div~a = ~∇ · ~a, curl~a = ~∇× ~a,

∂u

∂l
= (~l · ~∇)u,

∂~a

∂l
= (~l · ~∇)~a.
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There are two approaches to manipulate expressions with the opera-
tor ~∇. The formal approach is based on the following steps.

1. If ~∇ acts on a product of fields, then primarily it is considered as a
differential operator.

2. Quantities under action of ~∇ in complicated formula are designated

by a downarrow, for example in the expression ~∇·(
↓
~a×~b) the operator

~∇ acts only on the vector field ~a.

3. In final result those quantities on which ~∇ does not act are placed to
the left of ~∇ using the rules of vector algebra:

1) ~a ·~b = ~b · ~a;

2) (α~a) ·~b = ~a · (α~b);
3) (α~a) ·~b = α(~a ·~b);
4) α(β~a) = (αβ)~a;

5) ~a×~b = −~b× ~a;

6) (α~a)×~b = ~a× (α~b);

7) (α~a)×~b = α(~a×~b);

8) (~a×~b) · ~c = ~a · (~b× ~c);

9) ~a× (~b×~c) = ~b(a ·~c)−~c(~a ·~b);

10) (~a×~b)×~c = ~b(a ·~c)−~a(~b ·~c);

11) (~a×~b) · ~c = ~a · (~b× ~c)

for all vectors ~a,~b,~c and for all real numbers α and β.

The second approach of formulas manipulation with ~∇ is to perform
calculations in cartesian coordinates system. But they can be very cumber-
some that overcomes by using index notation of vector algebraic operations
and summation convention (section 1.7):

coordinates: x1 = x, x2 = y, x3 = z;

basis: ~e1 =~i, ~e2 = ~j, ~e3 = ~k;

decomposition of a vector: ~a = ai~ei;

dot product: ~a ·~b = aibi;

cross product: ~a×~b = ~eiεijkajbk;

scalar triple product: (~a×~b) · ~c = εijkaibjck;

operator ~∇: ~∇ = ~ei
∂

∂xi
= ~ei∂i.
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Then the vector differential operations take the form:

gradu = ~ei
∂u

∂xi
, div~a =

∂ai
∂xi

, curl~a = ~eiεijk
∂ak
∂xj

,

(~b · ~∇)u = bi
∂u

∂xi
, (~b · ~∇)~a = ~ekbi

∂ak
∂xi

.

Example 1. Let ~a(~r) and u(~r) be differentiable vector and scalar
fields. Prove the equality

div(u~a) = u div~a + ~a · gradu.

Solution. In this example we use the formal approach and taking pri-
marily into account the differential character of ~∇ we formally write out
the derivative of a product:

div(u~a) = ~∇ · (u~a) = ~∇ · (
↓
u~a) + ~∇ · (u

↓
~a).

Then considering ~∇ only as a vector we rearrange multipliers in such a
way that the fields with the downarrow are placed to the right of the ~∇,
the rest to the left. Applying properties 1)–4) to the first term in the above
expression we obtain

~∇ · (
↓
u~a) = (~∇ · ~a)

↓
u = (~a · ~∇)

↓
u = ~a · (~∇

↓
u).

To rearrange the second term we use the property 2):

~∇ · (u
↓
~a) = u(~∇ ·

↓
~a).

Finally we can omit the downarrows and write

div(u~a) = ~a · (~∇u) + u(~∇ · ~a) = ~a · gradu + u div~a.

Example 2. Suppose that ~a(~r) and~b(~r) are differentiable vector fields.
Prove the equality

curl(~a×~b) = ~a div~b−~b div~a + (~b · ~∇)~a− (~a · ~∇)~b.

Solution. As in Example 1 we write

curl(~a×~b) = ~∇× (~a×~b) = ~∇× (
↓
~a×~b) + ~∇× (~a×

↓
~b).

95



Then we expand the double cross product (property 9) in the first term:

~∇× (
↓
~a×~b) =

↓
~a(~∇ ·~b)−~b(~∇ ·

↓
~a).

Since the quantity (~∇ ·~b) is a scalar we place it before the vector field ~a
and change the order of vectors in the dot product:

~∇× (
↓
~a×~b) = (~b · ~∇)

↓
~a−~b(~∇ ·

↓
~a).

The fields in the second term are already in the right order. Similarly we
process the second term

~∇× (~a×
↓
~b) = ~a(~∇ ·

↓
~b)−

↓
~b(~∇ · ~a) = ~a(~∇ ·

↓
~b)− (~a · ~∇)

↓
~b .

Thus we obtain

curl(~a×~b) = (~b · ~∇)~a−~b(~∇ · ~a) + ~a(~∇ ·~b)− (~a · ~∇)~b =

= (~b · ~∇)~a−~b div~a + ~a div~b− (~a · ~∇)~b.

Example 3. Let ~a(~r) and ~b(~r) be differentiable vector fields. Prove
the equality

grad(~a ·~b) = ~a× curl~b +~b× curl~a + (~b · ~∇)~a + (~a · ~∇)~b.

Solution. We write as previously

grad(~a ·~b) = ~∇(~a ·~b) = ~∇(
↓
~a ·~b) + ~∇(~a ·

↓
~b).

There is no formula among 1) – 9) that is appropriate for the rearrangement
of the above terms. To go further we consider relations

~b× (~∇×
↓
~a) = ~∇(

↓
~a ·~b)− (~b · ~∇)

↓
~a,

~a× (~∇×
↓
~b) = ~∇(~a ·

↓
~b)− (~a · ~∇)

↓
~b.

Now we express the necessary terms and finally obtain

grad(~a ·~b) = ~b× (~∇× ~a) + (~b · ~∇)~a + ~a× (~∇×~b) + (~a · ~∇)~b =

= ~b× curl~a + (~b · ~∇)~a + ~a× curl~b + (~a · ~∇)~b.
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Example 4. For arbitrary differentiable vector fields ~a(~r) and ~b(~r)
prove the equality

(~∇× ~a)×~b = ~a div~b− (~a · ~∇)~b− ~a× curl~b−~b× curl~a.

Solution. In this example we use the second approach and perform
calculations in cartesian coordinates. First we write the quantity (~∇×~a)×~b
in index notation:

(~∇× ~a)×~b = ~eiεijk(~∇× ~a)jbk = ~eiεijkεjlm∂l(ambk).

Then we use the property of Levi-Civita’s symbol:

εijkεjlm = −εikjεjlm = −(δilδkm − δimδkl).

Thus

(~∇× ~a)×~b = ~ei(δimδkl − δilδkm)∂l(ambk) = ~ei∂k(aibk)− ~ei∂i(akbk) =

= ~eiai∂kbk + ~eibk∂kai − ~ei∂i(akbk) = ~a div~b− (~b · ~∇)~a− grad(~a ·~b).
Substituting instead of grad(~a ·~b) the result of the example 3 we prove the
required.

Example 5. Find grad f(r), div f(r)~r, curl f(r)~r, where ~r is radius-
vector, r is its norm, f(r) is a differentiable function.

Solution. In the beginning we calculate the partial derivative ∂ir taking
into account that ~r = ~eixi and ∂ixk = δik:

∂ir = ∂i
√
~r · ~r =

1

2
√
~r · ~r

∂i(xkxk) =
xk∂ixk

r
=

xkδik
r

=
xi
r
.

Then

grad f(r) = ~ei∂if(r) = ~ei
∂f

∂r
∂ir = f ′(r)

~eixi
r

= f ′(r)
~r

r
.

div f(r)~r = ~∇ · (f(r)~r) = ∂i(f(r)xi) = xi∂if(r) + f(r)∂ixi =

= xif
′(r)

xi
r

+ f(r)δii = rf ′(r) + 3f(r).

curl f(r)~r = ~∇× (f(r)~r) = ~eiεijk∂j(f(r)xk) = ~eiεijkxk∂jf(r)+

+~eiεijkf(r)∂jxk = ~eiεijkxkf
′(r)

xj
r

+ ~eiεijkf(r)δjk = ~0.
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Exercises
For arbitrary differentiating vector fields ~a(~r), ~b(~r), ~c(~r) and a differ-

entiating scalar field u(~r) prove the following equalities.

3.84. curl(u~a) = u curl~a− ~a× gradu.

3.85. div(~a×~b) = ~b · curl~a− ~a · curl~b.

3.86. ~c · grad~a ·~b = ~a · (~c · ~∇)~b +~b · (~c · ~∇)~a.

3.87. (~a · ~∇)u~b = ~b(~a · gradu) + u(~a · ~∇)~b.

3.88. (~c · ~∇)(~a×~b) = ~a× (~c · ~∇)~b−~b× (~c · ~∇)~a.

3.89. (~a×~b) · curl~c = ~b · (~a · ~∇)~c− ~a · (~b · ~∇)~c.

3.90. (~a× ~∇)×~b = (~a · ~∇)~b + ~a× curl~b− ~a div~b.

3.91. Prove that the vector (~b· ~∇)~a is the derivative of the vector field ~a

in the direction of the vector ~b multiplied by the norm ~b : (~b · ~∇)~a = |~b|∂~a
∂b

.

3.92. Find vectors (~b · ~∇)~a and (~a · ~∇)~b if ~a = yz~i + zx~j + xy~k and
~b = zx~i + xy~j + yz~k.

3.93. Prove if ~a 2 = const then

(~a · ~∇)~a = −~a× curl~a.

Let ~a and ~b be constant vectors, ~r be a radius-vector and r = |~r|.
Compute the following expression.

3.94. grad r.

3.95. grad
1

r
.

3.96. (~r · ~∇)rn.

3.97. grad(~a · ~r).

3.98. grad(~a · f(r)~r).

3.99. grad
~a · ~r
r3

.

3.100. grad(~a× ~r)2.

3.101. grad
~a · ~r
~b · ~r

.

3.102. div ~r.

3.103. div
~r

r
.

3.104. div(~a · ~r)~b.

3.105. div(~a · ~r)~r.

3.106. div f(r)~a.

3.107. div r~a.

3.108. div ~r 2~a.

3.109. div(~r × ~a).
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3.110. div((~a× ~r)×~b).

3.111. div((~a× ~r)× ~r).

3.112. curl~r.

3.113. curl(~a · ~r)~b.

3.114. curl(~a · ~r)~r.

3.115. curl r~a.

3.116. curl f(r)~a.

3.117. curl
~a× ~r

r3
.

3.118. curl(~a× f (r)~r).

3.119. curl(~a× ~r).

3.120. curl((~a× ~r)×~b).

3.121. curl((~a× ~r)× ~r).

Suppose that vector fields ~a and ~b depend only on the norm of radius
vector. Compute the following expression.

3.122. grad~a(r) ·~b(r).

3.123. grad~a(r) · ~r.

3.124. (~b · ~∇)f(r)~a(r).

3.125. div f(r) · ~a(r).

3.126. curl f(r) · ~a(r).

Let ~a, ~b and ~c be constant vectors, ~r be a radius-vector and r = |~r|.
Compute div ~p, curl ~p, (~c · ~∇)~p.

3.127. ~p = rn~a.

3.128. ~p = rn~r.

3.129. ~p = ~a(~b · ~r)rn.

3.130. ~p = ~r(~a · ~r)rn.

3.131. ~p = ~r(~a · ~r)(~b · ~r)rn.

3.132. ~p = (~a× ~r)rn.

3.133. ~p = (~a× ~r)(~b · ~r)rn.

3.4. Differential operation of the second order

Suppose that a scalar field u(M) and a vector field ~a(M) are twice
continuously differentiable fields in a domain D ⊂ E3. Then gradu is the
differentiable in D vector field, div~a is the differentiable scalar field and
curl~a is the differentiable vector field. Therefore from nine pair combina-
tions of grad, div and curl there exist only five:

div gradu, curl curl~a, grad div~a, curl gradu, div curl~a.
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Consider them step by step:

div gradu = ~∇ · (~∇u) = (~∇ · ~∇)u = ∆u.

curl curl~a = grad div~a−∆~a,

grad div~a = curl curl~a + ∆~a,

curl gradu = ~∇× (~∇u) = ~0,

div curl~a = ~∇ · (~∇× ~a) = 0.

The operator ∆ is called the Laplace operator and in cartesian coordi-
nates takes the form

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and acts as
∆u =

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
,

∆~a =~i∆ax +~j∆ay + ~k∆az.

Example 1. Compute ∆(uv), where u(M) and v(M) are twice con-
tinuously differentiable scalar fields.

Solution. According to the result of the problem 3.21 we write using
the formal approach the following:

∆(uv) = (~∇ · ~∇)(uv) = ~∇ · (~∇(uv)) = ~∇ · (v~∇u + u~∇v) =

= (~∇v) · (~∇u) + v(~∇ · ~∇u) + (~∇u) · (~∇v) + u(~∇ · ~∇v) =

= v∆u + 2(~∇u) · (~∇v) + u∆v.

Example 2. Compute div(u grad v), where u(M) and v(M) are twice
continuously differentiable scalar fields.

Solution. Using formal approach we obtain the following chain of equal-
ities:

div(u grad v) = ~∇ · (u~∇v) = ~∇ · (
↓
u ~∇v) + ~∇ · (u

↓
~∇v) =

= ~∇v · ~∇
↓
u+u~∇ ·

↓
~∇v = ~∇v · ~∇u + u∆v.
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Exercises
Suppose that ~a, ~b u and v are arbitrary twice differentiable fields and

f(r) is a twice differentiable real-valued function of the norm of a radius
vector. Compute the following expressions.

3.134. curl(u grad v).

3.135. div(grad f(r)).

3.136. curl(~a× curl~b).

3.137. div(~∇u× ~∇v).

Let ~a, ~b and ~c be constant vectors, ~r be a radius-vector and r = |~r|.
Compute grad div ~p,∆~p.

3.138. ~p = rn~a.

3.139. ~p = rn~r.

3.140. ~p = ~a(~b · ~r)rn.

3.141. ~p = ~r(~a · ~r)rn.

3.142. ~p = ~r(~a · ~r)(~b · ~r)rn.

3.143. ~p = (~a× ~r)rn.

3.144. ~p = (~a× ~r)(~b · ~r)rn.

3.145. Compute curl curl~a, grad div~a, ∆~a if ~a = x2y2~i+y2z2~j+z2x2~k
and show and verify the formula curl curl~a = grad div~a−∆~a.

3.146. There given the following vector fields (any sign combination is
possible):

~a1 =~ie±x +~je±y + ~ke±z,

~a2 =~ie±y +~je±z + ~ke±x,

~a3 =~ie±z +~je±x + ~ke±y.

Prove that:
a) curl~a1 = 0, and the fields ~a2 and ~a3 satisfy the equation ~a +

+ curl curl~a = 0;
b) div~a2 = 0, div~a3 = 0, and the field ~a1 satisfies the equation ~a −

− grad div~a = 0.

3.147. Show that the function ln
1

r
, where r =

√
x2 + y2, satisfies for

r 6= 0 the Laplace equation on a plane ∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0.

3.148. Show that the function
1

r
, where r =

√
x2 + y2 + z2, satisfies

for r 6= 0 the Laplace equation ∆u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.
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3.149. Show that the electric field ~E = ke
~r

r3
of a point charge e placed

in the origin of coordinates satisfies for r 6= 0 the Laplace equation ∆ ~E = 0.
3.150. Using Maxwell’s equations for a homogeneous isotropic medium

in the absence of charges and currents

curl ~E = −µ
c

∂ ~H

∂t
, curl ~H =

ε

c

∂ ~E

∂t
, div ~E = 0, div ~H = 0.

show that the strengthes of electric ~E and magnetic ~H fields satisfy the
equations:

∆ ~E − εµ
c2

∂2 ~E

∂t2
= 0, ∆ ~H − εµ

c2

∂2 ~H

∂t2
= 0.

3.151. Show that the vectors ~a1 = ~∇u, ~a2 = ~∇ × (~cu) and ~a3 =

= ~∇× (~∇× (~cu)) satisfy the vectorial Helmholtz’s equation ∆~a+ k2~a = ~0
if the scalar field is the solution of ∆u + k2u = 0. Here the vector ~c is a
constant vector. Prove that the vectors ~a1 and ~a2 are orthogonal. Find the
divergence of the fields ~a2 and ~a3.



Chapter 4

Integral calculus of fields

4.1. Line integral of the first kind

Let f(M) be a scalar field defined in the neighborhood of a simple
smooth curve L. Divide the curve by points Mi, i = 1, n, on arcs Mi−1Mi

of the length ∆li and choose for each arc Mi−1Mi a point Ni ∈ Mi−1Mi.

If there exists the limit of integral sum lim
max ∆li→0

n∑
i=0

f (Ni) ∆li, which does

not depend on the way of choosing point Mi and Ni, this limit is called
the line integral of the first kind of the scalar field f(M) along the curve
L and denoted as

w

L

f(M)dl or
z

L

f(M)dl for a closed curve.

Properties
1. Linearity. If there exist line integrals of fields f(M) and g(M) along

a curve L, then for all real numbers α and β
w

L

(
αf(M) + βg(M)

)
dl = α

w

L

f(M)dl + β
w

L

g(M)dl.

2. Additivity. If a curve L is the union of two curves L1 and L2 that
may intersect only at a finite number of points, i. e. L = L1 +L2, and for
a scalar field f(M) there exists the line integral along the curve L then

w

L

f(M)dl =
w

L1

f(M)dl +
w

L2

f(M)dl.

3. The line integral of a scalar field does not depend on the orientation
of the curve.

4. The line integral of a scalar field does not depend on the parametri-
sation of the curve.
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5. Mean-value formula. If a scalar field f(M) is continuous along a
curve L, then there is a point M ∗ ∈ L, that

w

L

f(M)dl = f(M ∗)l,

where l is the length of the curve L.
6.

w

L

dl = l(L).

To evaluate the line integral of a continuous scalar field along a smooth
curve the curve is to be parameterised:

a) natural parametrization ~r = ~r(l), l ∈ [0, l0]:

w

L

f(M)dl =

l0w

0

f(x(l), y(l), z(l))dl;

b) general parametrization ~r = ~r(t), t ∈ [a, b]:

w

L

f(M)dl =

bw

a

f(x(t), y(t), z(t))

√
x′2t + y′2t + z′2tdt;

c) plane curve defined explicitly y = y(x), x ∈ [a, b]:

w

L

f(M)dl =

bw

a

f(x, y(x))

√
1 + y′2xdx;

d) plane curve specified in the polar coordinates ρ = ρ(ϕ), ϕ ∈ [α,β]:

w

L

f(M)dl =

βw

α

f(ρ(ϕ) cosϕ, ρ(ϕ) sinϕ)

√
ρ2 + ρ′2ϕdϕ.

The line integral of the first kind can be defined for a vector field
~a = ax~i + ay~j + az~k as

w

L

~a(M)dl =~i
w

L

ax(M)dl +~j
w

L

ay(M)dl + ~k
w

L

az(M)dl.

Example 1. Evaluate the line integral of the first kind
w

L

(x + y)dl,

where L is the triangle with vertexes at A(1, 0), B(0, 1) and C(0, 0).
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Solution. First we divide the piecewise smooth curve L into three
smooth curves L = L1 + L2 + L3 as shown on fig. 4.1. Then we can
parameterise each curve as follows:

L1 : x = 0, y = t, t ∈ [0, 1];

L2 : x = t, y = 0, t ∈ [0, 1];

L3 : x = t, y = 1− t, t ∈ [0, 1].

Then taking into account that dl =
√

x′2t + y′2tdt, we evaluate

w

L1

(x + y)dl =

1w

0

(0 + t)
√

02 + 12 dt =
1

2
;

w

L2

(x + y)dl =

1w

0

(t + 0)
√

12 + 02 dt =
1

2
;

w

L3

(x + y)dl =

1w

0

(t + 1− t)
√

12 + (−1)2 dt =
√

2.

Thus using the property of additivity we obtain

w

L

(x + y)dl =
3∑

k=1

w

Lk

(x + y)dl = 1 +
√

2.

Example 2. Evaluate the line integral of the first kind
w

L

e
√

x2+y2dl,

where L is the convex contour formed by the curves r = a, ϕ = 0, ϕ =
π

4
(r and ϕ are polar coordinates).

Solution. Given curve L is piecewise curve and we are to divide it into
three simple smooth curves L = L1 + L2 + L3 as it is shown on fig. 4.2.
The parametrisation of each smooth curve is

L1 : x = a cosϕ, y = a sinϕ, ϕ ∈
[
0,
π

4

]
;

L2 : x = t, y = 0, t ∈ [0, a];

L3 : x = t, y = t, t ∈
[
0,

a√
2

]
.
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Fig. 4.1 Fig. 4.2

Then

w

L1

e
√

x2+y2dl =

π
4w

0

e
√

a2 cos2ϕ+a2 sin2ϕ
√

a2 sin2ϕ+ a2 cos2ϕ dϕ =

=a

π
4w

0

eadϕ =
π a

4
ea;

w

L2

e
√

x2+y2dl =

aw

0

e
√
t2+02

√
12 + 02dt =

tw

0

eadt = ea − 1;

w

L3

e
√

x2+y2dl =

a/
√

2w

0

e
√
t2+t2

√
12 + 12dt =

√
2

a
√

2w

0

e
√

2tdt = ea − 1.

Finally we obtain

w

L

e
√

x2+y2dl =
3∑

k=1

w

Lk

e
√

x2+y2dl = 2(ea − 1) +
π a

4
ea.

Example 3. Evaluate the line integral of the first kind
w

L

xy dl along

the first arc of the cycloid x = a(t− sin t), y = a(1− cos t), 0 6 t 6 2π.
Solution. The curve L is already parameterised. Therefore we can

immediately find the element of the length dl :

x′ = a(1− cos t), y′ = a sin t,

dl = a

√
(1− cos t)2 + sin2 tdt = a

√
2(1− cos t)dt = 2a sin

t

2
dt.
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Substituting the parametrization into the integral we evaluate

w

L

xydl = 2a3

2πw

0

(t− sin t)(1− cos t) sin
t

2
dt = 4a3

2πw

0

(t− sin t) sin3 t

2
dt =

= 16a3

πw

0

ξ sin3 ξ dξ− 8a3

2πw

0

sin4 t

2
cos

t

2
dt =

= 4a3

πw

0

ξ(3 sin ξ− sin 3ξ)dξ− 16a3

2πw

0

sin4 t

2
d sin

t

2
=

= 12a3(−ξ cos ξ+ sin ξ)

∣∣∣∣π
0

− 4a3

(
−1

3
ξ cos 3ξ+

1

9
sin 3ξ

)∣∣∣∣π
0

−

− 16a3 1

5
sin5 t

2

∣∣∣∣2π
0

=
32π a3

3
.

Example 4. Evaluate the line integral of the first kind
w

L

(x2 − y2)xy

(x2 + y2)2
dl,

where the curve L is defined by the polar equation ρ = sin 2ϕ, 0 6 ϕ 6
π

4
.

Solution. The parametrization of the curve is

x = ρ(ϕ) cosϕ, y = ρ(ϕ) sinϕ, 0 6 ϕ 6
π

4
.

Then
dl =

√
ρ2 + (ρ′)2 dϕ =

√
1 + 3 cos2 2ϕ dϕ.

Substituting the parametrization into the integral we obtain

w

L

(x2 − y2)xy

(x2 + y2)2
dl =

π
4w

0

(cos2ϕ− sin2ϕ) cosϕ sinϕ
√

1 + 3 cos2 2ϕdϕ =

=
1

2

π
4w

0

cos 2ϕ sin 2ϕ
√

1 + 3 cos2 2ϕdϕ =

∣∣∣∣ substitutioncos 2ϕ = t

∣∣∣∣ =

=
1

4

1w

0

t
√

1 + 3t2dt =
1

8
· 1

3
· 2

3
(1 + 3t2)

3
2

∣∣∣∣1
0

=
7

36
.
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Example 5. Evaluate the line integral of the first kind
w

L

(x + y)dl,

where L is a quarter of the circle x2 + y2 + z2 = R2, x = y, being in the
first octant (fig. 4.3).

Solution. We can parameterize the curve as

x = R t, y = R t, z = R
√

1− 2t2, t ∈
[
0,

1√
2

]
.

Then

dl = R

√
1 + 1 +

4t2

1− 2t2
dt =

R
√

2√
1− 2t2

dt.

Substituting the parametrization into the integral we obtain

w

L

(x + y) dl =

1√
2w

0

2
√

2R2t√
1− 2t2

dt =

∣∣∣∣ substitution2t2 = ξ

∣∣∣∣ =

=

1w

0

R2

√
2

dξ√
1− ξ

=
√

2R2.

Example 6. Evaluate the line integral of the first kind
w

L

x2dl,

where the curve L is the circle x2 + y2 + z2 = R2, x+ y + z = 0, (fig. 4.4).
Solution. Since the curve is symmetric with respect to permutations of

coordinates x, y, z, then
w

L

x2dl =
w

L

y2dl =
w

L

z2dl.

Therefore
w

L

x2dl =
1

3

w

L

(x2 + y2 + z2)dl =
1

3

w

L

R2dl =
2πR3

3
.
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Fig. 4.3 Fig. 4.4

Exercises
Evaluate the line integral of the first kind along the given plane curve.

Consider all parameters like a, b, p etc. positive.

4.1.
z

L

xy dl, L: triangle with vertices at (0, 0), (4, 0), (4, 2), (0, 2).

4.2.
w

L

dl√
x2 + y2 + 1

, L: segment of the straight line between points

(0, 0) and (1, 2).

4.3.
w

L

(4 3
√
x− 3

√
y)dl, L: segment of the straight line between points

(0, 4) and (4, 0).

4.4.
w

L

dl

x− y
, L: segment of the straight line between points (0,−2)

and (4, 0).

4.5.
w

L

ydl, L: arc of the parabola y2 = 2px, cut off by the parabola

x2 = 2py.

4.6.
w

L

x

y
dl, L: parabola y2 = 2x between points (1,

√
2) and (2, 2).

4.7.
w

L

e2xdl, L: x = ln y, 1 6 y 6 4.

4.8.
w

L

dl

y2
, L: chain line y = a cosh

x

a
.
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4.9.
w

L

ydl, L: y = x2 + |x2 − x|, −1 6 x 6 2.

4.10.
w

L

y2dl, L: y = max(2
√
x, 2x), 0 6 x 6 2.

4.11.
w

L

4xydl, L: y = min

(
x2

a
,
√

2a2 − x2

)
, x > 0.

4.12.
w

L

x2dl, L: arc of the circle x2 + y2 = a2, y > 0.

4.13.
w

L

(x+y)dl, L: arc of the circle x = a cos t, y = a sin t, 0 6 t 6
π

2
.

4.14.
w

L

(x2 + y2)ndl, circle L: x = a cos t, y = a sin t.

4.15.
w

L

(x− y) dl, circle L: x2 + y2 = ax.

4.16.
w

L

xydl, L: arc of the ellipse
x2

a2
+

y2

b2
= 1, x > 0, y > 0.

4.17.
w

L

xydl, L: arc of the hyperbola x = a cosh t, y = a sinh t,

0 6 t 6 t0.

4.18.
w

L

x2ydl, L: x = 4 cos t, y = sin 2t, x > 0, y > 0.

4.19.
w

L

y2dl, L: arc of the cycloid x = a(t − sin t), y = a(1 − cos t),

0 6 t 6 2π.

4.20.
w

L

√
2ydl, L: arc of the cycloid x = a(t− sin t), y = a(1− cos t),

0 6 t 6 2π.

4.21.
w

L

ydl, L: arc of the astroid x = cos3 t, y = sin3 t between points

(1, 0) and (0, 1).

4.22.
w

L

(4x2 − y2)dl, L: astroid x = a cos3 t, y = a sin3 t, 0 6 t 6 2π.

4.23.
w

L

√
x2 + y2dl, L: x = a(cos t + t sin t), y = a(sin t − t cos t),

0 6 t 6 2π.
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4.24.
w

L

dl

x2 + y2
, L: x = a (cos t + t sin t) , y = a (sin t− t cos t) ,

0 6 t 6 2π.

4.25.
w

L

ye−xdl, L: x = ln(1 + t2), y = 2 arctan t− t + 3, 0 6 t 6 1.

4.26.
w

L

arctan
y

x
dl, L: arc of the Archimedean spiral ρ = 2ϕ in the

interior of the circle ρ = a.

4.27.
w

L

xdl, L: arc of the logarithmic spiral ρ = ekϕ, k > 0, in the

interior of the circle ρ = a.

4.28.
w

L

xdl, L: arc of cardioid ρ = 1 + cosϕ, 0 6 ϕ 6 π.

4.29.
w

L

√
x2 + y2dl, L: loop of the curve ρ = a sin 3ϕ, x > 0, y > 0.

4.30.
w

L

(x + y)dl, L: loop of the curve ρ2 = cos 2ϕ, −π
4
6 ϕ 6

π

4
.

4.31.
w

L

y3dl, L: loop of the curve ρ = a cos 4ϕ, −π
8
6 ϕ 6

π

8
.

4.32.
w

L

|y|dl, L: loop of the curve ρ = a (2 + cosϕ) , 0 6 ϕ 6 2π.

4.33.
w

L

(x3 + y3)dl, L: (x2 + y2)2 = 2a2xy, x > 0, y > 0.

4.34.
w

L

√
x2 + y2dl, L: (x2 + y2)2 = a2(x2 − y2).

4.35.
w

L

x
√
x2 − y2dl, L: (x2 + y2)2 = a2(x2 − y2), x > 0.

Evaluate the line integral of the first kind along the given spatial curve.
Consider all parameters like a, b, etc. positive.

4.36.
w

L

(x + z)dl, L: x = t, y =
3t2√

2
, z = t3, 0 6 t 6 1.

4.37.
w

L

√
2ydl, L: x = t, y =

t2

2
, z =

t3

3
, 0 6 t 6 1.

4.38.
w

L

(2x− z2y)dl, L: x =
t2

2
, y =

2
√

2

3
t3/2, z = t, 0 6 t 6 1.
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4.39.
w

L

dl

x2 + y2 + z2
, L: x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π.

4.40.
w

L

z2dl

x2 + y2
, L: x = a cos t, y = a sin t, z = at, 0 6 t 6 2π.

4.41.
w

L

(x2+y2+z2)dl, L: x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π.

4.42.
w

L

(2z −
√

x2 + y2)dl, L: x = t cos t, y = t sin t, z = t,

0 6 t 6 2π.

4.43.
w

L

(x2 + y2 + z2)dl, L: x = t cos t − sin t, y = t sin t + cos t,

z = t, 0 6 t 6 2π.

4.44.
w

L

(x2 + y2 + z2)dl, L: x = a(t − sin t), y = a(1 − cos t),

z = 4a sin
t

2
, 0 6 t 6 2π.

4.45.
w

L

xzdl, L: ρ = a (1 + cosϕ) , z = 4a
(

1− cos
ϕ

2

)
, 0 6 t 6 4π.

4.46.
w

L

√
x2 + y2dl, L: x =

√
z cos

√
z, y =

√
z sin

√
z from the point

(0,0,0) to (−π, 0,π2).

4.47.
w

L

zdl, L: x = t cos t, y = t sin t, z = t, 0 6 t 6 2π.

4.48.
w

L

y2dl, L: circle x2 + y2 + z2 = a2, x + y + z = a.

4.49.
w

L

zdl, L: arc of the curve x2 + y2 = z2, y2 = ax between points

(0, 0, 0) and (a, a, a
√

2).

4.50.
w

L

xyzdl, L: a quarter of the circle x2+y2+z2 = a2, x2+y2 =
a2

4
,

being in the first octant.

4.51.
w

L

|y|dl, L: x2 + y2 = z2, x2 + y2 = ax.
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4.2. Applications of the line integral
of the first order

Suppose that a vector function ~r(t) specifies the position of a massive
nonhomogeneous thread in E3 and ρ(~r(t)) is its linear density function.
Then

a) the total mass of the thread:

µ =
w

L

ρ(~r)dl;

b) the center of gravity:

~Rc =
1

µ

w

L

~rρ(~r)dl;

c) the moments of inertia with respect to coordinate axes:

Ix =
w

L

(y2 + z2)ρ(~r)dl, Iy =
w

L

(x2 + z2)ρ(~r)dl,

Iz =
w

L

(x2 + y2)ρ(~r)dl;

d) the moments of inertia with respect to coordinate planes:

Iyz =
w

L

x2ρ(~r)dl, Ixz =
w

L

y2ρ(~r)dl, Ixy =
w

L

z2ρ(~r)dl;

e) the moment of inertia with respect to the origin of coordinates:

I0 =
w

L

(x2 + y2 + z2)ρ(~r)dl.

The attraction force acting on a material point P0 = (x0,y0, z0) of mass
m by a massive thread:

~F = Gm
w

L

~R

|~R|3
ρ(x, y, z)dl,

where ~R = (x− x0)~i + (y − y0)~j + (z − z0)~k.
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Example 1. Find the mass of the parabola y2 = 2px, 0 6 x 6
p

2
, if

its linear density distributed as ρ(x, y) = |y|.

Fig. 4.5

Solution. At first we divide the curve L
into two parts L1 and L2 symmetric in respect
of the Ox axis as shown on fig. 4.5. Then the
mass of the curve due to symmetry is

µ =
w

L

ρ(x, y)dl =
w

L

|y|dl = 2
w

L1

ydl.

Parameterizing the curve L1 as

x = x, y =
√

2px, x ∈
[
0,

p

2

]
,

we substitute it into the last integral and finally obtain

µ = 2

p/2w

0

√
2px

√
1 +

(
2p

2
√

2px

)2

dx = 2
√

2p

p/2w

0

√
x +

p

2
dx =

=
4

3

√
2p
(
x +

p

2

)3/2
∣∣∣∣
p
2

0

=
4
√

2

3
p2

(
1− 1

2
√

2

)
.

Example 2. Find the mass of the first coil of the helix x = a cos t,
y = a sin t, z = bt, if its linear density ρ(M) is proportional to the length
of the radius-vector of the point M .

Solution. From the problem formulation we find out that ρ(M) =

= α|~r| = α
√
x2 + y2 + z2, where α is a constant. Substituting parametric

equation of the curve we obtain the density ρ(t) = α
√
a2 + b2t2 and the

length element dl = |~r ′(t)|dt =
√
a2 + b2dt. Then the mass of the curve is

µ =
w

L

ρ(~r)dl =

2πw

0

α
√

a2 + b2t2
√

a2 + b2dt =

= α
√

a2 + b2

(
t

2

√
a2 + b2t2 +

a2

2b
ln
(
bt +

√
a2 + b2t2

))∣∣∣∣2π
0

=

= α
√
a2 + b2

[
π
√

a2 + 4π2b2 +
a2

2b
ln

(
2πb +

√
a2 + 4π2b2

a

)]
.

114



Example 3. Find the center of gravity of the astroid arc

x3/2 + y3/2 = a3/2, x > 0, y > 0,

with constant linear density ρ(x, y) = ρ0.
Solution. The parametric equation of the given part of the astroid is

x = a cos3ϕ, y = sin3ϕ, 0 6 ϕ 6
π

2
.

Then
x′ = −3a cos2ϕ sinϕ, y′ = 3a sin2ϕ cosϕ,

dl = 3a
√

cos4ϕ sin2ϕ+ sin4ϕ cos2ϕdϕ = 3a sinϕ cosϕdϕ.

Primarily we find the curve total mass:

µ =
w

L

ρ (x, y) dl = 3aρ0

π
2w

0

sinϕ cosϕdϕ =
3aρ0

2
.

Then we find the coordinates of the center of gravity:

xc =
1

µ

w

L

xρ (x, y) dl =
1

µ
3a2ρ0

π
2w

0

sinϕ cos4ϕdϕ =
2

3aρ0

3a2ρ0

5
=

2

5
a,

yc =
1

µ

w

L

yρ (x, y) dl =
1

µ
3a2ρ0

π
2w

0

sin4ϕ cosϕdϕ =
2

3aρ0

3a2ρ0

5
=

2

5
a.

Exercises
Consider all parameters like a, b etc. positive in this section.

Find the mass of a the given curve L with a linear density ρ.

4.52. L: y = lnx, 0 < x1 6 x 6 x2; ρ(x, y) = x2.

4.53. L: triangle with vertices at (0, 0), (3, 0), (0, 4); ρ(x, y) =
x

3
+

y

4
.

4.54. L: arc of the chain line y = a cosh
x

a
, y 6 a cosh 1; ρ(x, y) = b/y.

4.55. L: upper arc of the circle x2 + y2 = a2; ρ(x, y) = by3.
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4.56. L: lower arc of the ellipse
x2

9
+

y2

4
= 1; ρ(x, y) = −y.

4.57. L: arc of the ellipse x = a cos t, y = b sin t, a > b; ρ(x, y) = |y|.
4.58. L: arc of the parabola y2 = 2ax, 0 6 x 6

a

2
; ρ(x, y) = |y|.

4.59. L: arc of the helix x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π;
ρ(x, y, z) = z2.

Find the center of gravity of the given homogeneous curve (ρ(M) = 1).

4.60. L: x2 + y2 = a2, x > 0, y > 0.

4.61. L: y = a cosh(x/a), −a 6 x 6 a.

4.62. L: y = a cosh(x/a), 0 6 x 6 a.

4.63. L: y2 = x2 − x4/a2.

4.64. L: x = (y2 − 2 ln y)/4, 1 6 y 6 2.

4.65. L: x = a(t− sin t), y = a(1− cos t), 0 6 t 6 2π.

4.66. L: x = a(t− sin t), y = a(1− cos t), 0 6 t 6 π.

4.67. L: x = a(cos t + t sin t), y = a(sin t− t cos t), 0 6 t 6 2π.

4.68. L:
√
x +
√
y =
√
a.

4.69. L: x2/3 + y2/3 = a2/3, y > 0.

4.70. L: x = a cos t, y = a sin t, 0 6 t 6 β, 0 < β < 2π.

4.71. L: x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π.

4.72. L: x = et cos t, y = et sin t, z = et, t 6 0.

4.73. L: ρ = a (1 + cosϕ) , 0 6 ϕ 6 π.

4.74. L: closed curve, which is intersection of the sphere x2 + y2 + z2 = a2

and coordinate planes laying in the first octant.

4.75. L: x2 + y2 + z2 = a2, |y| = x, z > 0.

4.76. L: z = x2 − y2, x + y − z = 0, x > 0, y 6 0.

Find the center of gravity of the given nonhomogeneous curves.

4.77. L: x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π; ρ(x, y, z) = kz2.

4.78. L: x = a(t− sin t), y = a(1− cos t), z = 4a sin
t

2
, 0 6 t 6 2π;

ρ(x, y, z) = kz2.
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Find the moment of inertia of the given homogeneous curves.
4.79. L: x + 2y = 3, 1 6 x 6 2, with respect to the Ox axis.
4.80. L: y =

√
x, 1 6 x 6 2, with respect to the Ox axis.

4.81. L: x2 − y = 1, 0 6 x 6 1, with respect to the coordinate axes.
4.82. L: polygonal lineABC passing through the pointsA(1, 1), B(2, 3),

C(4,−1) with respect to the coordinate axes.

4.83. L: triangle4ABC with vertices at the pointsA(a, 0), B
(
a,

2π

3

)
,

C

(
a,

4π

3

)
given in polar coordinates with respect to the origin of coor-

dinates.
4.84. L: x = a cos t, y = a sin t, 0 6 t 6 β, 0 < β < 2π with respect

to the coordinate axes.
4.85. L:

√
x +
√
y =
√
a with respect to the Ox axis and the origin.

4.86. L: x2/3 +y2/3 = a2/3, y > 0, with respect to the coordinate axes.
4.87. L: x2/3 + y2/3 = a2/3, x > 0, y > 0, with respect to the

coordinate axes.
4.88. L: x = a cos t, y = a sin t, z = bt, 0 6 t 6 2π, with respect to

the coordinate axes.
4.89. Find the attraction force of a semicircle of radius R and mass M

acting on a point mass m placed in the center of the semicircle.
4.90. Find the attraction force of an infinite homogeneous straight line

directed along the Oz axis with linear density ρ acting on a point mass m
placed at the distance h from the line.

4.91. Find the force exerted by the astroid arc x = a cos3 t, y = a sin3 t,
0 6 t 6 π/2 on a point mass m placed in the origin of coordinates, if
the linear density of the astroid is proportional to the cubic power of the
distance from the point of the astroid to the origin.

4.92. The circle x2 + y2 = R2 is charged uniformly with linear charge
density λ(x, y) = λ0. Find electric field at the point (0, 0, z0).

4.93. The circle x2 + y2 = R2 is charged with linear charge density
λ(x, y) = λ0 cosϕ (tanϕ = y/x). Find electric field at the center.

4.94. Let ~v = vx(x, y)~ex + vy(x, y)~ey be a velocity field of incompress-
ible flow at a point M(x, y). Find the flow rate through a closed smooth
curve L.
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4.3. Line integral of the second kind

Let L be a simple curve with boundary points A and B (A 6= B). Or-
dering of boundary points defines the orientation of the curve. Expressions
LAB and LBA are the notation of the curve L with opposite orientations.
Another way to define the orientation of a curve is to choose the direction
of unit tangent vector to the curve at fixed point. A closed simple curve
can be oriented by cutting out one point and orienting the resulting simple
open curve. A closed curve is said to be oriented positively or has the pos-
itive direction if when traversing, the region bounded by the curve remains
on the left.

The line integral of the second kind along an oriented curve L of a
vector field ~a(M) is called the integral

w

L

~a(M) · d~r =
w

L

(~a · ~τ)dl,

where ~τ is the unit tangent vector of the curve.
In Cartesian coordinates

~a(M) = P (x, y, z)~i + Q(x, y, z)~j + R(x, y, z)~k,

d~r = dx~i + dy~j + dz ~k,

and w

L

~a · d~r =
w

L

Pdx + Qdy + Rdz.

To compute the line integral of the second kind we are to parameterise
the curve L : x = x(t), y = y(t), z = z(t), t ∈ [a, b], and put the
parametrisation into the integral that transforms the line integral into the
definite integral:

w

L

~a · d~r =

bw

a

~a(x(t), y(t), z(t)) · ~r ′(t)dt =

=

bw

a

[P (x(t), y(t), z(t))x′(t) + Q(x(t), y(t), z(t))y′ (t) +

+ R(x(t), y(t), z(t))z′(t)] dt.
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Properties
1. Linearity. If there exist line integrals of vector fields ~a(M) and~b(M)

along a curve L then for all real constant α and β
w

L

(α~a(M) + β~b(M)) · d~r = α
w

L

~a(M) · d~r + β
w

L

~b(M) · d~r.

2. Additivity. If a curve L is the union of two curves L1 and L2 that
may intersect only at a finite number of points, i. e. L = L1 +L2, and for
a vector field ~a(M) there exists the line integral along the curve L then

w

L

~a(M) · d~r =
w

L1

~a(M) · d~r +
w

L2

~a(M) · d~r.

3. Curve integrals of the second kind along curves with opposite orien-
tation differ only in sign:

w

LAB

~a(M) · d~r = −
w

LBA

~a(M) · d~r.

Example 1. Evaluate the line integral of the second kind
z

L

x2ydx + x3dy,

where L is the closed piecewise curve composed by parabolas y2 = x and
x2 = y taken in the clockwise direction.

Fig. 4.6

Solution. First we need to divide the
piecewise curve into two parabolas L =
= L−1 + L−2 oriented as shown in fig. 4.6.
The parametrization of each curve is:

L−1 :

{
x = t2, x′ = 2t,
y = t, y′ = 1,

t ∈ [0, 1];

L+
2 :

{
x = t, x′ = 1,
y = t2, y′ = 2t,

t ∈ [0, 1].

Then we calculate the integral along the curve L−1 :

w

L−1

x2ydx + x3dy =

1w

0

(t4 · t · 2t + t6)dt =
3

7
.
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To evaluate the integral along the curve L−2 we change the direction of
the curve and use the property 3):

w

L−2

x2ydx + x3dy = −
w

L+
2

x2ydx + x3dy = −
1w

0

(t2 · t2 + t3 · 2t)dt = −3

5
.

Then finally
z

L

x2ydx + x3dy =
w

L+
1

x2ydx + x3dy +
w

L+
2

x2ydx + x3dy = − 6

35
.

Example 2. Evaluate the curve integral of the second kind
w

L

x2dy − xydx,

where L is the curve x4 − y4 = 6x2y from the point (−4
√

2, 4) to (0, 0).
Solution. First we need to parameterise the curve. Since the curve im-

plicit equation is uniform we introduce parameter t as y = xt. Substituting
y in the curve equation we obtain

L : x =
6t

1− t4
, y =

6t2

1− t4
, t ∈

[
− 1√

2
, 0

]
.

Then we find differentials

dx = 6
3t4 + 1

(1− t4)2 dt, dy = 12
t
(
t4 + 1

)
(1− t4)2 dt,

and finally evaluate the integral

w

L

x2dy − xydx = 63

0w

− 1√
2

(
t2

(1− t4)2

2t(t4 + 1)

(1− t4)2
− t3

(1− t4)2

3t4 + 1

(1− t4)2

)
dt =

= 63

0w

− 1√
2

t3

(1− t4)3
dt =

63

8

1

(1− t4)2

∣∣∣∣0
− 1√

2

= −21.
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Example 3. Evaluate the line integral
z

L

(y − z)dx + (z − x)dy + (x− y)dz,

around the curve of intersection of the sphere x2 + y2 + z2 = a2 and the
plane y = x tanα, 0 < α < π/2 taken in the counterclockwise direction
as viewed from the point (2a,−2a, 0), a > 0.

Solution. Since the curve is the intersection of the sphere and the plane
we parameterize it as follows:

L :

 x = a cosα cos t, x′ = −a cosα sin t,
y = a sinα cos t, y′ = −a sinα sin t,
z = a sin t, z′ = a cos t,

t ∈ [0, 2π].

The growth of the parameter generates the necessary direction of the curve.
Substituting the parametrisation into the integral we obtain

w

L

(y − z)dx + (z − x)dy + (x− y)dz =

= a2

2πw

0

[− (sinα cos t− sin t) cosα sin t + (sin t− cosα cos t) sinα sin t+

+ (cosα− sinα) cos2 t
]

dt = a2

2πw

0

(cosα− sinα) dt =

= 2πα2 (cosα− sinα) .

Exercises
Evaluate the line integral of the second kind of a vector field ~a along

the given curve L. Consider all parameters like a, b, p etc. positive.

4.95. ~a = (x2 + y2)~i + (x2 − y2)~j, L: y = |x| from (−1, 1) to (2, 2).

4.96. ~a = (x2 + y2)~i + (x2 − y2)~j, L: y = 1− |x− 1|, 0 6 x 6 2.

4.97. ~a = (x2− 2xy)~i+ (y2− 2xy)~j, L: y = x2 from (−1, 1) to (1, 1).

4.98. ~a = 2xy~i + x2~j, L: x2 + y2 = 1 from (1, 0) to (0, 1).
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4.99. ~a =
x + y

x2 + y2
~i +

x− y

x2 + y2
~j, L: x2 + y2 = 1 oriented positively.

4.100. ~a = (x + y)~i + (x − y)~j, L: (x − 1)2 + (y − 1)2 = 1 oriented
negatively.

4.101. ~a = (2a− y)~i + (x− a)~j, L: x = a(t− sin t), y = a(1− cos t)
from (0, 0) to (2πa, 0).

4.102. ~a = x2y~i−y2x~j, L: x =
√

cos t, y =
√

sin t from (1, 0) to (0, 1).

4.103. ~a = z~i + x~j + y~k, L: x = a cos t, y = a sin t, z = bt from
(a, 0, 0) to (a, 0, 2πb).

4.104. ~a = (y2 − z2)~i + 2yz~j − x2~k, L: x = t, y = t2, z = t3 from
(0, 0, 0) to (1, 1, 1).

4.105. ~a =
x~i + y~j + z~k√

x2 + y2 + z2 − x− y + 2z
, L: straight line from (1, 1, 1)

to (4, 4, 4).

4.106. ~a = z~i + 2x~j − y~k, L: x2 + y2 = 2ax, az = xy, z > 0, from
(0, 0, 0) to (a, a, a).

Evaluate the line integral of the second kind along the given curve L.
Consider all parameters like a, b etc. positive.

4.107.
z

L

(xy+x2 +y2)dx+(x2−y2)dy, L : positively oriented triangle

4ABC with vertexes at A(1, 2), B(0,2),C(0, 0).

4.108.
w

L

4x sin2 ydx+y cos2 2xdy, L: straight line from (0, 0) to (3, 6).

4.109.
w

L

xdy, L: straight line bx + ay = ab from (a, 0) to (0, b).

4.110.
w

L

ydx + xdy

1 + x2y2
, L: straight line from (0, 0) to (1, 1).

4.111.
z

L

dx + dy

|x|+ |y|
, L: square with vertexes at (1, 0), (0, 1), (−1, 0),

(0,−1) traced in the counterclockwise direction.

4.112.
w

L

(y2 + 2xy)dx + (x2− 2xy)dy, L: parabola y = x2 from (1, 1)

to (2, 4).
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4.113.
w

L

ydx − (y + x2)dy, L: parabola y = 2x − x2 from (2, 0) to

(0, 0).

4.114.
w

L

(4x + y)dx + (x + 4y)dy, L : y = x4 from (1, 1) to (−1, 1).

4.115.
w

L

(2a−y)dx+xdy, L : cycloid x = a(t−sin t), y = a(1−cos t)

from (0, 0) to (2πa, 0).

4.116.
z

L

xy2dy − x2ydx, L: positively oriented circle x2 + y2 = a2.

4.117.
z

L

xdy + 2ydx, L: closed line composed by curves y = 0, y = x,

y =
√

1− x2, traced in the counterclockwise direction.

4.118.
z

L

ydx− xdy, L: astroid x3/2 + y3/2 = a3/2, traced in the clock-

wise direction.
4.119.

w

L

a(x+y)dx−xydy, L: x1/4 +y1/4 = a1/4 from (0, a) to (a, 0).

4.120.
w

L

xy2dx− x2ydy, L: 2(x+ y) = (x− y)2 from (0, 2) to (2, 0).

4.121.
w

L

xydx− x2dy, L: x4 − 2x2y2 + y3 = 0 from (−1/4,−1/8) to

the origin.

4.122.
w

L

y2dx−2xydy, L: x3 + 2x2 + y2 = 3 from (−1,
√

2) to (1, 0).

4.123.
w

L

(y + π) dx + x cos ydy, L: π lnx − y + sin y = 0 from (1, 0)

to (e,π).

4.124.
z

L

xdy − ydx, L : x4 + y4 = a2(x2 + y2), traced in the counter-

clockwise direction.
4.125.

z

L

xydx− x3y3dy, L: square |x− y|+ |x + y| = 1 traced in the

clockwise direction.
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4.126.
z

L

ydx− xdy, L: loop of the curve ρ = a cos 3ϕ, x > 0, traced

in the counterclockwise direction.
4.127.

w

L

ydx + xdy + (x + y + z)dz, L: straight line from (2, 3, 4) to

(3, 4, 5).

4.128.
w

L

x2dx+y2dy+z2dz, L: straight line from (0, 0, 0) to (1, 1, 1).

4.129.
z

L

zdx+ xdy + ydz, L : circle x2 + y2 = 4, z = 0, traced in the

counterclockwise direction as viewed from the point (0, 0, 1).

4.130.
z

L

ydx− xdy + zdz, L : x2 + y2 + z2 = 4, x2 + y2 = z2, z > 0,

traced in the clockwise direction as viewed from the origin.

4.131.
z

L

2xzdx− ydy + zdz, L: the curve of intersection of the plane

x + y + 2z = 2 with the coordinate planes, traced in the counterclockwise
direction as viewed from the origin.

4.132.
z

L

(y2 − z2)dx + (z2 − x2)dy + (x2 − y2)dz, L: the curve of

intersection of the sphere x2 +y2 +z2 = 1 with the coordinate planes laying
in the first octant, traced in the counterclockwise direction as viewed from
the point (2, 2, 2).

4.133.
z

L

ydx− xdy + (x + y)dz, L: x2 + y2 = z, z = 1, traced in the

clockwise direction as viewed from the point (0, 0, 2).

4.134.
z

L

zy2dx + xz2dy + yx2dz, L : y2 + z2 = x, x = 9, traced in

the counterclockwise direction as viewed from the origin.

4.135.
z

L

y2dx + z2dy, L : x2 + y2 = 9, 3y + 4z = 5, traced in the

counterclockwise direction as viewed from the origin.

4.136.
z

L

ydx− xdy + zdz, L : x2 + y2 + z2 = 1, x = z, traced in the

counterclockwise direction as viewed from the point (0, 2, 0).
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4.137.
w

L

xzdx + axdy − x2dz, L: az = yx, x + y + z = a, x > 0,

y > 0, from the point (0, a, 0) to (a, 0, 0).

4.138.
w

L

yzdx + aydy − azdz, L: x2 + y2 = z2, x2 + y2 = ax,

y > 0, z > 0, from the point (0, 0, 0) to (a, 0, a).

4.139.
w

L

x2y3dx + dy + zdz, L: x2 + y2 = a, z = h, from (a, 0, h) to

(−a, 0, h) through (0, a, h).

4.140.
z

L

(y − z)dx + (z − x)dy + (x − y)dz, L: x2 + y2 + z2 = a2,

y = x tanα, 0 < α <
π

2
, traced in the counterclockwise direction as viewed

from the point (2a,−2a, 0).

4.141.
w

L

y2dx + z2dy + x2dz, L: upper arc of the Viviani’s curve

x2 + y2 + z2 = a2, x2 + y2 = ax, z > 0, traced in the counterclockwise
direction as viewed from the point (2a, 0, 0).

4.4. Applications of the line integral
of the second order

Work done by a force field ~F along a curve L:

A =
w

L

~F · d~r.

If a curve L is closed then the line integral of the second kind is called
circulation of a vector field.

Induction of magnetic field at a point (x0, y0, z0), induced by a current I,
passing through a closed conductor L :

~B = γI
z

L

d~r × ~R

|~R|3
,

where ~R = (x0 − x)~i + (y0 − y)~j + (z0 − z)~k.
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Example 1. Find the induction of magnetic field at the Oz axis, in-
duced by a current I, passing through the coil x2 + y2 = a2, (fig. 4.7).

Fig. 4.7

Solution. To find the induction at the point (0, 0, z0) we parameterise
the circle coil as

~r =~ia cos t +~ja sin t, t ∈ [0, 2π].

Then
d~r = (−~ia sin t +~ja cos t)dt;

~R = −~ia cos t−~ja sin t + z0
~k, |~R| =

√
a2 + z2

0;

d~r × ~R = (~iaz0 cos t +~jaz0 sin t + a2~k)dt.

Finally aggregating preliminary calculations we obtain

~B = γI
z

L

d~r × ~R

|~R|3
= γI

2πw

0

az0 cos t~i + az0 sin t~j + a2~k

(a2 + z2
0)3/2

dt =
2πγIa2

(a2 + z2
0)3/2

~k.

Exercises
4.142. Evaluate the work done by the force ~F = F~i along the arc of

the circle x2 + y2 = a2, laying in the first quadrant.
4.143. Evaluate the work done by the force ~F = xy~i + (x + y)~j while

a particle moves from the origin to the point (1, 1): a) along the straight
line y = x; b) along the parabola y = x2; c) along two-element broken line,
elements of which are parallel to the coordinate axes (consider two cases).

4.144. Suppose that a particle moves along the ellipse x = a cos t, y =
= b sin t. Evaluate the work done by the force ~F directed to the origin,
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whose value is proportional to the distance between position of the parti-
cle M and the origin, a) along the arc of the ellipse in the first quadrant,
b) along the whole ellipse.

4.145. The force ~F directed to the origin has the value inversely propor-
tional to the distance from a point of appliance to the plane xOy. Evaluate
the work done by this force along the straight line x = at, y = bt, z = ct
from the point (a, b, c) to (2a, 2b, 2c).

4.146. The force ~F is directed to theOz axis perpendicular to it and has
the value inversely proportional to the distance from a point of appliance
to the axis Oz. Evaluate the work done by this force along the circle
x = cos t, y = 1, z = sin t from the point (1, 1, 0) to (0, 1, 1).

4.147. Express the fluid flow rate obtained in the Exercise 4.94 in terms
of the line integral of the second kind.

4.148. Let ~v = −xy~i + y2/2~j be a stationary velocity field of an
incompressible fluid. Evaluate the flow rate through the boundary of the
domain G = {(x, y) : −1 6 x 6 1, x4 6 y 6 1}.

4.149. Find the magnetic field induction value in the origin induced by

a current I, passing through the coil
x2

4
+

y2

9
= 1.

4.150. Find the magnetic field induction value induced by a current I,
passing through the infinite rectilinear conductor at the distance h from
the conductor.

4.5. Surface integral of the first kind

Let f(M) be a scalar field defined and continuous in a domain D. Let
Ω be a simple smooth surface in D. Suppose that the surface Ω is divided
into nonintersecting parts Ωik

1 whose area is Sik. Compose the integral
sum ∑

i,k

f(Nik)Sik,

whereNik ∈ Ωik. If there exists the limit of the integral sum while max(Sik)
approaches zero and it does not depend either on surface partitioning or
position of the points Nik, then the limit is called the surface integral of
the first kind of a scalar field f(M) on Ω and is denotes as

x

Ω

f(M)dS or
{

Ω

f(M)dS for a closed surface.

1Surfaces Ωik may have only common boundaries.
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Properties
1. Linearity. If there exist surface integrals of fields f(M) and g(M)

on a surface Ω, then for all real numbers α and β
x

Ω

(αf(M) + βg(M))dS = α
x

Ω

f(M)dS + β
x

Ω

g(M)dS.

2. Additivity. If a surface Ω is the union of two nonintersecting surfaces
Ω1 and Ω2, i. e. Ω = Ω1 + Ω2, and for a scalar field f(M) there exists the
surface integral on the surface Ω then

x

Ω

f(M)dS =
x

Ω1

f(M)dS +
x

Ω2

f(M)dS.

3. The surface integral of a scalar field does not depend on the orien-
tation of the surface (see section 4.7).

4. The surface integral of a scalar field does not depend on the parametri-
sation of the surface.

5. Mean-value formula. If a scalar field f(M) is continuous on a surface
Ω, then there is a point M ∗ ∈ Ω, that

x

Ω

f(M)dS = f(M ∗)S(Ω),

where S is the area of the surface Ω.

6.
x

Ω

dS = S(Ω).

The evaluation of the surface integral of a continuous scalar field on a
smooth surface depends on the surface equation:

a) parametric equation ~r = ~r (u, v) , (u, v) ∈ Duv,
x

Ω

f(M)dS =
x

Duv

f(x(u, v), y(u, v), z(u, v))|~ru × ~rv|dudv;

b) explicit equation:
• z = z(x, y), (x, y) ∈ Dxy,

x

Ω

f (M) dS =
x

Dxy

f (x, y, z (x, y))
√

1 + z′x
2 + z′y

2dxdy;
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• x = x(y, z), (y, z) ∈ Dyz,
x

Ω

f (M) dS =
x

Dyz

f (x(y, z), y, z)
√

1 + x′y
2 + x′z

2dydz;

• y = y(x, z), (x, z) ∈ Dzy,

x

Ω

f (M) dS =
x

Dxz

f (x, y(x, z), z)

√
1 + y′x

2 + y′z
2dxdz.

If a surface Ω is symmetric with respect to the coordinate plane xOy
and a function f(M) = f(x, y, z) is odd function with respect to z, then

x

Ω

f (M) dS = 0;

if f(x, y, z) is even with respect to z, then
x

Ω

f(M)dS = 2
x

Ω̃

f(M)dS,

where Ω̃ is the upper (lower) half of the Ω.
Example 1. Evaluate the surface integral of the first kind

x

Ω

(6x + 4y + 3z)dS,

where Ω is the part of the plane x+2y+3z = 6 in the first octant (fig. 4.8).

Fig. 4.8

Solution. First we need to find a parametric
or explicit equation of the surface. In this ex-
ample it is easier to write the explicit equation
expressing for example x coordinate:

x = 6− 2y − 3z, (y, z) ∈ Dyz,

where Dyz is the projection of the initial plane
onto the plane yOz:

Dyz = {(y, z) : y > 0, z > 0, 2y + 3z 6 6}.
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Then we find the element of area

dS =
√

1 + x′y
2 + x′z

2dydz =
√

1 + (−2)2 + (−3)2dydz =
√

14dydz

and substitute all into the surface integral:
x

Ω

(6x + 4y + 3z)dS =
x

Dyz

(6(6− 2y − 3z) + 4y + 3z)
√

14dydz =

=
√

14

3w

0

dy

2−2
3yw

0

(36− 8y − 15z)dz =

= 2
√

14

3w

0

(
21− 10y + y2

)
dy = 54

√
14.

Example 2. Evaluate the surface integral of the first kind
x

Ω

(x2 + y2 + az)dS,

on the upper hemisphere x2 + y2 + z2 = a2, z > 0, a > 0.
Solution. In this example it is more convenient to use parametric equa-

tion of the sphere:

x = a cos v sinu, y = a sin v sinu, z = a cosu,

0 6 v 6 2π, 0 6 u 6
π

2
.

To find the element os area we compute coefficients of the first quadratic
form of the surface:

~ru =
∂~r

∂u
= a cos v cosu~i + a sin v cosu~j − a sinu~k,

~rv =
∂~r

∂v
= −a sin v sinu~i + a cos v sinu~j,

E = ~r 2
u = a2, F = ~ru · ~rv = 0, G = ~r 2

v = a2 sin2 u.

and thus

dS = |~ru × ~rv| dudv =
√
EG− F 2 dudv = a2 sinu dudv.
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Substituting the parameterizations we evaluate the integral:

x

Ω

(x2 + y2 + z)dS =

π
2w

0

du

2πw

0

(a2 cos2 v sin2 u + a2 sin2 v sin2 u+

+a2 cosu)a2 sinudv = 2πa4

π
2w

0

(sin3 u + cosu sinu)du =

= 2πa4

(
1

12
cos 3u− 3

4
cosu− 1

2
cos2 u

)∣∣∣∣
π
2

0

=
7

3
πa4.

Example 3. Evaluate the surface integral of the first kind
x

Ω

(x2 − y2 + z3)dS,

on lateral surface of the cylinder x2 + y2 = a2 enclosed by the planes
x + z = 0 and x− z = 0.

Solution. The surface of integration is depicted by a dark gray color in
fig. 4.9. The parametrisation of the surface is

x = a cosϕ, y = a sinϕ, z = z,

where parameters ϕ and z belong to the domain

D = {(ϕ, z) : 0 6 ϕ 6 2π, |z| 6 a| cosϕ|}.

The surface area element of the cylinder is dS = adϕdz. Aggregating
previous calculations we obtain

x

Ω

(x2 − y2 + z3)dS = a

2πw

0

dϕ

a| cosϕ|w

−a| cosϕ|

(a2 cos2ϕ− a2 sin2ϕ+ z3)dz =

= 2a4

2πw

0

(cos2ϕ− sin2ϕ)| cosϕ|dϕ =

= 4a4

π/2w

−π/2

(1− 2 sin2ϕ) cosϕdϕ =
8a2

3
.
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Example 4. Evaluate the surface integral of the first kind
x

Ω

xyzdS,

on the part of the hyperbolic paraboloid z = xy, enclosed by the cylinder
x2 + y2 = 4.

Solution. The projection of the surface onto the plane xOy (fig. 4.10)
is the disk x2 + y2 6 4. Then the explicit equation is

z = xy, (x, y) ∈ Dxy, Dxy = {(x, y) : x2 + y2 6 4}.

The area element is

dS =
√

1 + z′x
2 + z′y

2dxdy =
√

1 + x2 + y2dxdy.

Substitution in integral results in
x

Ω

xyzdS =
x

Dxy

x2y2
√

1 + x2 + y2dxdy.

Since the integration domain is a disk it is convenient to use polar
coordinates x = ρ cosϕ, y = ρ sinϕ. The area element dxdy transforms
to ρdρdϕ, and the integration domain is 0 6 ϕ 6 2π, 0 6 ρ 6 2. Thus

x

Ω

xyzdS =

2πw

0

dϕ

2w

0

ρ4 cos2ϕ sin2ϕ
√

1 + ρ2ρdρ =

=

(
ϕ

8
− 1

32
sin 2ϕ

)∣∣∣∣2π
0

1

105

8− 12ρ2 + 15ρ4

(1 + ρ2)3/2

∣∣∣∣2
0

=
2π

105
(125
√

5− 1).

Fig. 4.9 Fig. 4.10
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Exercises
Evaluate the surface integral of the first kind on the given surface Ω.

Consider all parameters like a, b, h etc. positive.

4.151.
x

Ω

xyzdS, Ω: part of the plane x+y+z = 1, laying in the first

octant.
4.152.

x

Ω

(4y − x + z)dS, Ω: part of the plane y − x + z = 2, laying

in the second octant.
4.153.

x

Ω

(3x+2y+z)dS, Ω: part of the plane x+2y+3z = 6, laying

in the first octant.

4.154.
x

Ω

(
z + 2x +

4

3
y

)
dS, Ω: part of the plane

x

2
+

y

3
+

z

4
= 1,

laying in the first octant.

4.155.
{

Ω

dS

(1 + x + y)2
, Ω: faces of the tetrahedron x + y + z 6 1,

x > 0, y > 0, z > 0.

4.156.
{

Ω

(x2 + y2 + z2)dS, Ω: faces of the cube |x| 6 a, |y| 6 a,

|z| 6 a.

4.157.
x

Ω

xdS, Ω: part of the sphere x2 + y2 + z2 = a2, laying in the

first octant.
4.158.

x

Ω

(x + y + z)dS, Ω: hemisphere x2 + y2 + z2 = a2, z > 0.

4.159.
x

Ω

(x2 + y2 + az)dS, Ω: hemisphere x2 + y2 + z2 = a2, z 6 0.

4.160.
x

Ω

x2y2dS, Ω: hemisphere z =
√
a2 − x2 − y2.

4.161.
x

Ω

(y + z +
√
a2 − x2)dS, Ω: part of the lateral surface of the

cylinder x2 + y2 = a2, 0 6 z 6 h.
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4.162.
{

Ω

(x2 + y2 + z2)dS, Ω: surface of the body x2 + y2 6 a2,

0 6 z 6 h.
4.163.

x

Ω

xy2z3dS, Ω: part of the lateral surface of the cylinder x2 +

+y2 = 2ax, z > 0, inside the cone y2 + z2 = x2.

4.164.
x

Ω

(x−y2 + z3)dS, Ω: part of the lateral surface of the cylinder

x2 = 2y, 0 6 x 6 1, between the planes x + z = 0 and x− z = 0.

4.165.
x

Ω

xzdS, Ω: part of the lateral surface of the cylinder x2 +y2 =

= 2ax, between the cone z =
√
x2 + y2 and paraboloid z =

x2 + y2

2a
.

4.166.
x

Ω

√
xdS, Ω: part of the lateral surface of the cylinder x2 +y2 =

= 2ax, outside the hyperboloid x2 + y2 − z2 = a2.

4.167.
x

Ω

(x − y)dS, Ω: part of the lateral surface of the cylinder

x2 + y2 = a2, inside the cylinder z2 = a(a− x).

4.168.
x

Ω

ydS, Ω: part of the lateral surface of the cylinder x = 2y2+1,

y > 0, cut of by the surfaces x = y2 + z2, x = 2, x = 3.

4.169.
{

Ω

|xy|dS, Ω: surface of the body formed by the cylinders

x2 + z2 = a2 and y2 + z2 = a2.

4.170.
{

Ω

(x2 + y2)dS, Ω: surface of the body
√

x2 + y2 6 z 6 1.

4.171.
x

Ω

√
x2 + y2dS, Ω: part of the cone z =

√
x2 + y2,

0 6 z 6 h.

4.172.
x

Ω

(3x2 + 5y2 + 3z2 − 2)dS, Ω: part of the cone y =
√
x2 + z2,

between the planes y = 0 and y = b.

4.173.
x

Ω

(xy + yz + zx)dS, Ω: part of the cone z =
√

x2 + y2, inside

the cylinder x2 + y2 = 2ax.
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4.174.
x

Ω

(x + y + z)dS, Ω: part of the cone x2 = y2 + z2, inside the

cylinder x2 + y2 = 2ax.

4.175.
x

Ω

xyzdS, Ω: part of the cone z2 = 2xy, z > 0, inside the

cylinder x2 + y2 = a2.

4.176.
{

Ω

(x + y + z)dS, Ω: surface of the body formed by the plane

z = 0, hemisphere z =
√

a2 − x2 − y2 and cone z =
√
x2 + y2.

4.177.
x

Ω

z2dS, Ω: part of the cone x = ρ cosϕ sinα, y = ρ sinϕ sinα,

z = ρ cosα, 0 6 ρ 6 R, 0 6 ϕ 6 2π, 0 < α <
π

2
, α = const.

4.178.
x

Ω

|xyz|dS, Ω: part of the paraboloid z = x2 + y2, below the

plane z = 1.

4.179.
x

Ω

(x2 + y2)dS, Ω: part of the paraboloid 2z = x2 + y2, below

the plane z = 1.

4.180.
x

Ω

√
1 +

x2

p2
+

y2

q2
dS, Ω: part of the paraboloid z =

x2

2p
+

y2

2q
,

x > 0, inside the cylinder
(
x2

p2
+

y2

q2

)2

= a2

(
x2

p2
− y2

q2

)
.

4.181.
x

Ω

√
a2 + y2 + z2dS, Ω: part of the paraboloid ax = yz inside

the cylinder (y2 + z2)2 = 2b2yz.

4.182.
x

Ω

(
x2 + y2 + z − 1

2

)
dS, Ω: part of the paraboloid 2z = 2−

−x2 − y2 over the plane xOy.

4.183.
x

Ω

ydS, Ω: 3x2 + 3y2 + z2 = 3a2, z > 0.

4.184.
x

Ω

zdS, Ω: part of the helicoid z = u cos v, y = u sin v, z = v,

0 6 u 6 a, 0 6 v 6 2π.
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4.185.
x

Ω

(x + y + z)dS, Ω: part of the torus x = (b + a cosu) cos v,

y = (b + a cosu) sin v, z = a sinu, x > 0, z > 0, b > a.

4.186.
x

Ω

dS

x +
√
y2 + z2

, Ω: surface formed by rotation of the parabola

x = a cos4 t, y = a sin4 t around the axis Ox.

4.187.
x

Ω

(x2+y2+z2)dS, Ω: surface formed by rotation of the cardioid

ρ = a(1 + cosϕ) around the axis Ox.

4.188.
x

Ω

(y + z)dS, Ω: surface formed by rotation of the cycloid

x = a(t − sin t), y = a(1 − cos t), 0 6 t 6
π

2
around the axis Ox and

laying in the first octant.

4.189.
x

Ω

dS√
2− y2 − z2

, Ω: surface formed by rotation of the curve

y = sinx, 0 6 x 6 π around the axis Ox.

4.190.
x

Ω

yzdS, Ω: part of the surface formed by rotation of the curve

y = cosx, |x| 6 π
2
, around the axis Ox, satisfied the condition 0 < y < z.

4.191. Evaluate the difference between surface integrals

I1 =
x

Ω1

(x2 + y2 + z2)dS and I2 =
x

Ω2

(x2 + y2 + z2)dS,

where Ω1 is the sphere x2+y2+z2 = a2; Ω2 is the surface of the octahedron
|x|+ |y|+ |z| = a inscribed onto this sphere.

4.192. Evaluate
{

Ω

dS

h
, where Ω is ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1 and h

is the distance from the origin to the tangent plane at a current point of
the surface.

4.193. Prove Poison’s formula
x

Ω

f(ax + by + cz)dS = 2π

1w

−1

f(u
√

a2 + b2 + c2)du,

where Ω is the sphere x2 + y2 + z2 = 1.
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4.194. Evaluate the integral

F (t) =
x

x+y+z=t

f(x, y, z)dS,

where

f(x, y, z) =

{
1− x2 − y2 − z2, if x2 + y2 + z2 6 1,
0, if x2 + y2 + z2 > 1.

4.195. Evaluate the integral

F (t) =
x

x2+y2+z2=t2

f(x, y, z)dS,

where

f(x, y, z) =

{
x2 + y2, if z >

√
x2 + y2,

0, if z <
√
x2 + y2.

4.196. Evaluate the integral

F (x, y, z, t) =
x

Ω

f(ξ,η, ζ)dS,

where Ω is the growing sphere

(ξ− x)2 + (η− y)2 + (ζ− z)2 = t2

and
f(ξ,η, ζ) =

{
1, if ξ2 + η2 + ζ2 < a2,
0, if ξ2 + η2 + ζ2 > a2,

assuming that
r =

√
x2 + y2 + z2 > a > 0.

4.6. Applications of the surface integral
of the first order

Suppose that a vector function ~r(u, v) specifies the position of a massive
nonhomogeneous shell in E3 and ρ(~r(u, v)) is its surface density function.
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Then
a) the total mass of the shell:

µ =
x

Ω

ρ(~r)dS;

b) the center of gravity:

~Rc =
1

µ

x

Ω

~rρ(~r)dS;

c) the moments of inertia with respect to coordinate axes:

Ix =
x

Ω

(y2 + z2)ρ(~r)dS, Iy =
x

Ω

(x2 + z2)ρ(~r)dS,

Iz =
x

Ω

(x2 + y2)ρ(~r)dS;

d) the moments of inertia with respect to coordinate planes:

Iyz =
x

Ω

x2ρ(~r)dS, Ixz =
x

Ω

y2ρ(~r)dS, Ixy =
x

Ω

z2ρ(~r)dS;

e) the moment of inertia with respect to the origin of coordinates:

I0 =
x

Ω

(x2 + y2 + z2)ρ(~r)dS.

The attraction force acting on a material point M0 = (x0,y0, z0) of mass
m by a massive shell:

~F = γm
x

Ω

~R

|~R|3
ρ (x, y, z) dS,

where ~R = (x− x0)~i + (y − y0)~j + (z − z0)~k.

Electric field strength ~E and potential ϕ at the point M0 = (x0, y0, z0),
induced by a charge distributed over a surface Ω with surface density
σ(x, y, z):

~E = k
x

Ω

~R

|~R|3
σ(x, y, z)dS, ϕ = k

x

Ω

σ(x, y, z)

|~R|
dS,

where ~R = (x− x0)~i + (y − y0)~j + (z − z0)~k.
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Example 1. Find the inertia moment of the part of the homogeneous
cylinder x2 + y2 = ax inside the sphere x2 + y2 + z2 = a2 with respect to
the plane xOz.

Solution. To parameterize the cylinder we primarily complete the squares
in x variable: (

x− a

2

)2

+ y2 =
a2

4
.

Then the parametrization is

x =
a

2
(1 + cos t) = a cos2 t

2
, y =

a

2
sin t, z = z,

0 6 t 6 2π, |z| <
√
a2 − x2 − y2 = a sin

t

2
.

Element of the area is dS =
a

2
dtdz. Therefore we can compute the total

mass of the surface:

M =
x

Ω

ρ0dS =
aρ0

2

2πw

0

dt

a sin
t
2w

−a sin
t
2

dz = a2ρ0

2πw

0

sin
t

2
dt = 4a2ρ0.

Finally the inertia moment is

Ixz =
x

Ω

y2ρ0dS =
a3ρ0

8

2πw

0

dt

a sin
t
2w

−a sin
t
2

sin2 tdz =
a4ρ0

4

2πw

0

sin
t

2
sin2 tdt =

=
a4ρ0

4

(
1

10
cos

5t

2
− 1

6
cos

3t

2
− cos

t

2

)∣∣∣∣2π
0

=
8

15
a4ρ0 =

2

15
Ma2.

Example 2. The charge density of the surface composed from the cone
x2 + y2

a2
− z2

c2
= 0, z > 0 and the plane z = c is σ = αz, α = const. Find

the total charge.
Solution. The area of the plane part is πa2, and charge density equals

to αc, therefore the total charge is q0 = απca2.
The total charge of the cone Ω1 is the surface integral

q1 =
x

Ω1

αzdS.
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We project the cone onto the plane xOy and express z =
c

a

√
x2 + y2,

x2 + y2 6 a2. The area element is

dS =
√

1 + z′x
2 + z′y

2dxdy =

√
a2 + c2

a
dxdy.

Then

q1 = α
x

Ω1

zdS =
αc

a

x

x2+y26a2

√
x2 + y2

√
a2 + c2

a
dxdy.

Integrating in the polar coordinates x = ρ cosϕ, y = ρ sinϕ, 0 6 ϕ 6 2π,
0 6 r 6 a we obtain

q1 =
αc

a

√
a2 + c2

a

2πw

0

dϕ

aw

0

ρ2dρ =
2

3
απac

√
a2 + c2.

Finally the total charge is

q = απac

(
2

3

√
a2 + c2 + a

)
.

Exercises
4.197. Evaluate the mass of the part of the homogeneous paraboloid

2z = x2 + y2, 0 6 z 6 1.
4.198. Evaluate the mass of the part of the paraboloid 2z = x2 + y2,

0 6 z 6 1, if the surface density is ρ(x, y, z) = z.
4.199. Evaluate the mass of the part of the cylinder x2 + z2 = 2az

inside the cone x2 + y2 = z2, if the surface density is ρ(x, y, z) = |y|.
4.200. Evaluate the mass of the part of the cone x2 = y2 + z2 inside

the cylinder x2 + y2 = 2ax, if the density of the cone is ρ(x, y, z) = x.
4.201. Evaluate the mass of the part of the cone x2 + y2 = z2,

0 6 z 6 4, if the density at each point is equal to square of the distance
from the point to the cone vertex.

4.202. Evaluate the mass of a sphere of radius a, if its density is equal
to square of the distance from a point on the sphere to a fixed diameter.

4.203. Evaluate the mass of the upper hemisphere x2 + y2 + z2 = a2,
z > 0, with density ρ(x, y, z) = z/a.

4.204. Evaluate the moment of inertia of the homogeneous surface
x2 + y2 = 2ax, x2 > y2 + z2, with respect to the axis Oz.
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4.205. Evaluate the moment of inertia of the homogeneous surface
formed by rotation of the first arc of the cycloid x = a(t − sin t),
y = a(1− cos t) around the axis Ox with respect to this axis.

4.206. Evaluate the moment of inertia of the homogeneous sphere
x2 + y2 + z2 = a2 with respect to the axis Oz.

4.207. Evaluate the moment of inertia of the homogeneous cone
x2

a2
+

y2

a2
− z2

b2
= 0, 0 6 z 6 b, with respect to the straight line

x

1
=

=
y

0
=

z − b

0
.

4.208. Evaluate the moment of inertia of the part of the homogeneous
upper hemisphere x2+y2+z2 = a2, z > 0, inside the cylinder x2+y2 = ax,
with respect to the plane yOz.

4.209. Evaluate the moment of inertia of the homogeneous cone x2 +

+y2 = z2 tan2 α, x2 +y2 6 R2, 0 < α <
π

2
with respect to the plane xOy.

4.210. Evaluate the moment of inertia of the homogeneous surface
max(|x|, |y|, |z|) = a with respect to the origin.

4.211. Evaluate the moments of inertia of the homogeneous triangle
plate x + y + z = 1, x > 0, y > 0, z > 0, with respect to coordinate
planes.

4.212. Evaluate the moment of inertia of the homogeneous torus
x = (b + a cosu) cos v, y = (b + a cosu) sin v, z = a sinu, b > a, with
respect to the coordinate axes.

4.213. Evaluate the moment of inertia of the homogeneous paraboloid
x2 + y2 = 2az, 0 6 z 6 a, with respect to the axis Oz.

4.214. Evaluate the moment of inertia of the homogeneous segment of
the sphere x2 + y2 + z2 = a2, z > h, h < a, with respect to the axis Oz.

4.215. Evaluate the center of gravity of the homogeneous hemisphere
x2 + y2 + z2 = a2, z > 0.

4.216. Evaluate the center of gravity of the part of the homogeneous
sphere x2 + y2 + z2 = a2 laying in the first octant.

4.217. Evaluate the center of gravity of the upper hemisphere x2 +y2 +
+z2 = a2, z > 0, if the density is equal to the distance between a point on
the sphere and the Oz axis.

4.218. Evaluate the center of gravity of the homogeneous surface formed
by rotation of the parabola y2 = 2px, 0 6 x 6 p, around the axis Ox.

4.219. Evaluate the center of gravity of the homogeneous paraboloid
x2 + y2 = 2az, 0 6 z 6 a.
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4.220. Evaluate the center of gravity of the homogeneous cone x2+y2 =

=
a2

h2
z2, 0 6 z 6 h.

4.221. Evaluate the center of gravity of the homogeneous helicoid
x = u cos v, y = u sin v, z = av, 0 6 u 6 a, 0 6 v 6 π.

4.222. Find the attractive force exerted by a homogeneous cylinder of
radius a, height h and density ρ0 on the point mass m placed in the center
of the cylinder base.

4.223. Find the force exerted by a uniformly charged truncated cone
x = ρ cos t, y = ρ sin t, z = ρ, 0 6 t 6 2π, 0 < b 6 ρ 6 a, with total
charge Q on a point charge q placed in the cone vertex.

4.224. The surface charge density of the sphere x2 + y2 + z2 = R2 is
σ(~r) = ~a · ~r, where ~a is a constant vector a ~r is a radius-vector. Find the
electric field strength in the center of the sphere.

4.7. Surface integrals of the second kind

A smooth surface is called oriented or two-sided if a unit normal vector
to the surface can be chosen in such a manner that it varies continuously
as it moves about the surface, otherwise it is called non-oriented (one-
sided). Möbius strip and Klein bottle are examples of one-sided surfaces.
Further only the oriented surfaces will be considered. The side the surface
is determined by the direction on the normal vector.

Consider a simple smooth surface Ω defined by the equation ~r = ~r(u, v),
(u, v) ∈ D, and ∂D = {(u, v) : u = u(t), v = v(t), t ∈ [α,β]} is boundary
of the domain D. Boundary ∂Ω = {~r(t) = ~r(u(t), v(t)), t ∈ [α,β]} of the
surface Ω has the same orientation as the ∂D.

Orientation of the surface is associated with orientation of its boundary
by right-hand rule: while a point moves along the boundary in the positive
direction the positive side of the surface must lie to its left. The piecewise
smooth surface is oriented by choosing the normal vector on each smooth
portion of the surface in such a way that along a common boundary of two
portions, the positive direction of the boundary relative to one portion is
opposite to the direction of the boundary relative to another portion.

The scalar x

Ω

~a · d~S =
x

Ω

(~a · ~n)dS,
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where d~S = ~ndS, is called the surface integral of the second kind of a
continuous vector field ~a(M) on a surface Ω, oriented by unit normals ~n.

Suppose that in cartesian coordinates there given a continuous in the
neighborhood of a surface Ω vector field

~a(x, y, z) = P (x, y, z)~i + Q(x, y, z)~j + R(x, y, z)~k.

Then the surface integral of the second kind takes the form of
x

Ω

~a · d~S =
x

Ω

P (x, y, z)dydz + Q(x, y, z)dxdz + R(x, y, z)dxdy.

In physics the surface integral of the second kind is called the flux of
a vector field through an oriented surface. In case of evaluating the flux
through a closed surface it is common to orientate it in outward direction.

Properties
1. Linearity. If there exist surface integrals of vector fields ~a(M) and

~b(M) on a surface Ω, then for all real numbers α and β
x

Ω

(α~a(M) + β~b(M)) · d~S = α
x

Ω

~a(M) · d~S + β
x

Ω

~b(M) · d~S.

2. Additivity. If a surface Ω is the union of two nonintersecting surfaces
Ω1 and Ω2, i. e. Ω = Ω1 + Ω2, and for a vector field ~a(M) there exists the
surface integral on the surface Ω then

x

Ω

~a(M) · d~S =
x

Ω1

~a(M) · d~S +
x

Ω2

~a(M) · d~S.

3. Surface integrals of the second kind on surfaces with opposite orien-
tation differ only in sign:

x

Ω+

~a(M) · d~S = −
w

Ω−

~a(M) · d~S.

Evaluation methods
a) A surface is defined by the parametric equation:

~r = ~r(u, v), (u, v) ∈ Duv,

x

Ω

~a · d~S = ±
x

Duv

(~a · (~ru × ~rv))

∣∣∣∣ x = x(u, v)
y = y(u, v)
z = z(u, v)

dudv. (4.1)
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b) A surface is defined by the explicit equation:

• z = f(x, y), (x, y) ∈ Dxy, ~Nxy = ±(−f ′x~i− f ′y~j + ~k),

x

Ω

~a · d~S =
x

Dxy

(~a · ~Nxy)

∣∣∣∣
z=f(x,y)

dxdy; (4.2)

• y = g(x, z), (x, z) ∈ Dxz, ~Nxz = ±(−g′x~i +~j − g′z
~k),

x

Ω

~a · d~S =
x

Dxz

(~a · ~Nxz)

∣∣∣∣
y=g(x,z)

dxdz; (4.3)

• x = h(y, z), (y, z) ∈ Dyz, ~Nyz = ±(~i− h′y~j − h′z
~k),

x

Ω

~a · d~S =
x

Dyz

(~a · ~Nyz)

∣∣∣∣
x=h(y,z)

dydz. (4.4)

The surface integrals
x

Ω+

R(x, y, z)dxdy and
x

Ω−

R(x, y, z)dxdy

are evaluated by the formulas
x

Ω+

R(x, y, z)dxdy =
x

Ω

R(x, y, z) cos(~̂n,~k)dS,

x

Ω−

R(x, y, z)dxdy =
x

Ω

R(x, y, z) cos(−̂~n,~k)dS,

where (~̂n,~k) and (−̂~n,~k) are angles between corresponding vectors. If
R(x, y, z) ≡ 1 and the surface equation is z = z(x, y), then the surface
integral

x

Ω

dxdy is equal to area of the projection Dxy of the surface onto

the plane xOy taken with positive sign if the angle (~̂n,~k) is acute for all
surface points and with negative sign otherwise

x

Ω

dxdy = ±
x

Dxy

dxdy = ±S(Dxy).
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If a surface Ω is orthogonal to the plane xOy then
x

Ω

R(x, y, z)dxdy = 0.

If the surface Ω is symmetric with respect to xOy and a function R(x, y, z)
is odd with respect to z, then

x

Ω

R(x, y, z)dxdy = 2
x

Ω̃

R(x, y, z)dxdy,

where Ω̃ is upper (lower) half of Ω; if the function R(x, y, z) is even with
respect to z, then x

Ω

R(x, y, z)dxdy = 0.

c) A surface Ω is the part of the cylinder x2 + y2 = R2 bounded by
surfaces z = f1(x, y) and z = f2(x, y) (f1(x, y) 6 f2(x, y)) and half-planes
ϕ = ϕ1 and ϕ = ϕ2 then

x = R cosϕ, y = R sinϕ, z = z;

~n =
x~i + y~j

R
=~i cosϕ+~j sinϕ;

x

Ω

~a · d~S = R

ϕ2w

ϕ1

dϕ

f2(R cosϕ,R sinϕ)w

f1(R cosϕ,R sinϕ)

(~a · ~n)

∣∣∣∣
x=R cosϕ
y=R sinϕ

dz. (4.5)

d) A surface Ω is the part of the sphere x2 + y2 + z2 = R2 bounded by
conical surfaces θ = f1(ϕ) and θ = f2(ϕ) (f1(ϕ) 6 f2(ϕ)) and half-planes
ϕ = ϕ1 and ϕ = ϕ2:

x = R cosϕ sin θ, y = R sinϕ sin θ, z = R cos θ;

~n =
x~i + y~j + z~k

R
=~i cosϕ sin θ+~j sinϕ sin θ+ ~k cos θ;

x

Ω

~a · d~S = R2

ϕ2w

ϕ1

dϕ

f2(ϕ)w

f1(ϕ)

(~a · ~n)

∣∣∣∣x=R cosϕ sin θ
y=R sinϕ sin θ

z=R cos θ

sin θdθ. (4.6)
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Example 1. Evaluate the surface integral of the second kind
x

Ω

~a · d~S =
x

Ω

x√
x2 + yy

dydz +
y√

x2 + yy
dxdz,

on the upper side of the conical surface

~r (u, v) = u cos v sinα~i + u sin v sinα~j + u cosα~k,

0 6 v 6 2π, 0 6 u 6 1; 0 < α <
π

2
.

Solution. The domain Duv is the rectangle

Duv = {(u, v) : 0 6 v 6 2π, 0 6 u 6 1}.

According to the formula (4.1) we are to find tangent vectors ~ru, ~rv, then
find the scalar triple product ~a~ru~rv, choose the normal vector direction, and
finally substitute all in the surface integral. Let’s do it consequently.

Tangent vectors:

~ru = cos v sinα~i + sin v sinα~j + cosα~k,

~rv = −u sin v sinα~i + u cos v sinα~j.

Scalar triple product:

~a · (~ru × ~rv)
∣∣∣
(x,y,z)∈Ω

=

=

∣∣∣∣∣∣
cos v sin v 0

cos v sinα sin v sinα cosα
−u sin v sinα u cos v sinα 0

∣∣∣∣∣∣ = −u
2

sin 2α.

The term “upper side of the surface” assumes that z-component of the
normal vector is positive. In our case it is

nz = ±
∣∣∣∣ cos v sinα sin v sinα
−u sin v sinα u cos v sinα

∣∣∣∣ = ±u sin2 α.

Since the value u sin2 α in the domain Duv is positive then we choose the
sign “+”.
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Finally the integral is
x

Ω

~a · d~S = +
x

Duv

~a · (~ru × ~rv)
∣∣∣
(x,y,z)∈Ω

dudv =

= −
1w

0

u

2
sin 2αdu

2πw

0

dv = −π
2

sin 2α.

Example 2. Evaluate the surface integral of the second kind
{

Ω

xydydz + 2z2dxdz + x2dxdy

on the outward side of the tetrahedron 4x + 3y + 4z 6 12, x > 0, y > 0,
z > 0.

Fig. 4.11

Solution. Since Ω is a piecewise smooth surface we divide it into the
four smooth portions Ωi, i = 1, 4 with the corresponding orientation then
(fig. 4.11). Then we consequently evaluate the integrals on each portion.

The surface Ω1 is the domain of the plane x = 0:

Ω1 = Dyz = {(y, z) : 3y + 4z 6 12, y > 0, z > 0}.

The outward unit normal vector is ~n1 = −~i. Then
x

Ω1

~a · d~S =
x

Ω1

(~a · ~n1)dS = −
x

Dyz

xy
∣∣
x=0

dydz = 0.

The surface Ω2 is the subset of the plane y = 0:

Dxz = {(x, z) : x + z 6 3, x > 0, z > 0}.
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The outward unit normal vector is ~n2 = −~j and the integral is
x

Ω2

~a · d~S =
x

Ω2

(~a · ~n2) dS = −
x

Dxz

2z2
∣∣
y=0

dxdz =

= −2

3w

0

z2dz

3−zw

0

dx = −27

2
.

Then the surface Ω3 is the domain of the plane z = 0:

Dxy = {(x, y) : 4x + 3y 6 12, x > 0, y > 0}.

The outward unit normal vector is ~n3 = −~k and
x

Ω3

~a · d~S =
x

Ω3

(~a · ~n3)dS = −
x

Dxy

x2
∣∣
z=0

dxdy =

= −
3w

0

x2dx

4−4
3xw

0

dy = −9.

And finally to evaluate the integral on the surface Ω4 we use the formula
(4.3). Expressing y from the implicit surface equation we obtain that

y = 4− 4

3
x− 4

3
z, (x, z) ∈ Dxz,

and the outward unit normal vector is

~Nxz =
4

3
~i +~j +

4

3
~k.

Substitution into integral yields
x

Ω3

~a · d~S =
x

Dxz

(~a · ~Nxz)
∣∣∣
y=4−4

3x−
4
3z

dxdz =

=

3w

0

dz

3−zw

0

(
−4

9
x2 +

16

3
x + 2z2 − 16

9
zx

)
dx =

57

2
.

Therefore the value of the integral on the whole surface is

{

Ω

~a · d~S =
4∑

i=1

x

Ωi

~a · d~S = 0− 27

2
− 9 +

57

2
= 6.
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Example 3. Evaluate the surface integral of the second kind
x

Ω

y2dydz + xdxdz + z2dxdy

on the outward side of the paraboloid x = y2 + z2 − 1, x 6 3.
Solution. We can uniquely project this paraboloid onto the plane yOz

and use the formula (4.4). In our case Dyz : y2 + z2 6 4, and

~Nyz = ±(~i− x′y~j − x′z
~k) = ±(~i− 2y~j − 2z~k).

Since the outward side of the given paraboloid corresponds to negative value
of Nx, then we are to chose the minus sign, i. e. ~Nyz = −~i + 2y~j + 2z~k.
Then x

Ω

y2dydz + xdxdz + z2dxdy =

=
x

Dyz

(y2~i + x~j + z2~k) · (−~i + 2y~j + 2z~k)

∣∣∣∣
x=y2+z2−1

dydz =

=
x

y2+z264

(2y3 + 2z3 + 2yz2 − y2 − 2y)dydz =

 y = ρ cosϕ
z = ρ sinϕ

dydz = ρdρdϕ

 =

=

2πw

0

dϕ

2w

0

ρdρ
(
2ρ3(cos3ϕ+ sin3ϕ+ sin2ϕ cosϕ)−

−ρ2 cos2ϕ− 2ρ cosϕ
)

= −4π.

Example 4. Evaluate the surface integral of the second kind
x

Ω

xdydz + ydxdz + zdxdy

on the outward side of the lateral surface of the cylinder x2 + y2 = 1 inside
the cylinder y2 + z2 = 1.

Solution. In this example it is reasonable to pass to the cylindrical
coordinates x = cosϕ, y = sinϕ, z = z and use the formula (4.5). The
integration domain becomes 0 6 ϕ 6 2π,−

√
1− y2 6 z 6

√
1− y2.

Then we are to find the dot product

~a · ~n = (x~i + y~j + z~k) · (x~i + y~j) = x2 + y2.
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Taking into account that x2 + y2 = 1 on the cylinder, and
√

1− y2 =

=
√

1− sin2ϕ = | cosϕ|, we obtain

x

Ω

xdydz + ydxdz + zdxdy =

2πw

0

dϕ

| cosϕ|w

−| cosϕ|

dz = 2

2πw

0

| cosϕ|dϕ = 8.

Example 5. Evaluate the surface integral of the second kind
x

Ω

(x− 2y + 1) dydz + (2x + y − 3z) dxdz + (2y + z) dxdy

on the outward side of the part of the sphere x2 + y2 + z2 = 1 laying in the
first octant.

Solution. To use the formula (4.6) we pass to the spherical coordinates:

x = cosϕ sin θ, y = sinϕ sin θ, z = cos θ.

The first octant corresponds to the domain 0 6 ϕ 6
π

2
, 0 6 θ 6

π

2
. The

outward unit normal vector is ~n = x~i + y~j + z~k. Then

~a · ~n = ((x− 2y + 1)~i + (2x + y − 3z)~j + (2y + z)~k) · (x~i + y~j + z~k) =

= x2 + y2 + z2 + x− yz

and
~a · ~n

∣∣
Ω

= 1 + cosϕ sin θ− sinϕ sin θ cos θ.

Finally

x

Ω

~a · d~S = .

π
2w

0

dϕ

π
2w

0

(1 + cosϕ sin θ− sinϕ sin θ cos θ) sin θdθ =

= − ϕ|
π
2
0 cos θ|

π
2
0 + sinϕ|

π
2
0 ·

2θ− sin 2θ

4

∣∣∣∣
π
2

0

+

+ cosϕ|
π
2
0 ·

sin3 θ

3

∣∣∣∣
π
2

0

=
3π

4
− 1

3
.
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Exercises
Evaluate the surface integral of the second kind on the given side of the

surface Ω. Consider all parameters like a, b, p etc. positive.

4.225.
{

Ω

xdydz+ydxdz+zdxdy, Ω: outward side of the cube surface

0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1.

4.226.
{

Ω

f(x)dydz + g(y)dxdz + h(z)dxdy, Ω: outward sine of the

parallelepiped surface 0 6 x 6 a, 0 6 y 6 b, 0 6 z 6 c, f(x), g(y), h(z)
are continuous functions.

4.227.
x

Ω

xdydz + ydxdz + zdxdy, Ω: upper side of the plane x+ y+

+2z = 1, laying in the first octant.

4.228.
x

Ω

2xydydz + (x − 3y)dxdz + y2dxdy, Ω: upper side of the

plane −3x + y + 6z = 3, laying in the second octant.

4.229.
{

Ω

(3x− 1)dydz + (y− x+ z)dxdz + 4zdxdy, Ω: outward side

of the tetrahedron formed by the plane 2x−y−2z = 2 and the coordinate
planes.

4.230.
x

Ω

x2dydz + y2dzdx+ z2dxdy, Ω: upper side of the paraboloid

z = x2 + y2, z 6 h.

4.231.
x

Ω

2xdydz− 3ydxdz + zdxdy, Ω: upper side of the paraboloid

z = 9− x2 − y2, z > 0.

4.232.
x

Ω

ydydz−xdxdz + 3zdxdy, Ω: bottom side of the paraboloid

z = 8− x2 − y2, z > 2.

4.233.
x

Ω

x2dydz − y2dxdz + (z − 1) dxdy, Ω: bottom side of the

paraboloid z = 6− x2 − y2, z > 2.

4.234.
x

Ω

xzdydz − xdxdz + 4zdxdy, Ω: left side of the paraboloid

y = 1 + x2 + z2, y 6 2.
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4.235.
x

Ω

ydydz+2xydxdz−xdxdy, Ω: outward side of the paraboloid

y = 4− x2 − z2, y > 0.

4.236.
x

Ω

y2dydz+z2dxdz+x2dxdy, Ω: inward side of the paraboloid

x = y2 + z2 − 1, x 6 3.

4.237.
x

Ω

(y2 + z2)dxdz, Ω: inward side of the paraboloid x = a2 −

−y2 − z2, x > 0.

4.238.
x

Ω

x3dydz + y3dxdz + z3dxdy, Ω: upper side of the paraboloid

x2 + y2 = 2− z, z > 0.

4.239.
x

Ω

(x4 + y4 + 2a2z2)dxdy, Ω: bottom side of the paraboloid

az = xy, laying in the first octant and inside the cylinder (x2+y2)2 = b2xy.

4.240.
x

Ω

xydydz + yzdxdz + zxdxdy, Ω: outward side of the cone

z =
√

x2 + y2, 0 6 z 6 h.

4.241.
x

Ω

(y − z)dydz + (z − x)dxdz + (x − y)dxdy, Ω: inward side

of the cone z =
√

x2 + y2, 0 6 z 6 h.

4.242.
x

Ω

xdydz + ydxdz + zdxdy, Ω: bottom side of the cone

z = 1−
√

x2 + y2, 0 6 z 6 1.

4.243.
x

Ω

ydydz − xdxdz + 2zdxdy, Ω: outward side of the cone

z =
√

x2 + y2, 0 6 z 6 4.

4.244.
x

Ω

(x2 + y2 + z2)dxdz, Ω: upper side of the cone y =
√
x2 + z2,

0 6 y 6 b.

4.245.
x

Ω

xdydz − 3y2dxdz − zdxdy, Ω: right side of the cone

y = −
√
x2 + z2, −3 6 y 6 0.
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4.246.
x

Ω

yzdydz − xdxdz − ydxdy, Ω: inward side of the cone

z =
√

x2 + y2, 0 6 z 6 1.

4.247.
x

Ω

x2dydz + y2dxdz + z2dxdy, Ω: outward side of the cone

2z =
√

x2 + y2, 0 6 z 6 1.

4.248.
x

Ω

y2dxdz+z2dxdy, Ω: inward side of the cone x =
√

y2 + z2,

0 6 x 6 3.

4.249.
x

Ω

xdydz−ydxdz+zdxdy, Ω: inward side of the cone z2 = x2+

+y2, laying upper than the plane z = 0 and inside the cylinder x2+y2 = a2.

4.250.
x

Ω

(xz2+y2)dydz+(yx2+z2)dxdz+(zy2+x2)dxdy, Ω: outward

side of the cone 1− z =
√

x2 + y2, z > 0.

4.251.
x

Ω

(y2 + z2)dxdy, Ω: upper side of the cylinder z =
√
a2 − x2,

0 6 y 6 b.

4.252.
x

Ω

(x2 +z2)dydz, Ω: outward side of the cylinder x =
√

9− y2,

0 6 z 6 2.

4.253.
x

Ω

yzdydz+zxdxdz+xydxdy, Ω: outward side of the cylinder

x2 + y2 = a2, 0 6 z 6 h.

4.254.
x

Ω

(x+ y2)dydz + (y + z2)dxdz + (z +x2)dxdy, Ω: inward side

of the cylinder x2 + y2 = a2, 0 6 z 6 h.

4.255.
x

Ω

xdydz + ydxdz + zdxdy, Ω: outward side of the cylinder

x2 + y2 = 1, bounded by the planes x + y + z = 1 and x + y + z = 2.

4.256.
x

Ω

ydydz + xdxdz − exyzdxdy, Ω: inward side of the cylinder

x2 + y2 = 4, bounded by the planes z = 0 and x + y + z = 4.
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4.257.
x

Ω

xdydz − xydxdz + zdxdy, Ω: outward side of the cylinder

x2 + y2 = a2, bounded by the plane y = 1 and x + y = 4.

4.258.
{

Ω

xdydz + y2dxdz + z2dxdy, Ω: outward side of the surface

of the body x2 + y2 6 a2, −h 6 z 6 h.

4.259.
{

Ω

(x+y2)dydz+y2dxdz+z2dxdy, Ω: inward side of the surface

of the body x2 + y2 6 a2, −h 6 z 6 h.

4.260.
x

Ω

x3dydz−y3dxdz+xz3dxdy, Ω: outward side of the cylinder

x2 + y2 = 9 inside the sphere x2 + y2 + z2 = 25.

4.261.
x

Ω

xdydz−ydxdz+xyz3dxdy, Ω: outward side of the cylinder

x2 + y2 = 1, bounded by the plane z = 0 and paraboloid z = x2 − y2.

4.262.
x

Ω

(xy − y2)dydz + (2x − x2 + xy)dxdz + zdxdy, Ω: inward

side of the cylinder x2 + y2 = 1, bounded by the elliptic cone z2 =
x2

2
+ y2.

4.263.
x

Ω

xdydz + ydxdz + zdxdy, Ω: outward side of the cylinder

x2 + y2 = 1, bounded by the cylinder y2 + z2 = 1.

4.264.
x

Ω

(x2 + 6z − 2y2)dxdy, Ω: bottom side of the cylinder

y2 = 6z, 0 6 x 6 3, 0 6 z 6 6.

4.265.
x

Ω

(ax2 + by2 + cz2)dydz, Ω: outward side of the cylinder

y2 = 2px, 0 6 z 6 q, 0 6 x 6 2p.

4.266.
x

Ω

xdydz + ydxdz + zdxdy, Ω: outward side of the cylinder

y2 + x = 1, 0 6 z 6 2, x > 0.

4.267.
x

Ω

(4x2 + z2)dydz + 4xydxdz + z2dxdy, Ω: front side of the

cylinder 4x2 − y2 = a2, bounded by the cone x =
√

y2 + z2, a > 0.
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4.268.
x

Ω

(x− 2y + z) dydz+(2x + y − 3z) dxdz+(2y + z) dxdy, Ω:

outward side of the sphere x2 + y2 + z2 = 1, laying in the first octant.

4.269.
x

Ω

x3dydz − y3dxdz + zdxdy, Ω: outward side of the sphere

x2 + y2 + z2 = 1, bounded by the cone z =
√

x2 + y2.

4.270.
x

Ω

yzdydz + xzdxdz + xydxdy, Ω: outward side of the sphere

x2 + y2 + z2 = a2, laying in the first octant.

4.271.
x

Ω

xdydz + ydxdz + zdxdy, Ω: inward side of the sphere x2 +

+y2 + z2 = 2, bounded by the planes z = 0 and z = y, y > 0.

4.272.
x

Ω

xzdydz + yzdxdz + z2dxdy, Ω: outward side of the sphere

x2 + y2 + z2 = 2, z > 1.

4.273.
{

Ω

x2dydz + y2dxdz + z2dxdy, Ω: outward side of the sphere

(x− a)2 + (y − b)2 + (z − c)2 = R2.

4.274.
x

Ω

x2dydz + y2dxdz + z2dxdy, Ω: outward side of the sphere

x2 + y2 + z2 = a2, laying in the first octant.

4.275.
{

Ω

x3dydz + y3dxdz + z3dxdy, Ω: outward side of the sphere

x2 + y2 + z2 = x.

4.276.
x

Ω

(y − z) dydz + (z − x) dxdz + (x− y) dxdy, Ω: outward

side of the upper hemisphere x2 + y2 + z2 = 2Rx, inside the cylinder
x2 + y2 = 2ax, a < R.

4.277.
{

Ω

xdydz + ydxdz + zdxdy, Ω: inward side of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

4.278.
{

Ω

dydz

x
+

dxdz

y
+

dxdy

z
, Ω: outward side of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.
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4.279.
{

Ω

cosα

x2
dydz +

cosβ

y2
dxdz +

cosγ

z2
dxdy, Ω: outward side of

the ellipsoid
x2

a2
+

y2

a2
+

z2

c2
= 1; (cosα, cosβ, cosγ) are direction cosines

of the radius vector.
4.280.

{

Ω

xdydz + ydxdz + zdxdy, Ω: outward side of the ellipsoid

x2

9
+

y2

4
+ z2 = 1.

4.281.
x

Ω

x3dydz+y3dxdz+zdxdy, Ω: inward side of the hyperboloid

x2 + y2 − z2 = 1, 0 6 z 6 3.

4.282.
x

Ω

(x2 + y2)dydz + (y2 + z2)dxdz + (z2 + x2)dxdy, Ω: the disk

z = 0, x2 + y2 6 1, which side is defined by the normal ~k.

4.283.
x

Ω

xdydz + ydxdz + zdxdy, Ω: upper side of the disk z = a,√
x2 + y2 6 a.

4.284.
x

Ω

√
x2 + y2dydz +

√
x2 + y2dxdz +

√
zdxdy, Ω: right side of

the surface of the body x2 + y2 6 z2, x2 + y2 6 2− z, z > 0, x > 0.

4.285.
x

Ω

y2dydz + z2dxdz − x2dxdy, Ω: surface of the body 2x2 +

+2y2 6 az 6 x2 + y2 + a2, y > 0, a > 0, the normal vector at the point

M

(
0,

a

2
,
5a

4

)
forming acute angle with the axis Oz.

4.286.
x

Ω

ydydz − xdxdz + zdxdy, Ω: upper side of the helicoid

x = u cos v, y = u sin v, z = av, 0 6 v 6 2π, 0 6 u 6 1.

4.287.
x

Ω

xydydz + yzdxdz + zxdxdy, Ω: left side of the surface

x = 2u + v2, y = u2 − 2v, z = 2uv, 0 6 v 6 1, 0 6 u 6 1.
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4.8. Green’s theorem in the plane

A domain D ⊂ E2 is said to be simply connected (also called
1-connected) if any simple closed curve can be shrunk to a point continu-
ously in the set, otherwise it is said to be multiply connected .

Let P (x, y), Q(x, y),
∂P

∂y
,
∂Q

∂x
be continuous functions in a closed

simply connected domain D, bounded by a piecewise smooth simple closed
curve ∂D, then

z

∂D

Pdx + Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy, (4.7)

where line integral is taken in positive (counterclockwise) direction of ∂D.
Formula (4.7) is called Green’s formula. In case of multiply connected
domain D the curve ∂D is a union of all simple piecewise smooth closed
curves bounding the domain taken in the positive direction.

Green’s formula can be used to evaluate the area of a domain:

SD =
1

2

w

∂D

xdy − ydx.

Example 1. Evaluate the given line integral using Green’s formula:
z

L

(x2y + x + y)dx + (xy2 + x− y)dy,

where L is the ellipse
x2

a2
+

y2

b2
= 1 taken in the positive direction.

Solution. According to the formula (4.7) we are to find derivatives
∂P

∂y

and
∂Q

∂x
first. Since P = x2y + x + y, Q = xy2 + x− y, then we obtain

∂P

∂y
= x2 + 1,

∂Q

∂x
= y2 + 1.

Then

I =
z

L

(x2y + x + y)dx + (xy2 + x− y)dy =
x

D

((y2 + 1)− (x2 + 1))dxdy,
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where D =

{
(x, y) :

x2

a2
+

y2

b2
6 1

}
. To evaluate the double integral we

change cartesian coordinates to generalized polar coordinates:

x = aρ cosϕ, y = bρ sinϕ, 0 6 ϕ 6 π, 0 6 ρ 6 1,

and
dxdy = abρdρdϕ.

Then

I =
x

D

(y2 − x2)dxdy = ab

2πw

0

dϕ

1w

0

(b2ρ2 sin2ϕ− a2ρ2 cos2ϕ)ρdρ =

= abπ(b2 − a2)

1w

0

ρ3dρ =
πab

4
(b2 − a2).

Example 2. Evaluate the given line integral using Green’s formula:

w

L

(y + x ln y)dx +

(
x2

2y
+ x + 1

)
dy,

where L is the semicircle x2 + y2 = 2y, y > 1 from the point (1, 1) to
(−1, 1).

Fig. 4.12

Solution. To apply Green’s formula we close the
curve L with the segment L1 : y = 1, −1 6 x 6 1
(fig. 4.12). The required integral is equal to the
integral along the close curve L + L1 to be evalu-
ated by Green’s formula minus the integral along
the segment L1.

Since

∂P

∂y
=

∂

∂y
(y + x ln y) = 1 +

x

y
,

∂Q

∂x
=

∂

∂x

(
x2

2y
+ x + 1

)
= 1 +

x

y
.

then z

L+L1

(y + x ln y)dx +

(
x2

2y
+ x + 1

)
dy = 0.
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The curve L1 can be parameterised as x = t, y = 1, t ∈ [−1, 1]. Thus,

w

L1

(y + x ln y)dx +

(
x2

2y
+ x + 1

)
dy =

1w

−1

(1 + t ln 1)dt = 2.

Finally we obtain

w

L

(y + x ln y)dx +

(
x2

2y
+ x + 1

)
dy = −2.

Example 3. Evaluate the are of the domain bounded by the curve

(x2 + y2)2 = a2(x2 − y2), x > 0.

Solution. The given curve is the Bernoulli’s lemniscate which equation
in polar coordinate x = ρ cosϕ, y = ρ sinϕ is

ρ2 = a2 cos 2ϕ, −π
4
6 ϕ 6

π

4
.

Then we find

x′ = ρ′ cosϕ− ρ sinϕ = −a sin 3ϕ√
cos 2ϕ

,

y′ = ρ′ sinϕ+ ρ cosϕ = a
cos 3ϕ√
cos 2ϕ

.

Thus the area is
SD =

1

2

w

∂D

xdy − ydx =

=
1

2
a2

π/4w

−π/4

(√
cos 2ϕ cosϕ

cos 3ϕ√
cos 2ϕ

+
√

cos 2ϕ sinϕ
sin 3ϕ√
cos 2ϕ

)
dϕ =

=
1

2
a2

π/4w

−π/4

cos 2ϕdϕ =
1

2
a2.

159



Exercises
Evaluate the given line integrals of the second kind using Green’s for-

mula. Consider all parameters like a, b etc. positive.

4.288.
z

L

(x+y)2dx− (x2 +y2)dy, L: triangle with vertexes at A(1, 1),

B(3, 2), C(2, 5) traced in the positive direction.

4.289.
z

L

(x2 − y2)dx + 2xydy, L: triangle with vertexes at A(1, 1),

B(3, 1), C(3, 3) traced in the positive direction.

4.290.
z

L

xydx+ 2xy2dy, L: triangle with vertexes at A(1, 0), B(0, 1),

C(1, 1) traced in the negative direction.

4.291.
z

L

x

x + y
dx− y

x + y
dy, L: square with vertexes A(1, 1), B(2, 2),

C(1, 3), D(0, 2) traced in the positive direction.

4.292.
z

L

(y−x2)dx+(x+y2)dy, L: union of the circle arc x = a cosϕ,

y = a sinϕ, 0 6 ϕ 6
π

2
, and segments of the coordinate axes traced in

the positive direction.

4.293.
z

L

√
x2 + y2dx+y(xy+ln(x+

√
x2 + y2))dy, L: circle x2+y2 =

= a2 traced in the negative direction.

4.294.
z

L

(ex sin y − y)dx + (ex cos y − 1)dy, L: union of the circle arc

x2 +y2 = ax, y > 0, and the segment of the Ox axis traced in the positive
direction.

4.295.
z

L

(xy + x+ y)dx+ (xy + x− y)dy, L: positively oriented circle

x2 + y2 = ax.

4.296.
z

L

(2xy−y)dx+x2dy, L: positively oriented ellipse
x2

a2
+
y2

b2
= 1.

4.297.
z

L

ey
2−x2

cos 2xydx + ey
2−x2

sin 2xydy, L: negatively oriented

circle x2 + y2 = a2.
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4.298.
z

L

y5/3dx− x5/3dy, L: positively oriented astroid x2/3 + y2/3 =

= a2/3.

4.299.
z

L

xy2dx + (y2 − x2)dy, L: curve in polar coordinates

ρ = a(1 + cosϕ) traced in the positive direction.

Evaluate the line integral of the second kind along the given non-closed
curve using Green’s formula.

4.300.
w

L

(x − y)2dx + (x + y)2dy, L: polyline ABC with vertexes at

A(0, 0), B(2, 2), C(0, 1).

4.301.
w

L

x3y3dx + (x − y)2dy, L: polyline ABC with vertexes at

A(2, 1), B(0, 3), C(−2, 1).

4.302.
w

L

(4xy−15x2y)dx+(2x2−5x3+7)dy, L: curve y = x3−3x2+2

from the point A(1−
√

3, 0) to B(1, 0).

4.303.
w

L

ydx + xdy, L: curve

y =


x2 sin

1

x
+

4

π2
, x 6= 0,

4

π2
, x = 0,

from the A
(

0,
4

π2

)
to B

(
2

π
,

8

π2

)
.

4.304.
w

L

(xy+x+y)dx+(xy+x−y)dy, L: arc of the circle x2+y2 = ax,

x 6
a

2
, from the point A

(a
2
,−a

)
to B

(a
2
, a
)
.

4.305.
w

L

(
1− y

2

)
dx +

x

2
dy, L: upper semicircle x2 + y2 = a2, y > 0,

from the point A(a, 0) to B(−a, 0).
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4.306.
w

L

(e−x cos y−y2)dx+(e−x sin y−x2)dy, L: semicircle x2 +y2 =

= 2ax, x > a, from the point A(a, a) to B(a,−a).

4.307.
w

L

x2ydx − y2xdy, L: arc of the lemniscate (x2 + y2)2 =

= a2(x2 − y2), x > 0, y > 0, from the A(0, 0) to B(a, 0).

Evaluate the area of the domain, bounded by the given curve. Consider
all parameters like a, b, p etc. positive.

4.308. x = a cos3 t, y = b sin3 t.

4.309. x = a cos t, y = a sin 2t, x > 0.

4.310. x = a(2 cos t− cos 2t), y = a(2 sin t− sin 2t).

4.311. y2 = x2 − x4.

4.312. 9y2 = 4x3 − x4.

4.313. (x2 + y2)2 = a2(x2 − y2).

4.314. (x2 + y2)2 = 2ax3.

4.315. (x + y)2 = 2ax and x = 0.

4.316. x =
3t

1 + t3
, y =

3t2

1 + t3
, 0 6 t <∞.

4.317. x3 + y3 = x2 + y2, x = 0, y = 0.

4.318. (
√
x +
√
y)12 = xy.

4.319. (x + y)n+m+1 = axnym, n > 0, m > 0.

4.320.
(x
a

)2n+1

+
(y
b

)2n+1

= c
(x
a

)n (y
b

)n
, n > 0.

4.9. Stokes’ theorem

Let Ω be a piecewise smooth orientable surface bounded by a piece-
wise smooth closed curve ∂Ω. If ~a(~r) is continuously differentiable in the
neighborhood of the surface vector field then

z

∂Ω

~a · d~r =
x

Ω

curl~a · d~S. (4.8)
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Orientation of the surface Ω is associated with orientation of its boundary
∂Ω. The formula (4.8) is called Stokes’ formula.

In cartesian coordinates Stokes’ formula takes the form
z

∂Ω

Pdx + Qdy + Rdz =
x

Ω

(
∂R

∂y
− ∂Q

∂z

)
dydz+

+

(
∂P

∂z
− ∂R

∂x

)
dzdx +

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

or

z

∂Ω

Pdx + Qdy + Rdz =
x

Ω

∣∣∣∣∣∣∣∣
cos(~̂n,~i) cos(~̂n,~j) cos(~̂n,~k)

∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ dS.
Example 1. Evaluate the circulation of the vector field ~a = (y− z)~i+

+(z−x)~j+(x−y)~k around the ellipse x2+y2 = a2,
x

a
+
z

b
= 1, a > 0, b > 0,

traced in the positive direction on the upper side of the plane.

Fig. 4.13

Solution. To apply Stokes’ formula to the line integral we are to choose
the surface which border is the integration curve. It is better to chose the
simplest surface and in our case it is the part of the plane

x

a
+
z

b
= 1 inside

the cylinder x2 + y2 = a2 (fig. 4.13).
Then we find curl~a :

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
y − z z − x x− y

∣∣∣∣∣∣∣∣ = −2(~i +~j + ~k).
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Thus
z

L

~a · d~r =
x

Ω

curl~a · ~n dS = −2
x

Ω

dydz − 2
x

Ω

dxdz − 2
x

Ω

dxdy.

The second integral in above formula is equal to zero since the plane Ω
is perpendicular to the plane xOz. Other integrals are equal to the area of
the plane Ω projection onto corresponding coordinate planes: the circle of
the radius a onto the plane xOy and the ellipse with axes a and b onto the
plane yOz. Therefore finally we have

z

L

~a · d~r = −2
x

Dyz

dydz − 2
x

Dxy

dxdz = −2πab− 2πa2 = −2πa(b + a).

Example 2. Evaluate the circulation of the vector field ~a = y2~i + z2~j
around the curve L : x2 + y2 = 9, 3y + 4z = 5, traced in the positive
direction on the upper side of the plane.

Solution. We chose as the simples surface Ω with the boundary L the
part of the plane 3y + 4z = 5 inside the cylinder x2 + y2 = 9. First we find
curl~a:

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
y2 z2 0

∣∣∣∣∣∣∣∣ = −2z~i− 2y~k.

To evaluate the surface integral
s

Ω

curl~a · d~S we project the surface

onto the plane xOy. Then the explicit equation of the surface is

z =
5− 3y

4
, x2 + y2 6 9.

Finding the normal to the plane we take into account the upper orientation
of the plane that corresponds the curve orientation:

~Nxy = −z′x~i− z′y~j + ~k =
3

4
~j + ~k.

Finally combining all results together we obtain
z

L

~a · d~r =
x

x2+y269

(−2y)dxdy = 0,

since the integrand is odd function, and the domain of integration is even
with respect to the Ox axis.
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Example 3. Evaluate the circulation of the vector field ~a = yz~i−xz~j+
+xy~k around the curve L of intersection of the sphere x2 + y2 + z2 = a2

with coordinate planes, the curve laying in the first octant (fig. 4.14).
The direction of the curve is counterclockwise as viewed from the point
(2a, 2a, 2a), a > 0.

Fig. 4.14

Solution. The most appropriate surface Ω
bounded by the oriented closed curve L is the out-
ward side of the sphere x2 + y2 + z2 = a2, laying in
the first octant. Then we evaluate

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
yz −zx xy

∣∣∣∣∣∣∣∣ = 2x~i− 2z~k.

The unit outward normal vector to the sphere
takes the form

~n =
x~i + y~j + z~k

a
.

Then we parameterize the surface with spherical coordinates θ and ϕ

x = a cosϕ sin θ, y = a sinϕ sin θ, z = a cos θ,

0 6 θ 6
π

2
, 0 6 ϕ 6

π

2
.

Thus
dS = a2 sin θdθdϕ,

~n · curl~a =
2(x2 − z2)

a
= 2a(cos2ϕ sin2 θ− cos2 θ),

and finally

z

L

~a ·d~r =
x

Ω

~n · curl~adS = 2a3

π/2w

0

dϕ

π/2w

0

(cos2ϕ sin2 θ− cos2 θ) sinθdθ =

= 2a3

π/2w

0

(π
4

sin2 θ− π
2

cos2 θ
)

sin θdθ = 0.
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Exercises
Evaluate the given line integrals of the second kind using Stokes’ for-

mula. Consider all parameters like a, b etc. positive.

4.321.
z

L

z2dx − y2dy + x2dz, L: circle z = 3(x2 + y2) + 1, z = 4,

positively oriented on the upper side of the plane.

4.322.
z

L

zy2dx + xz2dy + yx2dz, L: circle x = y2 + z2, x = 9, taken

in the counterclockwise direction as viewed from the point M(0, 0, 10).

4.323.
z

L

y2dx+x2dy+z2dz, L: circle z =
√

25− x2 − y2, x2+y2 = 16,

taken in the clockwise direction as viewed from the point M(0, 0, 5).

4.324.
z

L

z2dx + ydy − 2xydz, L: circle y =
√
x2 + z2, y = 3, taken

in the counterclockwise direction as viewed from the point M(0, 0, 0).

4.325.
z

L

zdx − ydz, L: ellipse x2 + y2 = 4, x + 2z = 5, positively

oriented on the upper side of the plane.

4.326.
z

L

ydx − zdy + xdz, L: ellipse x2 + y2 + 2z2 = 2a2, y −

−x = 0, taken in the counterclockwise direction as viewed from the point
M(a, 0, 0).

4.327.
z

L

(x2 + y)dx + (y2 + z)dy + (z2 + x)dz, L: ellipse x2 + y2 = 4,

x + z = 2, positively oriented on the upper side of the plane.

4.328.
z

L

2xydx + z2dy + x2dz, L: ellipse 2x2 + 2y2 = z2, x + z = a,

positively oriented on the upper side of the plane.

4.329.
z

L

z3dx + x3dy + y3dz, L: curve 2x2 − y2 + z2 = a2, x +

+ y = 0. taken in the counterclockwise direction as viewed from the
point M(a, 0, 0).

4.330.
z

L

(y2 +z2)dx+(z2 +x2)dy+(x2 +y2)dz, L: curve x2 +y2 +z2 =

= 2ax, x2 + y2 = 2bx, z > 0, 0 < b < a, taken in the counterclockwise
direction as viewed from the point M(0, 0, 2a).
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4.331.
z

L

(y− z)dx+ (z−x)dy+ (x−y)dz, L: circle x2 +y2 + z2 = a2,

y = x tanα, 0 < α <
π

2
, taken in the counterclockwise direction as viewed

from the point M(2a, 0, 0).

4.332.
z

L

(y2−z2)dx+(z2−x2)dy+(x2+y2)dz, L: curve of intersection

of the boundary of the cube {0 6 x 6 a, 0 6 y 6 a, 0 6 z 6 a} and the

plane x + y + z =
3a

2
, positively oriented on the upper side of the plane.

4.333. Let K be the cube {0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1}.
Evaluate

z

L

y2dx + z2dy + x2dz, where L is a) curve of intersection of

the boundary of the cube K and the plane passing through the points
O(0, 0, 0), A(1, 1, 0), B(0, 0, 1), positively oriented on the right side of the
plane; b) curve of intersection of the boundary of the cube K and the
plane passing through the points P (1, 0, 0), Q(0, 1, 0), R(1, 0, 1), positively
oriented on the right side of the plane.

4.334.
z

L

(xy+z)dx+(yz+x)dy+(xz+y)dz, L: circle x2+y2+z2 = a2,

x + y + z = 0, positively oriented on the upper side of the plane.

4.335.
z

L

(z2−y2)dx+(x2−z2)dy+(y2−x2+x)dz, L: ellipse x2+y2 =

= 8x, x + y + z = 0, positively oriented on the upper side of the plane.

4.336.
z

L

xdy − ydx

x2 + y2
+ zdz, L: circle x2 + y2 + z2 = a2, x + y + z = t,

0 6 t 6
√

3a, positively oriented on the upper side of the plane.

4.337.
z

L

(x+y)dx+(y+z)dy+(x+z)dz, L: circle x2 +y2 +z2 = a2,

x + y + z = t, 0 6 t 6
√

3a, a > 0, positively oriented on the upper side
of the plane.

4.338.
z

L

(y2 +z2)dx+(x2 +z2)dy+(x2 +y2)dz, L: curve x2 +y2 = 2x,

x2 + y2 + z2 = 4z, z > 2, positively oriented on the outward side of the
upper hemisphere.

4.339.
z

L

(z − x2 − y)dx + (x + y + z)dy + (y + 2x + z3)dz, L: curve
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x =
√

y2 + z2, x2 + y2 + z2 = 2az, positively oriented on the outward side
of the right hemisphere.

4.340.
z

L

z2dx+ x2dy + y2dz, L: curve x2 + y2 = 2ax, z =

√
x2 + y2

3
,

positively oriented on the outward side of the cone.

4.341.
z

L

z2xdx + (x + y + z)dy + y2zdz, L: curve x2 + y2 = ax,

x2 = y2 + z2, positively oriented on the outward side of the cylinder.

4.342.
z

L

xyzdx+ y2zdy + zx2dz, L: curve x2 + y2 = a2, y2 + z2 = a2,

x > 0, positively oriented on the outward side of the former cylinder.

4.343.
z

L

(xy + z)dx + (yz + x)dy + y
√

a2 − x2dz, L: curve x2 + y2+

+z2 = 2ax, x2 + y2 = a2, x > 0, positively oriented on the inward side of
the cylinder.

4.10. Gauss – Ostrogradsky theorem

A domain G ⊂ Ee is said to be simply connected (also called
1-connected) if any simple smooth closed surface in G can be shrunk to a
point continuously in the set, otherwise it is said to be multiply connected .

Let G ⊂ E3 be a simply connected domain bounded by a piecewise
smooth close surface ∂G oriented by outward unit normal vector ~n and
~a = P~i + Q~j + R~k be a continuously differentiable in Ḡ = G

⋃
∂G vector

field. Then the flux of the vector field ~a through the boundary ∂G is equal
to the volume integral of div~a over the domain G:

z

∂G

~a · d~S =
y

G

div~a dV, (4.9)

or in cartesian coordinates:
z

∂G

Pdydz + Qdxdz + Rdxdy =
y

G

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz.

The formula (4.9) is called Gauss – Ostrogradsky formula.
In the case of multiply connected domain the boundary ∂G consists of

finite number of partial boundaries with outward orientation.
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Example 1. Evaluate the flux of the vector field ~a = (1+2x)~i+y~j+z~k
through the closed surface Ω = {(x, y, z) : x2 + y2 = z2, 0 6 z 6 4}.

Solution. Since the vector field is continuously differentiable on the
surface and in the domain bounded by this surface we can apply Gauss –
Ostrogradsky formula. Computing the divergence div~a = 4, we obtain

{

S

~a · d~S =
y

V

div~adV = 4
y

V

dV = 4VK ,

i.e. the flux is equal to the four volumes of the cone VK =
1

3
π · 22 · 4. Thus

{

S

~a · d~S =
43

3
π.

Example 2. Evaluate the surface integral of the second kind
x

Ω

x3dydz + y3dxdz + z3dxdy

on the sphere x2 + y2 + z2 = x using Gauss-Ostrogradsky formula.
Solution. According to the problem statement we are to calculate the

flux of the vector field ~a = x3~i + y3~j + z3~k. The divergence of the field is
equal to

div~a = 3
(
x2 + y2 + z2

)
.

Applying Gauss – Ostrogradsky formula we obtain
{

Ω

~a · ~ndS = 3
y

G

(
x2 + y2 + z2

)
dV.

Then we rewrite the implicit equation of the sphere in the form(
x− 1

2

)2

+ y2 + z2 =
1

4
,

and introduce the shifted spherical coordinates as below:

x− 1

2
= r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ,

and

dV = r2 sin θdrdθdϕ, 0 6 r 6
1

2
, 0 6 θ 6 π, 0 6 ϕ 6 π.
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As the result we have

{

S

~a · ~ndS = 3

2πw

0

dϕ

πw

0

sin θdθ

1
2w

0

r4dr =
3π

40
.

Example 3. Evaluate the flux of the vector field

~a =

(
x2z

1 + z2
+ 6zy2

)
~i−

(
2xy(1 + z)

1 + z2
+ 1

)
~j + 2x arctan z ~k

through the outward side of the paraboloid x2 + z2 = 4− y, y > 0.
Solution. In order to apply the Gauss – Ostrogradsky formula we close

the given part of the paraboloid by the plane y = 0 thus obtaining the
closed surface Ω+Ω1 = {x2 +z2 = 4−y, y = 0, y > 0} (fig. 4.15). While
evaluating the flux we use the additivity property of the surface integral:

Π =
x

Ω

~a · ~ndS =
z

Ω+Ω1

~a · ~ndS −
x

Ω1

~a · ~ndS.

To compute the first integral we find the divergence of the vector field

div~a =
2xz

1 + z2
− 2x(1 + z)

1 + z2
+

2x

1 + z2
= 0.

Therefore the flux through the closed surface Ω + Ω1 is equal to zero:
{

Ω+Ω1

~a · ~ndS =
y

V

div~adV = 0

Fig. 4.15
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The flux of the vector field ~a through the left side of the disk Ω1 =
= {y = 0, x2 + z2 6 4} we calculate as follows:

~a
∣∣
Ω1

= ~a
∣∣
y=0

=
x2z

1 + z2
~i−~j + 2x arctan z~k,

~n1 = −~j, then ~a · ~n1 = 1, and finally
x

Ω1

~a · ~ndS =
x

x2+z264

dS = 4π.

Combining all previous results we obtain Π = −4π.
Example 4. Evaluate the flux of the vector field ~a = 4~i − ~j through

the upper side of the paraboloid x2 + z2 = y, 0 6 y 6 4, x > 0, z > 0.
Solution. First we close the given surfaces by the planes Ω1 : y = 4;

Ω2 : z = 0; Ω3 : x = 0 with orientations Ω1 : ~n1 = ~j; Ω2 : ~n2 = −~k;
Ω3 : ~n3 = −~i (fig. 4.16).

Using Gauss – Ostrogradsky formula and the property of additivity of
a surface integral we obtain :

Π =
y

V

div~adV −
x

Ω1

~a · ~n1dS −
x

Ω2

~a · ~n2dS −
x

Ω3

~a · ~n3dS.

Consecutive evaluation yields:

div~a = 0 ⇒
y

V

div~adV = 0;

−
x

Ω1

~a · ~n1dS =
x

Ω1

dS =
x

Dxz

dxdz = π;

Fig. 4.16
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−
x

Ω2

~a · ~n2dS = 0;

−
x

Ω3

~a · ~n3dS = 4
x

Ω3

dS = 4
x

Dyz

dydz =

= 4

4w

0

dy

√
yw

0

dz = 4

4w

0

√
ydy = 4

(
2

3
y

3
2

)∣∣∣∣4
0

=
64

3
.

Finally the flux is

Π = π+
64

3
.

Exercises
Evaluate the given surface integral of the second king applying Gauss –

Ostrogradsky formula. Consider all parameters like a, b, p etc. positive.

4.344.
{

Ω

xdydz + ydxdz + zdxdy, Ω: inward side of the surface of

the body x + 2y + 3z 6 1, x > 0, y > 0, z > 0.

4.345.
{

Ω

3xdydz + (y + z)dxdz + (x − z)dxdy, Ω: outward side of

the surface of the body x + 3y − z 6 6, x > 0, y > 0, z 6 0.

4.346.
{

Ω

yzdydz + xzdxdz + xydxdy, Ω: outward side of the surface

of the body x + y + z 6 2, x > 0, y > 0, z > 0.

4.347.
{

Ω

(3x + z)dydz + (2y + z)dxdz − 2ydxdy, Ω: outward side of

the surface of the body x− y − z 6 1, x > 0, y 6 0, z 6 0.

4.348.
{

Ω

(y + 2z)dydz + (x + 2z)dxdz + (x − 2y)dxdy, Ω: outward

side of the surface of the body 2x + y + 3z 6 8, x > 0, y > 0, z > 0.

4.349.
{

Ω

2xdydz− ydxdz + zdxdy, Ω: outward side of the surface of

the body x + y + z 6 1, x− y + z 6 1, x > 0, z > 0.

4.350.
{

Ω

x3dydz + y3dxdz + z3dxdy, Ω: outward side of the surface

of the body x2 + y2 + z2 6 a2.
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4.351.
{

Ω

4xdydz − ydxdz + zdxdy, Ω: outward side of the torus

x = (a + b cosu) cos v, y = (a + b cosu) sin v, z = b sinu, 0 6 u 6 2π,
0 6 v 6 2π.

4.352.
{

Ω

(
x2y

1 + y2
+ 6yz3

)
dydz − 2xz (1 + y) + 1 + y2

1 + y2
dxdy +

+2x arctan ydxdz, Ω: outward side of the surface of the body 0 6 z 6
6 1− x2 − y2.

4.353.
{

Ω

x2dydz + y2dxdz + z2dxdy, Ω: outward side of the sphere

(x− 2)2 + (y − 3)2 + (z − 4)2 = a2.

4.354.
{

Ω

xdydz +xzdxdz + ydxdy, Ω: outward side of the surface of

the body x2 + y2 6 4− z, z > 0.

4.355.
{

Ω

xdydz + 2ydxdz− zdxdy, Ω: outward side of the surface of

the body x2 + y2 6 z 6
√

x2 + y2.

4.356.
{

Ω

2xdydz + 3ydxdz − zdxdy, Ω: outward side of the surface

of the body 1 6 x 6 5− y2 − z2.

4.357.
{

Ω

x2dydz + y2dxdz + z2dxdy, Ω: outward side of the surface

of the body x2 + y2 6 z, z 6 h.

4.358.
{

Ω

yz2dydz+zy2dxdz+yx2dxdy, Ω: outward side of the surface

of the body 0 6 z 6 x2 + y2, x2 + y2 6 1, x > 0, y > 0.
4.359.

{

Ω

(y − x)dydz + (z − y)dxdz + (x− z)dxdy, Ω: outward side

of the surface of the body x2 + y2 + z2 6 4, z >
x2 + y2

3
.

4.360.
{

Ω

xz2dydz+yx2dxdz+zy2dxdy, Ω: outward side of the surface

of the body x2 + y2 + z2 6 2az, x2 + y2 > 3z2, x > y.

4.361.
{

Ω

(
x2 + y2

)
dydz+

(
y2 + z2

)
dxdz+

(
z2 + x2

)
dxdy, Ω: inward

side of the surface of the body x2 + y2 + z2 6 a2, x > 0, y > 0, z > 0.
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4.362.
{

Ω

xα+1yβzγ
(

x

α+ 2
− 1

3(α+ 1)

)
dydz+

+xαyβ+1zγ
(

y

β+ 2
− 1

3(β+ 1)

)
dxdz+

+xαyβzγ+1

(
z

γ+ 2
− 1

3(γ+ 1)

)
dxdy,

Ω: outward side of the surface of the body x + y + z 6 1, x > 0, y > 0,
z > 0; α > −1, β > −1, γ > −1.

Evaluate the surface integral of the second king on the given non-closed
surface applying Gauss – Ostrogradsky formula.

4.363.
x

Ω

z2dydz−y2dxdz+2yxdxdy, Ω: left side of the cone x2+z2 =

= y2, 0 6 y 6 1.

4.364.
x

Ω

ydydz + zdxdz + xdxdy, Ω: outward side of the cylinder

x2 + y2 = a2, bounded by the plane z = x, z = 0.

4.365.
x

Ω

3yxdydz−zdxdz−2xdxdy, Ω: bottom side of the paraboloid

x2 + y2 = z + 1, 0 6 z 6 3.

4.366.
x

Ω

(xy2 +z2)dydz+(yz2 +x2)dxdz+(zx2 +y2)dxdy, Ω: upper

side of hemisphere x2 + y2 + z2 = a2, z > 0.

4.367.
x

Ω

xydydz + yzdxdz + zxdxdy, Ω: upper side of the cone

x2 + y2 = z2, 0 6 z 6 h.

4.368.
x

Ω

x2dydz + y2dxdz + z2dxdy, Ω: bottom part of the cone

x2 + y2 = z2, 0 6 z 6 h.



Chapter 5

Basics of the field theory

5.1. Integral characteristics
of scalar and vector fields

Example 1. Prove that

div~a(M) = lim
d(G)→0
M∈G

z

Ω

~a · d~S

V (G)
,

where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G. The
given formula is the invariant definition of the divergence of the vector field
~a at the point M .

Solution. Suppose that a vector field ~a(~r) is defined and continuously
differentiable in a simply connected domain G∗ ⊂ E3. Let G ⊂ G∗ be a
simply connected domain with piecewise smooth boundary Ω with outward
orientation and M be a point of the domain G. If we apply Gauss – Os-
trogradsky formula to the domain G and then use the mean value formula
for the volume integral, we obtain

{

Ω

~a · d~S =
y

G

div~adV = div~a(M ∗)V (G),

where M ∗ is some point in the domain G, V (G) is the volume of G. Then
we shrink the domain G to the point M in that manner that the point
M ∗ always belongs to the domain so that the point M ∗ approaches to M.
Taking into account continuality of the divergence we have

div~a(M) = lim
d(G)→0
M∈G

{

Ω

~a · d~S

V (G)
.
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Therefore the divergence of a vector field ~a(~r) at a point M is the limit
of the ratio of the field flux through an arbitrary piecewise smooth closed
surface containing the point M to the volume of the domain bounded by
this surface while the volume approaches to zero. The right part of the
above formula does not depend on the coordinate system chosen, therefore
such definition of the divergence is called the invariant definition.

Example 2. Let ~a(M) be a continuously differentiable vector field in
a domain G with piecewise smooth closed boundary Ω. Prove that

{

Ω

(~n× ~a)dS =
y

G

(~∇× ~a)dV,

where ~n is the outward unit normal vector to the surface Ω.
Solution. The integral in the left part of the equality to prove is the

surface integral of the first kind of the vector field. In order to apply
Gauss – Ostrogradsky formula we consider the dot product of each part of
the equality and a constant vector ~c. Taking into account the properties of
a scalar triple product we obtain

~c ·
{

Ω

(~n× ~a) dS =
{

Ω

~c · (~n× ~a)dS =
{

Ω

(~a× ~c) · ~ndS =
{

Ω

(~a× ~c) · d~S.

Then we apply Gauss – Ostrogradsky formula to the obtained surface
integral and use the result of the Exercise 3.85:
{

Ω

(~a× ~c) ·d~S =
y

G

div(~a×~c)dV =
y

G

~c ·curl~adV = ~c ·
y

G

(~∇×~a)dV.

Thus
~c ·

z

Ω

(~n× ~a)dS = ~c ·
y

G

(~∇× ~a)dV.

Since the last equality is true for any vector ~c, the latter can be omitted.
Example 3. Suppose that a vector field ~a(x, y) = P (x, y)~i + Q(x, y)~j

is continuously differentiable in the neighborhood of a piecewise smooth
flat curve L, and ~n(x, y) in unit outward normal vector to the curve at a
point (x, y). Convert the line integral of the first kind

w

L

~a · ~ndl

into the line integral of the second kind.
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Fig. 5.1

Solution. Consider the unit tangent vector
~τ to the curve L at the point (x, y) directed in
accordance with the orientation of the curve.
If α is the angle between the vector ~τ and the
positive direction of the Ox axis, then (fig. 5.1)

~τ =~i cosα+~j sinα.

Then it is obvious that

~n =~i sinα−~j cosα.

Taking into account

cosαdl = dx, sinαdl = dy,

we obtain
w

L

(~a · ~n)dl =
w

L

(P sinα−Q cosα)dl =
w

L

Pdy −Qdx.

Exercises
5.1. Using Stokes’ formula prove that

(curl~a · ~n)(M) = lim
d(Ω)→0
M∈Ω

z

L

~a · d~r

S(Ω)
,

where S(Ω) is the area of a piecewise smooth surface Ω with the piecewise
smooth close boundary L, ~n is the unit normal vector at the point M
defining the orientation of Ω , d(Ω) is the diameter of Ω. The orientation
of the boundary corresponds to the orientation of the surface. The given
formula is the invariant definition of the projection of the curl of a vector
field at the point M onto the vector ~n.

5.2. Suppose that u(M) is a continuously differentiable scalar field in
a domain G with a piecewise smooth border Ω. Prove that

{

Ω

~nudS =
y

G

~∇udV,

where ~n is the outward unit normal vector to Ω.
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5.3. Using the result of the Exercise 5.2 prove that

gradu(M) = lim
d(G)→0
M∈G

{

Ω

u~n · dS

V (G)
,

where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G. The
given formula is the invariant definition of the gradient of a scalar field.

5.4. Using the result of the Example 2 prove that

curl~a(M) = lim
d(G)→0
M∈G

{

Ω

~n× ~a · dS

V (G)
,

where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G. The
given formula is the invariant definition of the curl of a vector field.

5.5. Let u(M) be a twice continuously differentiable scalar field in a
domain G with a piecewise boundary Ω. Prove that

{

Ω

∂u

∂n
dS =

y

G

∆udV,

where ~n is the outward unit normal vector to Ω.
5.6. Using the result of the Exercise 5.5 prove that

∆u(M) = lim
d(G)→0
M∈G

{

Ω

∂u

∂n
dS

V (G)
,

where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G. The
given formula is the invariant definition of the Laplacian of a scalar field.

5.7. Let ~b be an arbitrary vector and ~a(M) be a continuously differen-
tiable vector field in a domain G with a piecewise boundary Ω. Suppose
that a function f(~b,~a) satisfies the condition

f(c1
~b1 + c2

~b2,~a) = c1f(~b1,~a) + c2f(~b2,~a),
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where c1 and c2 are arbitrary constants. Prove that
{

Ω

f(~n,~a)dS =
y

G

f(~∇,~a)dV,

where ~n is the outward unit normal vector to Ω. This is generalized Gauss –
Ostrogradsky formula.

5.8. Using the result of the Exercise 5.7 prove that

f(~∇,~a)(M) = lim
d(G)→0
M∈G

{

Ω

f(~n,~a)dS

V (G)
,

where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G.

5.9. Prove the following Gauss-Ostrogradsky formula for a tensor field
tij(xk): {

Ω

tijnjdS =
y

G

∂tij
∂xj

dV,

where ~n is the outward unit normal vector to the surface Ω bounding the
domain G.

5.10. Let ~a(M) be a twice continuously differentiable vector field in a
domain G with a piecewise smooth surface Ω and ~v be a constant vector.
Applying the generalized Gauss-Ostrogradsky formula prove that

{

Ω

(~v · ~n)~adS =
y

G

(~v · ~∇)~adV,

{

Ω

∂~a

∂n
dS =

y

G

∆~adV.

5.11. Using the result of the Exercise 5.10 prove that

(~v · ~∇)~a(M) = lim
d(G)→0
M∈G

{

Ω

(~v · ~n)~adS

V (G)
,

∆~a(M) = lim
d(G)→0
M∈G

{

Ω

∂~a

∂n
dS

V (G)
,
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where V (G) is the volume of a simply connected domain G, bounded by
the simply smooth surface Ω, d(G) is the diameter of the domain G. The
given formulae is the invariant definition of the directional derivative and
the Laplacian of a vector field respectively.

5.12. Suppose that a simply connected domain G ⊂ E3 is bounded by
a piecewise smooth surface Ω. Show that

{

Ω

~n× (~a× ~r)dS = 2~aV (G),

where ~n is the outward unit normal vector to the surface Ω, ~r is the radius-
vector, ~a is an arbitrary constant vector.

5.13. Suppose that a simply connected domain G ⊂ E3 is bounded by
a piecewise smooth surface Ω. Convert the volume integral

y

G

(gradu · curl~a)dV

into the surface integral on Ω.
5.14. Derive the Archimedean law by summing pressure forces exerted

to surface elements of a body placed into a liquid.
5.15. Let u(M) and v(M) be twice continuously differentiable scalar

fields in a domain G with piecewise smooth boundary Ω. Prove that
{

Ω

v
∂u

∂n
dS =

y

G

[v∆u + (~∇u) · (~∇v)]dV

(the first Green’s formula) and
{

Ω

(
v
∂u

∂n
− u

∂v

∂n

)
dS =

y

G

(v∆u− u∆v)dV

(the second Green’s formula).
5.16. Suppose that scalar fields k(M), q(M), u(M) and v(M) defined

in a domain G with piecewise smooth boundary Ω and are continuously
differentiable appropriate times. Consider the operator L(u):

L(u) = div[k(M) gradu(M)]− q(M)u(M).

Prove that
{

Ω

kv
∂u

∂n
dS =

y

G

[vL(u) + k(~∇u) · (~∇v) + quv]dV

(the first Green’s formula for the operator L(u)) and
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{

Ω

k

(
v
∂u

∂n
− u

∂v

∂n

)
dS =

y

G

(vL(u)− uL(v)) dV

(the second Green’s formula for the operator L(u)).
5.17. Let u(x, y) and v(x, y) be twice continuously differentiable scalar

fields in a domain D ⊂ E2 bounded by a piecewise smooth curve L and ~n
be the outward unit normal vector to the curve at the point (x, y). Prove
that

z

L

v
∂u

∂n
dl =

x

D

[
v

(
∂2u

∂x2
+

∂2u

∂y2

)
+

(
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)]
dxdy

(the first Green’s formula of the plane) and
z

L

(
v
∂u

∂n
− u

∂v

∂n

)
dl =

x

D

[
v

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

(
∂2v

∂x2
+

∂2v

∂y2

)]
dxdy

(the second Green’s formula of the plane).

Evaluate the given line integral. Consider a > 0.

5.18.
z

L

∂(x2 + 3xy − 4y2)

∂n
dl, L: circle 4(x + a)2 + (y − 2a)2 = 4a2.

5.19.
z

L

∂(x2 + 4y2 − xy)

∂n
dl, L: circle (x− 2)2 + 4(y + 1)2 = 16.

5.20.
z

L

∂(x2 − 5xy + 3y2)

∂n
dl, L: curve formed by the right semicircle

x2 + y2 = 2ax, x > a, and the straight line x = a.

5.21.
z

L

(
∂(xy)

∂n

√
x2 + 4y2 − ∂

√
x2 + 4y2

∂n
xy

)
dl, L: curve formed by

the upper semicircle x2 + y2 = 2y, y > 1, and the straight line y = 1.
5.22. Suppose that L is a closed piecewise smooth curve, ~n is the

outward unit normal vector at the point (x, y) and ~c is a constant vector.
Prove that z

L

cos(~̂c, ~n)dl = 0.

5.23. Evaluate the integral
z

L

[x cos(~̂n,~i) + y cos(~̂n,~j)]dl,
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where L is a simple closed piecewise smooth curve, ~n is the outward unit
normal vector at the point (x, y).

5.24. Evaluate Gauss’ integral

u(x0, y0) =
z

L

cos(~̂n, ~R)

R
dl,

where L is a simple closed piecewise smooth curve, ~R = (x−x0)~i+(y−y0)~j,

R = |~R|, ~n is the outward unit normal vector at the point (x, y).
5.25. Prove if u(x, y) is a harmonic function in a domain D bounded by

a simple closed piecewise smooth curve L, then at the point (x0, y0) ∈ D

u(x0, y0) =
1

2π

z

L

(
u
∂ lnR

∂n
− lnR

∂u

∂n

)
dl,

where R =
√

(x− x0)2 + (y − y0)2 + (z − z0)2, ~n is the outward unit nor-
mal vector at the point (x, y).

5.26. Prove the mean-value theorem for a harmonic scalar field u(x, y):

u(x0, y0) =
1

2πR

z

CR

u(x, y)dl,

where CR is the circle of radius R and center at the point (x0, y0).
5.27. Evaluate the Gauss’ integral

u(x0, y0, z0) =
{

Ω

cos(~̂n, ~R)

R2
dS,

where Ω is a simple smooth closed surface, ~R = (x− x0)~i+, +(y − y0)~j +

+(z− z0)~k, R = |~R|, ~n is the outward unit normal vector to the surface at
the point (x, y, z). Consider two cases: a) the surface Ω does not surround
the point (x0, y0, z0); b) the surface Ω surrounds the point (x0, y0, z0).

5.28. Prove if u(x, y, z) is a harmonic scalar field in a domain G, then
at the point (x0, y0, z0) ∈ G

u(x0, y0, z0) =
1

4π

{

Ω

u
cos(~̂n, ~R)

R2
+

1

R

∂u

∂n

 dS,
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where Ω is the boundary of the domain G, ~n is the outward unit normal
vector to the surface at the point (x, y, z),

R =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

5.29. Prove the mean-value theorem for a harmonic scalar field u(x, y, z):

u(x0, y0, z0) =
1

4πR2

z

SR

u(x, y, z)dS,

where SR is the sphere of the radiusR and the center at the point (x0, y0, z0).

5.2. Potential vector fields

A vector field ~a(M) is said to be the potential field in a domain G ⊂ E3,
if there exists a scalar field u(M), such that ~a = gradu for each point
M ∈ G.

In cartesian coordinates a vector field ~a(M) = P~i+Q~j+R~k is potential
in a domain G ⊂ E3 if there exists a scalar field u(M), such that for all
M ∈ G

P =
∂u

∂x
, Q =

∂u

∂y
, R =

∂u

∂z
.

A domain G ⊂ E3 is called surface-wise simply connected domain if
for each closed piecewise smooth curve γ ∈ G there exists a two-sided
piecewise smooth surface Ω ∈ G bounded by the curve γ.

Criterion of potentiality.
The following conditions are equivalent for a continuously differentiable

vector field ~a(M) on a domain G:

1. Vector field ~a(M) is the potential field on the domain G.

2. The circulation of the vector field ~a(M) is equal to zero for any closed
piecewise smooth simple curve.

3. For any points A and B in the domain G and for any piecewise
smooth simple curve LAB ∈ G, connecting these points,

w

LAB

~a · d~r = u(B)− u(A),

or the line integral depends only on endpoints of the curve.
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4. If G is surface-wise simply connected domain, then the vector field ~a
is irrotational, i. e. curl~a = ~0.

In cartesian coordinates the fourth condition takes the form

∂P

∂y
=

∂Q

∂x
,

∂Q

∂z
=

∂R

∂y
,

∂R

∂x
=

∂P

∂z
.

Let M0 be a particular fixed point and M be an arbitrary point in a
domainG. Then the potential u(M) of a vector field ~a(M) can be evaluated
as

u (M) =
w

LMM0

~a · d~r =
w

LMM0

Pdx + Qdy + Rdz,

where LMM0
is an arbitrary curve, connecting the points M and M0. The

potential is determined to within a constant that is specified by the point
M0. Commonly the point M0 is chosen in such a way that the potential
at this point equals to zero. The potential evaluation procedure can be
simplified by the appropriate selection of the curve. For example, if we take
as the curve LMM0

a broken line which sides are parallel to the coordinate
axes, then we evaluate the potential by the formula

u(x, y, z) =

xw

x0

P (x, y0, z0)dx +

yw

y0

Q(x, y, z0)dy +

zw

z0

R(x, y, z)dz. (5.1)

Example 1. Show that the curl of the given vector field

~a = −~i y

x2 + y2
+~j

x

x2 + y2

is equal to zero, but the circulation of this field around the circle x2+y2 = 1
is not zero.

Solution. Expanding the determinant, we find

curl~a =

∣∣∣∣∣∣∣∣∣∣

~i ~j ~k

∂

∂x

∂

∂y

∂

∂z

− y

x2 + y2

x

x2 + y2
0

∣∣∣∣∣∣∣∣∣∣
=

=

[
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)]
~k =
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=

[
1

x2 + y2
− 2x2

(x2 + y2)2
+

1

x2 + y2
− 2y2

(x2 + y2)2

]
~k = ~0.

The circle x2 + y2 = 1 we can parameterize as

x = cos t, y = sin t, t ∈ [0, 2π].

Substituting the parametrization into the line integral we obtain the circu-
lation

z

L

− ydx

x2 + y2
+

xdy

x2 + y2
=

2πw

0

(sin2 t + cos2 t)dt = 2π 6= 0.

Thus, the field ~a is irrotational, but the circulation around the curve
x2+y2 = 1 is not zero. The reason is that the field ~a is defined and continu-
ous in not surface-wise simply connected domain G = E3\{(x, y, z) : x2 +
+y2 = 0}. That means that there is no surface belonging toG and bounded
by the curve x2 + y2 = 1.

Example 2. Ascertain whether the vector field

~a(x, y, z) = x(y2 + z2)~i + y(x2 + z2)~j + z(x2 + y2)~k

is potential and find its potential u(x, y, z) if it is possible.
Solution. First we evaluate curl~a :

curl~a =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
x(y2 + z2) y(x2 + z2) z(x2 + y2)

∣∣∣∣∣∣∣∣ =

=~i(2yz − 2yz)−~j(2xz − 2xz) + (2xy − 2xy)~k = ~0.

Since the vector field is continuously differentiable in E3, being a simply
connected domain, then it is potential.

M e t h o d 1. To find the potential we use the formula (5.1). First we
place the point M0 into the origin of coordinates. Then

u (x, y, z) =

xw

0

x(y2 + z2)

∣∣∣∣
y=0
z=0

dx +

yw

0

y(x2 + z2)

∣∣∣∣
z=0

dy +

+

zw

0

z(x2 + y2)dz =
x2y2 + y2z2 + z2x2

2
+ C.
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M e t h o d 2. The potential u(x, y, z) satisfies the system of differential
equations ~a = gradu or

∂u

∂x
= P (x, y, z) = x(y2 + z2),

∂u

∂y
= Q(x, y, z) = y(x2 + z2),

∂u

∂z
= R(x, y, z) = z(x2 + y2).

We integrate the first equation:

u(x, y, z) =
w
x(y2 + z2)dx =

x2

2
(y2 + z2) + C1(y, z).

Then substituting obtained relation into the second equation, we have

x2y +
∂

∂y
C1(y, z) = y(x2 + z2) or

∂

∂y
C1(y, z) = yz2,

whence it follows

C1(y, z) =
w
y2zdy =

y2z2

2
+ C2(z).

Then we substitute the potential u(x, y, z) =
x2

2
(y2 + z2) +

y2z2

2
+ C2(z)

into the third equation and find

zx2 + zy2 +
∂

∂z
C2(z) = z(x2 + y2) or

∂

∂z
C2(z) = 0.

Thus C2(z) = C. Finally we obtain

u(x, y, z) =
x2y2 + y2z2 + z2x2

2
+ C.

Example 3. Evaluate the line integral
w

LAB

x(y2 + z2)dx + y(x2 + z2)dy + z(x2 + y2)dz,

where A(−2,−1, 2) and B(2, 3,−2).
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Solution. This line integral is one of potential vector field, therefore
it does not depends on the integrating path. In this case we can connect
points A and B by the simples appropriate curve and directly evaluate the
line integral.

From the other hand the integral is
w

LAB

~a · d~r = u(B)− u(A).

In the Example 1, we have found that the potential is

u(x, y, z) =
x2y2 + y2z2 + z2x2

2
+ C.

Then we can easily evaluate the integral:

w

LAB

~a · d~r = u(2, 3,−2)− u (−2,−1, 2) =
2232 + 32(−2)2 + (−2)222

2
−

−(−2)2(−1)2 + (−1)222 + 22(−2)2

2
= 36.

Exercises
Ascertain whether the given vector field is potential and find its poten-

tial u(x, y, z) if it is possible.

5.30. ~a = (y + z)~i + (x + z)~j + (x + y)~k.

5.31. ~a = (yz + 1)~i + xz~j + xy~k.

5.32. ~a = (2xy + z)~i + (x2 − 2y)~j + x~k.

5.33. ~a = (yz~i + xz~j + xy~k)(1 + x2y2z2)−1.

5.34. ~a = (~i +~j + ~k)(x + y + z)−1.

5.35. ~a = y~i + x~j + ez~k.

5.36. ~a = 2xyz~i + x2z~j + x2y~k.

5.37. ~a = yz(2x + y + z)~i + xz(x + 2y + z)~j + xy(x + y + 2z)~k.

5.38. ~a = ex sin y~i + ex cos y~j + ~k.
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5.39. ~a = yz cosxy~i + xz cosxy~j + sinxy ~k.

5.40. a) ~a = r−1~r; b) ~a = r−2~r; c) ~a = r~r.

Evaluate the given line integral by proving that the integrand is a full
differential.

5.41.
w

LAB

(2x− y)dx + (3x− y)dy, where A(−1,−2), B(1, 0).

5.42.
w

LAB

(3x2 − 2xy + y2)dx− (x2 − 2xy)dy, where A(0, 1), B(1, 0).

5.43.
w

LAB

2x(y2 − 2)dx + 2y(x2 + 1)dy, where A(1, 1), B(2, 3).

5.44.
w

LAB

x(1 + 6y2)dx + y(1 + 6x2)dy, where A(0, 0), B(1, 1).

5.45.
w

LAB

(x + y)dx + (x− y)dy, where A(0, 1), B(2, 3).

5.46.
w

LAB

(x− y)(dx− dy), where A(1,−1), B(1, 1).

5.47.
w

LAB

f(x+y)(dx+dy), where A(0, 0), B(a, b), f(u) is a continuous

function.

Evaluate the given line integral by choosing an appropriate path.

5.48.
w

LAB

(
1− y2

x2
cos

y

x

)
dx +

(
sin

y

x
+

y

x
cos

y

x

)
dy, where A(1,π),

B(2,π).

5.49.
w

LAB

xdy − ydx

x2 + y2
, where A(−1,−2), B(−2,−3).

5.50.
w

LAB

xdy − ydx

x2 + y2
, where A(−1, 5), B(2, 2).

5.51.
w

LAB

xdx + ydy√
x2 + y2

, where A(1, 0), B(6, 8).

5.52.
w

LAB

xdy − ydx

(x− y)2
, where A(0,−1), B(1, 0).
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5.53.
w

LAB

(2xy + y2 + yz2)dx + (x2 + 2xy + xz2)dy + 2xyzdz, where

A(1, 1, 1), B(2, 3, 4).

5.54.
w

LAB

yzxyz−1dx + zxyz lnxdy + yxyz lnxdz, where A(1, 1, 1),

B(2, 2, 2).

5.55.
w

LAB

2dx

(y + z)1/2
− xdy

(y + z)3/2
− xdz

(y + z)3/2
, whereA(1, 1, 3), B(2, 4, 5).

5.56.
w

LAB

xzdy + xydz − yzdx

(x− yz)2
, where A(7, 2, 3), B(5, 3, 1).

5.57.
w

LAB

xdx + ydy + zdz√
x2 + y2 + +z2

, where A belongs to the sphere x2 + y2 +

+z2 = a2, and B to the sphere x2 + y2 + z2 = b2, 0 < a < b.

5.58. Convert the line integral
w

LAB

f(
√
x2 + y2 + z2)(xdx+ydy+zdz)

into the definite integral, if A(0, 0, 0), B(a, b, c), f(u) is continuous func-
tion.

Find the field u(x, y, z) by its differential.

5.59. du = (2x cos y − y2 sinx)dx + (2y cosx− x2 sin y)dy.

5.60. du =

(
1 + e

x
y

)
dx +

(
1 +

x

y

)
e
x
y dy.

5.61. du =
xdx + ydy√

x2 + y2
+

xdy − ydx

x2
.

5.62. du =

(√
1− y2 − xy√

1− x2
− y

x2 + y2

)
dx+

+

(
√

1− x2 − xy√
1− y2

+
x

x2 + y2
+

1

y

)
dy.

5.63. du =
(
2xy + z2 + yz

)
dx+

(
x2 + 2yz + xz

)
dy+

(
y2 + 2xz + xy

)
dz.

5.64. du =

(
2xyz +

1

z

)
dx+

(
x2z − 1

z2

)
dy +

(
x2y − x

z2
+

2y

z3

)
dz.
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5.3. Divergenceless vector fields

A vector field ~a(M) is said to be divergenceless or solenoidal in a domain
G ⊂ E3, if div~a = 0 for each point M ∈ G.

In cartesian coordinates a vector field ~a(M) = P~i + Q~j + R~k is diver-
genceless in a domain G ⊂ E3, if

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0

for each point M ∈ G.
Criterion of divergenceless field : In order to a continuously differen-

tiable vector field ~a be divergence-free in a domain G it is sufficient and in
simply connected domain G is necessary that the flux of the field through
any closed piecewise smooth simple surface is zero.

A vector field ~A(M) such that

~a = curl ~A.

is called the vector potential of a divergenceless vector field ~a(M).
A vector potential is determined to within the gradient of an arbitrary

scalar field, since the vector potential B

~B(M) = ~A(M) + grad f(M)

determines the same divergenceless vector field ~a(M) as the vector potential
~A(M), because curl grad f(M) = ~0.

Vector potential can be calculated as follows:

Ax =0,

Ay =
w
R(x, y, z)dx,

Az =
w [ ∂

∂y

w
Q(x, y, z)dx +

∂

∂z

w
R(x, y, z)dx + P (x, y, z)

]
dy−

−
w
Q(x, y, z)dx.

Example 1. Show that the divergence of the vector field ~a = k
~r

r3
,

k = const 6= 0, is zero while the flux through the sphere x2 + y2 + z2 = 1
is not zero.
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Solution. The divergence in cartesian coordinate system is

div

(
k
~r

r3

)
= k

∂

∂xi

(xi
r

)
= k

(
1

r3

∂xi
∂xi
− 3

xi
r4

xi
r

)
= k

(
3

r3
− 3

r2

r5

)
= 0.

But the flux is
{

x2+y2+z2=1

~a · d~S =
z

x2+y2+z2=1

k

r3
~r · ~rd~S =

z

x2+y2+z2=1

k

r

∣∣∣∣
r=1

d~S = 4πk 6= 0.

That is because the domain G = E\{(0, 0, 0)} where the vector field ~a
is continuously differentiable is not simply connected and divergenceless
criterion is not fulfilled.

Example 2. Ascertain whether the vector field

~a = 3y2~i− 3x2~j − (y2 + 2x)~k

is divergenceless and find its vector potential ~A(M) if possible.
Solution. It is obvious that div~a = 0 in simply connected domain E3.

Therefore the field is divergenceless.
The vector potential ~A(M) is defined by the expression curl ~A = ~a or

by the system of differential equations

∂Az

∂y
− ∂Ay

∂z
= P (x, y, z) = 3y2,

∂Ax

∂z
− ∂Az

∂x
= Q(x, y, z) = −3x2,

∂Ay

∂x
− ∂Ax

∂y
= R(x, y, z) = −(y2 + 2x).

We are to find a particular solution of this system. Since the vector poten-
tial is defined to within the gradient of a scalar field, then we can select
such a scalar field that Ax(x, y, z) ≡ 0. Then the system of differential
equations is simplified to

∂Az

∂y
− ∂Ay

∂z
= 3y2,

∂Az

∂x
= 3x2,

∂Ay

∂x
= −(y2 + 2x).

Integrating the second and the third equations, we obtain

Az =
w

3x2dx = x3 + C1(y, z),

191



Ay = −
w

(y2 + 2x)dx = −y2x− x2 + C2(y, z).

Suppose that C2(y, z) ≡ 0. Then substituting Ay and Az into the first
equation, we find

∂

∂y
C1(y, z) = 2y2,

Therefore
C1(y, z) =

w
3y2dy = y3 + C3(z).

Assuming C3(z) ≡ 0, we finally obtain

Ax = 0, Ay = −y2x− x2, Az = x3 + y3.

Exercises

Ascertain whether the given vector field is divergenceless and find its

vector potential if possible.

5.65. ~a =~i +~j + ~k.

5.66. ~a = 2y~i + 2z~j.

5.67. ~a = (ex − ey)~k.

5.68. ~a = 2 cos xz~j.

5.69. ~a = 5x2y~i− 10xyz~k.

5.70. ~a = 6x~i− 15y~j + 9z~k.

5.71. ~a =
−y~i + x~j

x2 + y2
, x2 + y2 6= 0.

5.72. ~a = (y + z)~i + (x + z)~j + (x + y)~k.

5.73. ~a = 2y~i− z~j + 2x~k.

5.74. ~a = x(z2 − y2)~i + y(x2 − z2)~j + z(y2 − x2)~k.

5.75. ~a = y2~i− (x2 + y3)~j + 3zy2~k.

5.76. ~a = (1 + 2xy)~i− y2z~j + (z2y − 2zy + 1)~k.

5.77. ~a = 6y2~i + 6z~j + 6x~k.

5.78. ~a = yex
2~i + 2yz~j − (2xyzex

2

+ z2)~k.
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5.4. Orthogonal curvilinear coordinate systems

A curvilinear coordinate system in E3 associates to each point (x, y, z)
ordered real number triple (q1, q2, q3). Curvilinear coordinates q1, q2, q3 of
the point (x, y, z) are connected with its cartesian coordinates x, y, z by
formulas

q1 = q1(x, y, z), q2 = q2(x, y, z), q3 = q3(x, y, z),

where qi(x, y, z), i = 1, 2, 3, are single valued continuously differentiable

in E3 functions and the Jacobian determinant
∂(x, y, z)

∂(q1, q2, q3)
6= 0.

The condition qi = qi(x, y, z) = const defines for a fixed value of the
index i a family of nonintersecting surfaces called coordinate surfaces of
coordinate qi. The curve of intersection of two coordinate surfaces related
to different coordinates qi and qj (i 6= j) is called the coordinate curve of
the third coordinate qk (i 6= j, i 6= k, j 6= k).

Three coordinate surfaces related to three different coordinates intersect
in on point as well as three coordinate curves of different coordinates.

In each point M it is possible to construct the natural basis, vectors of
which are tangents to corresponding coordinate curves:

∂~r

∂qi
=

∂xk

∂qi
~ek, i, k = 1, 2, 3.

A curvilinear coordinate system is called orthogonal, if the natural basis
at every point is orthogonal. Normalized natural basis1

~eα =
1

Hα

∂~r

∂qα
,

where

Hk =

∣∣∣∣ ∂~r∂qk

∣∣∣∣ =

√(
∂x

∂qk

)2

+

(
∂y

∂qk

)2

+

(
∂z

∂qk

)2

,

is called the physical basis . Coefficients Hk, k = 1, 2, 3, are called Lamé
coefficients.

The differential of a radius-vector can be written as

d~r =
∂~r

∂qk
dqk = H1dq

1~e1 + H2dq
2~e2 + H3dq

3~e3.

1There is no summation over the index α here.
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Element of the coordinate curve length:

dlα = Hαdqα

Element of the coordinate surface area:

dS1 = H2H3dq
2dq3, dS2 = H1H3dq

1dq3, dS3 = H1H2dq
1dq2.

Element of the volume:

dV = H1H2H3dxdydz.

Cylindrical coordinates

Fig. 5.2

In the cylindrical coordinate system
the position of a point is defined by co-
ordinates (fig. 5.2):

q1 = ρ, 0 6 ρ < +∞,

q2 = ϕ, 0 6 ϕ 6 2π,

q3 = z, −∞ < z < +∞,

where ρ is the distance from the point to
the Oz axis, ϕ is the angle between pos-
itive half of the Ox axis and the straight

line connecting the origin and the projection of the point onto the xOy
plane, z is the third cartesian coordinate.

Cartesian coordinates are related to cylindrical by formulas

x = ρ cosϕ, y = ρ sinϕ, z = z,

and inversely
ρ =

√
x2 + y2, tanϕ =

y

x
, z = z.

Lamé coefficients, physical basis, elements of the length and area in
cylindrical coordinates:

H1 = 1, ~eρ =~i cosϕ+~j sinϕ, dl1 = dρ dS1 = ρdϕdz;

H2 = ρ, ~eϕ = −~i sinϕ+~j cosϕ, dl1 = ρdϕ, dS2 = dρdz;

H3 = 1, ~ez = ~k, dl1 = dz, dS3 = ρdρdϕ.

The volume element is dV = ρdρdϕdz.
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Spherical coordinates

Fig. 5.3

In the spherical coordinate system the
position of a point is defined by coordi-
nates (fig. 5.3):

q1 = r, 0 6 r < +∞,

q2 = θ, 0 6 θ 6 π,

q3 = ϕ, 0 6 ϕ 6 2π,

where r is the distance from the point to
the origin, θ is the angle between positive
half of the Oz axis and the straight line
connecting the origin and the point, ϕ is the angle between positive half of
the Ox axis and the straight line connecting the origin and the projection
of the point onto the xOy.

Cartesian coordinates are related to spherical by formulas

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ.

and inversely

r =
√

x2 + y2 + z2, θ = arccos
z

r
, tanϕ =

y

x
.

Lamé coefficients, physical basis, elements of the length and area in
cylindrical coordinates:

H1 = 1, ~er =
(
~i cosϕ+~j sinϕ

)
sin θ+ ~k cos θ, dl1 = dr;

H2 = r, ~eθ =
(
~i cosϕ+~j sinϕ

)
cos θ− ~k sin θ, dl2 = rdθ;

H3 = r sin θ, ~eϕ = −~i sinϕ+~j cosϕ, dl2 = r sin θdϕ;

dS1 = r2 sin θdθdϕ, dS2 = r sin θdrdϕ, dS3 = rdrdθ.

The volume element is dV = r2 sin θdrdθdϕ.
Example 1. Find coordinate surfaces of the cylindrical and spherical

coordinate systems.
Solution. To find coordinate surfaces of the cylindrical coordinate sys-

tem we use relations

x = ρ cosϕ, y = ρ sinϕ, z = z. (5.2)
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If we eliminate the coordinate ϕ form the system (5.2), we obtain

x2 + y2 = ρ2, z = z.

Thus the equation ρ = const defines the family of coaxial cylinders of
radius ρ and axis Oz (fig. 5.4).

Then to obtain a family ϕ = const we eliminate the coordinate ρ from
(5.2):

x = y tanϕ, z = z.

Thus the coordinate surfaces related to the coordinate ϕ are a set of half-
planes adjoining the axis Oz.

And finally the family z = const is a set of planes perpendicular to the
axis Oz.

Similarly to find coordinate surfaces of the spherical coordinate system
we are to use relations

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ. (5.3)

Squaring and then summing each equation of (5.3) we obtain

x2 + y2 + z2 = r2.

Thus the family r = const, is a set of concentric spheres of radius r having
the center at the origin (fig. 5.5).

Fig. 5.4 Fig. 5.5
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To find the coordinate surfaces of θ = const we transform the equations
(5.3) to the form

x2 + y2 = r2 sin2 θ, r =
z

cos θ
,

thus
x2 + y2 = z2 tan2 θ.

This equation defines a set of the cones with axes Oz and apex angle θ.
As in the cylindrical coordinate system the family ϕ = const is a set

of half-planes adjoining the axis Oz.

Exercises
5.79. Let (~eρ, ~eϕ, ~ez) be the physical basis of the cylindrical coordinate

system. Suppose that there are given three points A(1, 0, 0), B(0, 1, 0) and
C(0, 0, 1).

a) Draw the basis (~eρ, ~eϕ, ~ez) at the given points.
b) Find angles between vectors 1) ~eρ(A) and ~eρ(B), 2) ~eϕ(A) and ~eρ(B),

3) ~eρ(A) and ~eϕ(B), 4) ~ez(A) and ~ez(B).

c) Find components of 1) vectors ~i,~j,~k in the basis (~eρ, ~eϕ, ~ez) at the
points A and B; 2) vectors ~eρ, ~eϕ, ~ez in the basis (~i,~j,~k) at the points A
and B.

5.80. Let (~er, ~eθ, ~eϕ) be the physical basis of the spherical coordinate
system. Suppose that there are given three points A(1, 0, 0), B(0, 1, 0) and
C(0, 0, 1).

a) Draw the basis (~er, ~eθ, ~eϕ) at the given points.
b) Find angles between vectors 1) ~er(A) and ~eθ(B), 2) ~eϕ(A) and ~er(B),

3) ~er(A) and ~eϕ(B), 4) ~eθ(A) and ~eθ(B).

c) Find components of 1) vectors ~i,~j,~k in the basis (~er, ~eθ, ~eϕ) at the
points A and B; 2) vectors ~er, ~eθ, ~eϕ in the basis (~i,~j,~k) at the points A
and B.

5.81. The elliptic cylindrical coordinates u, v, z are related to the Carte-
sian coordinates by formulas:

x = a coshu cos v, y = a sinhu sin v, z = z,

0 6 u < +∞, 0 6 v 6 2π, −∞ < z < +∞.
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Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.82. The parabolic cylindrical coordinates ξ,η, z are related to the
Cartesian coordinates by formulas:

x = ξη, y =
1

2
(η2 − ξ2), z = z,

−∞ < ξ < +∞, 0 6 η < +∞, −∞ < z < +∞.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.83. The bipolar coordinates ξ,η, z are related to the Cartesian coor-
dinates by formulas:

x =
a sinhη

coshη− cos ξ
, y =

a sin ξ

coshη− cos ξ
, z = z,

0 6 ξ 6 2π, −∞ < η < +∞, −∞ < z < +∞.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.84. The equations

x2

a2 + ξ
+

y2

b2 + ξ
+

z2

c2 + ξ
= 1, ξ>− c2,

x2

a2 + η
+

y2

b2 + η
+

z2

c2 + η
= 1, −b2 6 η 6 −c2,

x2

a2 + ζ
+

y2

b2 + ζ
+

z2

c2 + ζ
= 1, −a2 6 ζ 6 −b2,

describe correspondingly an ellipsoid, one-sheeted and two-sheeted hyper-
boloids confocal with the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1, c < b < a.

The real numbers ξ,η, ζ are called the ellipsoidal coordinates. Establish
the relation between the ellipsoidal and the Cartesian coordinates. Prove
that the given coordinate system is orthogonal and evaluate the Lamé
coefficients.
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5.85. The prolate ellipsoidal coordinate system is the particular case
of the ellipsoidal coordinate system when a > b = c. In this case the
coordinate η becomes constant and we are to introduce the azimuthal
angle ϕ in the plane yOz counted off the axis Oy. Making the substitution
ξ = coshu, ζ = cos v, we obtain the relation between the prolate ellipsoidal
coordinates u, v,ϕ and the Cartesian coordinates:

x = a sinhu sin v cosϕ, y = a sinhu sin v sinϕ, z = a coshu cos v,

0 6 u < +∞, 0 6 v 6 π, 0 6 ϕ 6 2π.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.86. The oblate ellipsoidal coordinate system is the particular case
of the ellipsoidal coordinate system when a = b > c. In this case the
coordinate ζ becomes constant and we are to introduce the azimuthal angle
ϕ in the plane xOy counted off the axis Ox. Making the substitution
ξ = sinhu, η = cos v, we obtain the relation between the prolate ellipsoidal
coordinates u, v,ϕ and the Cartesian coordinates:

x = a coshu sin v cosϕ, y = a coshu sin v sinϕ, z = a sinhu cos v,

0 6 u < +∞, 0 6 v 6 π, 0 6 ϕ 6 2π.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.87. The parabolic coordinates ξ,η,ϕ are related to the Cartesian
coordinates by formulas:

x = ξη cosϕ, y = ξη sinϕ, z =
1

2

(
η2 − ξ2

)
,

0 6 ξ < +∞, 0 6 η < +∞, 0 6 ϕ 6 2π.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.

5.88. The toroidal coordinates ξ,η,ϕ are related to the Cartesian co-
ordinates by formulas:

x =
a sinhη cosϕ

coshη− cos ξ
, y =

a sinhη sinϕ

coshη− cos ξ
, z =

a sin ξ

coshη− cos ξ
,

−π 6 ξ 6 π, 0 6 η < +∞, 0 6 ϕ 6 2π.

Find the coordinate surfaces and prove that the given coordinate system is
orthogonal. Evaluate the Lamé coefficients.
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5.5. Differential operators and integrals
in curvilinear coordinates

A vector field in curvilinear coordinates ~a :

~a = aq1(q
1, q2, q3)~eq1 + aq2(q

1, q2, q3)~eq2 + aq3(q
1, q2, q3)~eq3.

Note that the basis vectors ~eqi are also depend on the curvilinear coordi-
nates qk.

The equation of vector lines in curvilinear coordinates:

H1dq
1

aq1
=

H2dq
2

aq2
=

H3dq
3

aq3
,

in the cylindrical coordinates:

dρ

aρ
=
ρdϕ

aϕ
=

dz

az
,

in the spherical coordinates:

dr

ar
=

rdθ

aθ
=

r sin θdϕ

aϕ
.

The gradient in curvilinear coordinates:

gradu =
1

H1

∂u

∂q1
~eq1 +

1

H2

∂u

∂q2
~eq2 +

1

H3

∂u

∂q3
~eq3,

in the cylindrical coordinates:

gradu =
∂u

∂ρ
~eρ +

1

ρ

∂u

∂ϕ
~eϕ +

∂u

∂z
~ez,

in the spherical coordinates:

gradu =
∂u

∂r
~er +

1

r

∂u

∂θ
~eθ +

1

r sin θ

∂u

∂ϕ
~eϕ.

The divergence in curvilinear coordinates:

div~a =
1

H1H2H3

(
∂(aq1H2H3)

∂q1
+

∂(aq2H1H3)

∂q2
+

∂(aq3H1H2)

∂q3

)
,
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in the cylindrical coordinates:

div~a =
1

ρ

∂(ρaρ)

∂ρ
+

1

ρ

∂aϕ
∂ϕ

+
∂az
∂z

,

in the spherical coordinates:

div~a =
1

r2

∂(r2ar)

∂r
+

1

r sin θ

∂(sin θaθ)

∂θ
+

1

r sin θ

∂aϕ
∂ϕ

.

The curl in curvilinear coordinates:

curl~a =
1

H2H3

(
∂(aq3H3)

∂q2
−

∂(aq2H2)

∂q3

)
~eq1+

+
1

H3H1

(
∂(aq1H1)

∂q3
−

∂(aq3H3)

∂q1

)
~eq2+

+
1

H1H2

(
∂(aq2H2)

∂q1
−

∂(aq1H1)

∂q2

)
~eq3.

The curl also can be written in the form of the formal determinant:

curl~a =

∣∣∣∣∣∣∣∣∣
1

H2H3
~eq1

1

H1H3
~eq2

1

H1H2
~eq3

∂

∂q1

∂

∂q2

∂

∂q3

H1aq1 H2aq2 H3aq3

∣∣∣∣∣∣∣∣∣ .
The curl in the cylindrical coordinates:

curl~a =

(
1

ρ

∂az
∂ϕ
− ∂aϕ

∂z

)
~eρ +

(
∂aρ
∂z
− ∂az

∂ρ

)
~eϕ +

(
1

ρ

∂(ρaϕ)

∂ρ
− ∂aρ

∂ϕ

)
~ez,

in the spherical coordinates:

curl~a =

(
1

r sin θ

∂(aϕ sin θ)

∂θ
− 1

r sin θ

∂aθ
∂ϕ

)
~er+

+

(
1

r sin θ

∂ar
∂ϕ
− 1

r

∂(raϕ)

∂r

)
~eθ+

+

(
1

r

∂(raθ)

∂r
− 1

r

∂ar
∂θ

)
~eϕ.
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The Laplacian in curvilinear coordinates:

∆u =
1

H1H2H3

[
∂

∂q1

(
H2H3

H1

∂u

∂q1

)
+

+
∂

∂q2

(
H1H3

H2

∂u

∂q2

)
+

∂

∂q3

(
H1H2

H3

∂u

∂q3

)]
,

in the cylindrical coordinates:

∆u =
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂ϕ2
+

∂2u

∂z2
,

in the spherical coordinates:

∆u =
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂ϕ2
.

The line integral of the second kind of a vector field ~a along a curve L:
w

L

~a · d~r =
w

L

aq1H1dq
1 + aq2H2dq

2 + aq3H3dq
3.

The surface integral of the second kind of a vector field ~a on the coordi-
nate surface Ω1 : q1 = C, q2 ∈ [α2,β2], q3 ∈ [α3,β3] can be evaluated as
follows. Since the unit normal vector to the coordinate surface is the basis
vector ±~eq1, and the area element is dS1 = H2H3dq

2dq3, then
x

Ω1

~a · d~S = ±
x

Ω1

(~a · ~eq1)dS =

= ±
β2w

α2

dq2

β3w

α3

aq1(C, q
2, q3)H2(C, q

2, q3)H3(C, q
2, q3)dq3.

The surface integral of the second kind of a vector field ~a on other coordi-
nate surfaces can by evaluated similarly.

Example 1. Find vector lines of the field

~a = r2~er − cos2 θ~eθ + r sin θ~eϕ.

Solution. In the spherical coordinates the system of differential equation
for vector lines of the given field is

dr

r2
=

rdθ

− cos2 θ
=

r sin θdϕ

r sin θ
.
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This system is equivalent to

dr

r3
=

dθ

− cos2 θ
,

dr

r2
= dϕ.

Integrating each equation, we obtain

r2 =
1

tan θ+ C1
, r = − 1

ϕ+ C2
.

Example 2. Find the gradient of the following scalar field in the cylin-
drical coordinates:

u = ρ cosϕ+ z2 sin2ϕ− 3ρ.

Solution.
gradu =

∂u

∂ρ
~eρ +

1

ρ

∂u

∂ϕ
~eϕ +

∂u

∂z
~ez =

= (cosϕ− 3ρ ln 3)~eρ +
1

ρ
(−ρ sinϕ+ 2z2 sinϕ cosϕ)~eϕ + 2z sin2ϕ~ez =

= (cosϕ− 3ρ ln 3)~eρ + (− sinϕ+
z2

ρ
sin 2ϕ)~eϕ + 2z sin2ϕ~ez.

Example 3. Find the gradient of the following scalar field in the spher-
ical coordinates:

u = α
cos θ

r3
, α = const.

Solution.

gradu =
∂u

∂r
~er +

1

r

∂u

∂θ
~eθ +

1

r sin θ

∂u

∂ϕ
~eϕ =

= −3α cos θ

r4
~er −

1

r

α sin θ

r3
~eθ +

1

r sin θ
· 0 · ~eϕ = −3α cos θ

r4
~er −

α sin θ

r4
~eθ.

Example 4. Find the divergence of the following vector field in the
cylindrical coordinates:

~a = ρ~eρ + z sinϕ~eϕ + eϕ cos z ~ez.

Solution.
div~a =

1

ρ

∂(ρaρ)

∂ρ
+

1

ρ

∂aϕ
∂ϕ

+
∂az
∂z

=
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=
1

ρ

∂(ρ2)

∂ρ
+

1

ρ

∂(z sinϕ)

∂ϕ
+

∂(eϕ cos z)

∂z
= 2 +

z cosϕ

ρ
− eϕ sin z.

Example 5. Find the divergence of the following vector field in the
spherical coordinates:

~a = r2~er − 2 cos2ϕ~eθ +
ϕ

r2 + 1
~eϕ.

Solution.

div~a =
1

r2

∂(r2ar)

∂r
+

1

r sin θ

∂(sin θaθ)

∂θ
+

1

r sin θ

∂aϕ
∂ϕ

=

=
1

r2

∂

∂r
(r4) +

1

r sin θ

∂

∂θ
(sin θ(−2 cos2ϕ)) +

1

r sin θ

∂

∂ϕ

(
ϕ

r2 + 1

)
=

= 4r − 2

r
cos2ϕ cot θ+

1

r(r2 + 1) sin θ
.

Example 6. Find the curl of the following vector field in the cylindrical
coordinates:

~a = cosϕ~eρ −
sinϕ

ρ
~eϕ + ρ2 ~ez.

Solution.

curl~a =

∣∣∣∣∣∣∣∣∣
1

ρ
~eρ ~eϕ

1

ρ
~ez

∂

∂ρ

∂

∂ϕ

∂

∂z
aρ ρaϕ az

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1

ρ
~eρ ~eϕ

1

ρ
~ez

∂

∂ρ

∂

∂ϕ

∂

∂z
cosϕ − sinϕ ρ2

∣∣∣∣∣∣∣∣∣ =

=
1

ρ
~eρ(0 + 0)− ~eϕ(2ρ− 0) + ~ez

(
sinϕ

ρ

)
= −2ρ~eϕ +

sinϕ

ρ
~ez.

Example 7. Find the curl of the following vector field in the spherical
coordinates:

~a = r ~er + r cos θ~eθ + r sinϕ~eϕ.

Solution.

curl~a =

∣∣∣∣∣∣∣∣∣∣∣∣

1

r2 sin θ
~er

1

r sin θ
~eθ

1

r
~ez

∂

∂r

∂

∂θ

∂

∂ϕ

ar raθ r sin θaϕ

∣∣∣∣∣∣∣∣∣∣∣∣
=
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=

∣∣∣∣∣∣∣∣∣∣∣∣

1

r2 sin θ
~er

1

r sin θ
~eθ

1

r
~ez

∂

∂r

∂

∂θ

∂

∂ϕ

r r2 cos θ r2 sin θ sinϕ

∣∣∣∣∣∣∣∣∣∣∣∣
=

=
1

r2 sin θ
(r2 sinϕ cos θ− 0)~er −

1

r sin θ
(2r sin θ sinϕ− 0)~eθ+

+
1

r
(2r cos θ− 0)~eϕ = cot θ sinϕ~er − 2 sinϕ~eθ + 2 cos θ~eϕ.

Example 8. Evaluate the flux of the vector field, defined in cylindrical
coordinates as ~a = ρ~eρ+z~eϕ, through the outward side of the outward side
of the closed surface formed by the planes z = 0, z = 1 and the cylinder
ρ = 1.

Solution. M e t h o d 1. The given surface consists of the parts of
coordinate surfaces of the cylindrical coordinate system (fig. 5.6):

F =
{

Ω

~a · ~ndS =
x

Ωρ

~a · ~ndS +
x

Ω1

~a · ~ndS +
x

Ω2

~a · ~ndS,

where
Ωρ : ρ = 1, ~n = ~eρ, ~a · ~n = ρ, dS = H2H3dϕdz = ρdϕdz;
Ω1 : z = 0, ~n = −~ez, ~a · ~n = 0, dS = H1H2dρdϕ = ρdρdϕ;
Ω2 : z = 1, ~n = ~ez, ~a · ~n = 0, dS = H1H2dρdϕ = ρdρdϕ.

Thus we are to evaluate only the flux through Ωρ. Taking into account
that for Ω1 0 6 ϕ 6 2π, 0 6 z 6 1, we obtain

F =
x

Ωρ

~a · ~ndS =

2πw

0

dϕ

1w

0

ρ2
∣∣
ρ=1

dz = 2π.

M e t h o d 2. Since the given surface is closed, we can use Gauss –
Ostrogradsky formula. To apply the formula we first find the divergence:

div~a =
1

ρ

∂

∂ρ
(ρ2) +

1

ρ

∂z

∂ϕ
= 2.

Thus we obtain

F =
{

Ω

~a · ~ndS =
y

G

div~adV = 2
y

G

dV = 2VC = 2π,

where VC is the cylinder volume equal to π.
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Method 3. If we consider the cartesian coordinate system formed by
coordinates (ρ,ϕ, z), then the initial cylinder takes the form of the paral-
lelepiped shown in fig. 5.7. The total flux is the sum of the fluxes through
the faces of this parallelepiped that can be easily evaluated as follows:

1) ρ = 0, ~n = −~eρ, dS = ρdϕdz = 0, ~a · ~n = −ρ = 0,

F0 = 0;

2) ρ = 1, ~n = ~eρ, dS = dϕdz, ~a · ~n = ρ = 1,

F1 =

1w

0

dz

2w

0

πdϕ = 2π;

3) ϕ = 0, ~n = −~eϕ, dS = dρdz, ~a · ~n = −z,

F2 = −
1w

0

dρ

1w

0

zdz = −1

2
;

4) ϕ = 2π, ~n = ~eϕ, dS = dρdz, ~a · ~n = z,

F3 =

1w

0

dρ

1w

0

zdz =
1

2
;

5) z = 0, ~n = −~ez, dS = ρdρdϕ, ~a · ~n = 0,

F4 = 0;

6) z = 1, ~n = ~ez, dS = ρdρdϕ, ~a · ~n = 0,

F5 = 0;

and finally F =
5∑

i=0

Fi = 2π.

Fig. 5.6 Fig. 5.7
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Example 9. Evaluate the flux of the vector field, defined in the cylin-
drical coordinate system as ~a = ρ~eρ + ρϕ~eϕ − 2z~ez, through the outward
side of the closed surface formed by the half-planes ϕ = 0, ϕ =

π

2
, the

planes z = −1, z = 1, and the cylinder ρ = 1.
Solution. The given surface consist of the five smooth portions (fig. 5.8).

Thus the flux is the sum

F =
5∑

i=1

x

Ωi

~a · ~n dS,

where

1) Ω1 : ϕ = 0, ~n = −~eϕ, ~a · ~n = −ρϕ = 0, dS = dρdz,

F1 = 0;

2) Ω2 : ϕ =
π

2
, ~n = ~eϕ, ~a · ~n = ρϕ =

π

2
ρ, dS = dρdz,

F2 =

1w

−1

dz

1w

0

π

2
ρdρ =

π

2
;

3) Ω3 : z = 1, ~n = ~ez, ~a · ~n = −2z = −2, dS = ρdρdϕ,

F3 = −
π/2w

0

dϕ

1w

0

2ρdρ = −π
2

;

4) Ω4 : z = −1, ~n = −~ez, ~a · ~n = 2z = −2, dS = ρdρdϕ,

F4 = −
π/2w

0

dϕ

1w

0

2ρdρ = −π
2

;

5) Ω5 : ρ = 1, ~n = ~eρ, ~a · ~n = ρ = 1, dS = ρdϕdz,

F5 =

π/2w

0

dϕ

1w

−1

dz = π.

Finally the flux is

F =
π

2
− π

2
− π

2
+ π =

π

2
.

Solve this problem by the second and third methods as in Example 8,
using for the latter the fig. 5.9.
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Fig. 5.8
Fig. 5.9

Example 10. Evaluate the flux of the vector field, given in the spherical
coordinates as ~a = r2~er + Rr sin θ cosϕ~eϕ, through the outward side of
the closed surface formed by the coordinate surfaces r = R, ϕ = 0, ϕ =

π

2
and θ =

π

2
(fig. 5.10).

Solution. Consider the partial flux through each coordinate surface:

F =
4∑

i=1

x

Ωi

~a · ~ndS,

where

1) Ω1 : ϕ = 0, ~n = −~eϕ, ~a · ~n = −Rr sin θ, dS = rdrdθ,

F1 = −
Rw

0

r2dr

π/2w

0

R sin θdθ = −R
4

3
;

2) Ω2 : ϕ =
π

2
, ~n = ~eϕ, ~a · ~n = 0, dS = rdrdθ,

F2 = 0;

3) Ω3 : θ =
π

2
, ~n = ~eθ, ~a · ~n = 0, dS = rdrdϕ,

F3 = 0;

4) Ω4 : r = R, ~n = ~er, ~a · ~n = R2, dS = R2 sin θdθdϕ;

F4 =

π/2w

0

dϕ

π/2w

0

R4 sin θdθ =
π

2
R4.

Thus
F = −R

4

3
+

R 4 π

2
= R 4

(
π

2
− 1

3

)
.
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Example 11. Evaluate the circulation of the vector field, defined in
the cylindrical coordinates as ~a = ρ sinϕ~eρ − ρ2z ~eϕ + ρ2~ez, around the
circle L : ρ = R, z = R, positively oriented of the upper side of the plane.

Solution. M e t h o d 1 . The circulation C is

C =
z

L

~a · d~r =
z

L

~a · ~τ dl.

The closed curve L is the circle ρ = R, for which ~τ = ~eϕ, (fig. 5.11),
~a · ~τ = −ρ2z = −R3, dl = H2dϕ = Rdϕ. Thus,

C = −
2πw

0

R4dϕ = −2πR4.

M e t h o d 2. Applying Stokes’ formula we find in first the curl

curl~a =

∣∣∣∣∣∣∣∣∣
1

ρ
~eρ ~eϕ

1

ρ
~ez

∂

∂ρ

∂

∂ϕ

∂

∂z
ρ sinϕ −ρ3z ρ2

∣∣∣∣∣∣∣∣∣ = −ρ2~eρ − 2ρ~eϕ + (−3ρz − cosϕ)~ez.

Then we chose the upper side of the plane z = R bounded by the circle
ρ = R as the surface through which we will evaluate the flux. Then ~n = ~ez,
~n · curl~a = −3ρz − cosϕ, dS = ρdρdϕ and

C =
z

L

~a · d~r =
x

z=R,ρ6R

(−3ρz − cosϕ)dS =

= −
2πw

0

dϕ

Rw

0

(3ρR + cosϕ)ρdρ = −2πR4.

Fig. 5.10 Fig. 5.11
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Example 12. Evaluate the line integral of the second kind of the vector
field, defined in the cylindrical coordinates as

~a = 2ρ cosϕ~eρ + z~eϕ + (3ρ+ϕ)~ez,

along the straight line L : ϕ =
π

4
, z = 0, from the point A

(
0,
π

4
, 0
)
to

B
(

1,
π

4
, 0
)
.

Solution. Taking into account that in the cylindrical coordinates
d~r = ~eρdρ+ ~eϕρdϕ+ ~ezdz, the line integral takes the form

w

L

~a · d~r =
w

L

2ρ cosϕdρ+ ρzdϕ+ (3ρ+ϕ)dz.

If we write the parametric equation of the line L as

ρ = ρ, ϕ =
π

4
, z = 0, 0 6 ρ 6 1,

then dρ = dρ, dϕ = 0, dz = 0, and

w

L

~a · d~r =

1w

0

2ρ

√
2

2
dρ =

√
2

2
.

Example 13. Evaluate the line integral of the second kind of the vector
field, defined in the spherical coordinates as

~a = r sin θ~er + 6θ2 sinϕ~eθ + erϕ~eϕ,

along the circle L : r = 1, ϕ =
π

2
, 0 6 θ 6

π

2
, from the point A

(
1, 0,

π

2

)
to B

(
1,
π

2
,
π

2

)
.

Solution. Since in the cylindrical coordinates d~r = ~erdr+ +~eθrdθ +
~eϕr sin θdϕ, then the line integral takes the form

w

L

~a · d~r =
w

L

r sin θdr + 6rθ2 sinϕdθ+ erϕ r sin θdϕ.

The curve L is the circle arc with the center in the origin and unit radius.
We can write its parametric equation as

θ = θ, r = 1, ϕ =
π

2
, 0 6 θ 6

π

2
.
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Then dr = 0, dθ = dθ, dϕ = 0, and

w

L

~a · d~r =

π/2w

0

6θ2dθ =
6θ3

3

∣∣∣∣
π
2

0

= 2
(π

2

)3

=
π3

4
.

Example 14. Ascertain whether the vector field ~a = ρ~eρ +
ϕ

ρ
~eϕ + z~ez

is potential and find its potential if possible.
Solution. To establish the potentiality in the domain ρ > 0 we evaluate

the curl

curl~a =

∣∣∣∣∣∣∣∣∣
1

ρ
~eρ ~eϕ

1

ρ
~ez

∂

∂ρ

∂

∂ϕ

∂

∂z
ρ ϕ z

∣∣∣∣∣∣∣∣∣ = ~0.

M e t h o d 1. To evaluate the potential we connect the pointM0(0, 0, 0)
with the point M(ρ cosϕ, ρ sinϕ, z) (the given coordinates are Cartesian
coordinates x, y, z) by the curve compose from to segments and the circle
arc as shown in fig. 5.12. Image of the given curve in Cartesian coordinates
(ρ,ϕ, z) is the curve, formed by segments parallel to the coordinate axes
(fig. 5.13). Then

u =
w

L

~a · d~r =
w

L

ρdρ+ϕdϕ+ zdz =

ρw

0

ρ̃dρ̃+

ϕw

0

ϕ̃dϕ̃+

zw

0

z̃dz̃ =

=
ρ2

2
+
ϕ2

2
+

z2

2
+ C.

Fig. 5.12 Fig. 5.13
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M e t h o d 2. To find the potential u we compose the system of differ-
ential equations:

∂u

∂ρ
= ρ,

1

ρ

∂u

∂ϕ
=
ϕ

ρ
,

∂u

∂z
= z.

Integrating the first equation we obtain u =
ρ2

2
+C1(ϕ, z). Substituting

the given relation into the second equation, we have
∂C1

∂ϕ
= ϕ. Thus

C1(ϕ, z) =
ϕ2

2
+C2(z). Finally substituting the potential u =

ρ2

2
+
ϕ2

2
+

+C2(z) into the last equation, we find that C2(z) =
z2

2
+C. Therefore the

potential is

u =
1

2
(ρ2 +ϕ2 + z2) + C.

Example 15. Ascertain whether the vector field

~a = er sin θ~er +
1

r
er cos θ~eθ +

2ϕ

(1 +ϕ2)r sin θ
~eϕ

is potential and find its potential if possible.
Solution. Computing the curl we make certain that curl~a = ~0, therefore

the vector field is potential in the domain r > 0.
To find the potential u we compose the system of differential equations:

∂u

∂r
= er sin θ,

∂u

∂θ
= er cos θ,

∂u

∂ϕ
=

2ϕ

1 +ϕ2
.

Integrating each equation, we obtain

u = er sin θ+ C1 (θ,ϕ) ,

u = er sin θ+ C2(r,ϕ),

u = ln(1 +ϕ2) + C3(r, θ).

Right parts of the equalities coincide only if

C1(θ,ϕ) = ln(1 +ϕ2) + C, C2(r,ϕ) = ln(1 +ϕ2) + C,

C3(ρ,ϕ) = er sin θ+ C.

Therefore
u = er sin θ+ ln

(
1 +ϕ2

)
+ C.
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Exercises
Find the vector lines of the given scalar field.

5.89. ~a = ~eρ +ϕ~eϕ.

5.90. ~a =
2 cos θ

r3
~er +

sin θ

r3
~eθ.

Find the gradient of the given vector field in the appropriate coordinate
system.

5.91. u = ρ+ z cosϕ.

5.92. u = ρ2 + 2ρ cosϕ− ez sinϕ.

5.93. u = ρ cosϕ+ z sin2ϕ.

5.94. u = ρ2 sinϕ+ z cos2ϕ− 3zρ.

5.95. u = r2 cos θ.

5.96. u = 3r cos θ+ er sinϕ− 2r.

5.97. u = r2 sin θ+
cos θ

r
.

5.98. u =
cos θ

r2
.

Find the divergence and the curl of the given vector field in the appro-
priate coordinate system.

5.99. ~a = ρ2~eρ + z cosϕ~eϕ + eϕ sin z ~ez.

5.100. ~a = ϕ arctgρ~eρ + 2~eϕ − z2ez~ez.

5.101. ~a = sinϕ~eρ +
cosϕ

ρ
~eϕ − ρz~ez.

5.102. ~a = ρ~eρ + ρϕ~eϕ − 2z ~ez.

5.103. ~a = r2~er − 2 cos2ϕ~eθ +
ϕ

r2 + 1
~eϕ.

5.104. ~a = (2r + cosϕ)~er − sin θ~eθ + r cos θ~eϕ.

5.105. ~a = r2~er + 2 cos θ~eθ −ϕ~eϕ.

5.106. ~a =
2 cos θ

r3
~er +

sin θ

r3
~eθ.

5.107. Show that the vector field ~a = f(r)~er is potential. Here f(r) is
a continuously differentiable function.
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Find the Laplacian of the given scalar field in the appropriate coordinate
system.

5.108. u = ρ2 cos 2ϕ.

5.109. u = ρ2ϕ+ z2ϕ3 − ρϕz.

5.110. u = r cos 2 θ.

5.111. u = r2ϕθ+ r3ϕ2 +ϕ+ θ2.

5.112. Evaluate the flux of the vector field ~a = ρ~eρ − z~eϕ + cosϕ~ez
through the outward side of the closed surface formed by the cylinder ρ = 2
and planes z = 0 and z = 2.

5.113. Evaluate the flux of the vector field ~a = ρ~eρ+ϕ~eϕ−z ~ez through
the outward side of the closed surface formed by the cylinder ρ = 1, half-
planes ϕ = 0, ϕ =

π

2
and planes z = 1, z = −1.

5.114. Evaluate the flux of the vector field ~a = r2θ~er + reθ ~eθ, through
the outward side of the upper hemisphere of radius R and center in the
origin.

5.115. Evaluate the flux of the vector field ~a =
2 cos θ

r3
~er +

sin θ

r3
~eθ

through the outward side of the sphere of radius R and center in the origin
5.116. Evaluate the flux of the vector field ~a = r ~er + r sin θ~eθ−

−3rϕ sin θ~eϕ through the outward side of the closed surface formed by
upper hemisphere r = R and plane θ =

π

2
.

5.117. Evaluate the flux of the vector field ~a = r2 ~er + 2 cos θ~eθ−ϕ~eϕ
through the outward side of the closed surface formed by the coordinates
planes r = R,ϕ = 0,ϕ =

π

2
, θ =

π

2
.

5.118. Evaluate the flux of the vector field ~a = r2 ~er through the out-
ward side of the closed surface formed by the upper hemisphere r = R and
plane θ =

π

2
.

Evaluate the line integral of the second kind of the given vector field ~a
along the given curve L.

5.119. ~a = 2ρ cosϕ~eρ + ρϕ~eϕ + ρϕ~ez, L: ϕ =
π

4
, z = 0 from the

point A
(

0,
π

4
, 0
)
to B

(
2,
π

4
, 0
)
.

5.120. ~a = ρ sinϕ~eρ + α cosϕ~eϕ, L: ρ = αϕ, z = 0, 0 6 ϕ 6 2π.
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5.121. ~a = ln ρ sinϕ~eρ + ρ2 sinϕ~eϕ + ρ2 ~ez, L: ρ = R, z = ϕ,
0 6 ϕ 6 2π.

5.122. ~a = r sin θ~er + 3θ2 ~eθ +ϕr ~eϕ, L: r = 1, ϕ = 0, 0 6 θ 6 π.

5.123. ~a = 3r2 tan
ϕ

4
~er + θϕ~eθ + sin2ϕ~eϕ, L: ϕ = π, θ =

π

4
,

0 6 r 6 1.

5.124. ~a = sin2 θ~er + sin θ~eθ + r2θ~eϕ, L: r =
1

sin θ
, ϕ =

π

2
,

π

4
6 θ 6

π

2
.

Evaluate the circulation of the given vector field ~a around the closed
curve L directly and applying Stokes’ formula.

5.125. ~a = ρ sinϕ~eρ + 2ρϕ~eϕ + zϕ~ez, L: ρ = 1, z = 0, ϕ = 0,
ϕ =

π

2
.

5.126. ~a = ρϕ~eρ + ρz2 cosϕ~eϕ + ρ2 cos z ~ez, L: ρ = R, z = 1.

5.127. ~a = ρ sinϕ~eρ + ρ cos z ~eϕ + ρϕ~ez, L: ρ = sinϕ, z = 0,
0 6 ϕ 6 π.

5.128. ~a = er sin θ~er + r2 sin θ ~eϕ, L: r = 1, θ =
π

4
.

5.129. ~a = r cosϕ sin θ~er + (R + r)~eϕ, L: r = R, θ =
π

2
.

5.130. ~a = r sin θ~er + eϕ ~eθ, L: r = sin θ, ϕ = 0, 0 6 θ 6 π.

Ascertain whether the given vector field is potential and find its poten-
tial if possible.

5.131. ~a = ~eρ +
1

ρ
~eϕ + ~ez.

5.132. ~a = ρ~eρ +
z

ρ
~eϕ +ϕ~ez.

5.133. ~a = ϕz~eρ + z~eϕ + ρϕ~ez.

5.134. ~a = eρ sinϕ~eρ +
eρ

ρ
cosϕ~eϕ + 2z~ez.

5.135. ~a = ϕ sin z ~eρ + sin z ~eϕ + ρϕ cos z ~ez.

5.136. ~a =

(
arctan z

ρ
− sinϕ

)
~eρ − cosϕ~eϕ +

ln ρ

1 + z2
~ez.
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5.137. ~a =
sinϕ

ρ
~eρ +

1

ρ
ln ρ · cosϕ~eϕ + 2z ~ez.

5.138. ~a = θ~er + ~eθ.

5.139. ~a = erθ~er +
er

r
~eθ.

5.140. ~a = ϕ cos θ~er −ϕ sin θ~eθ + cot θ~eϕ.

5.141. ~a = 2r~er +
1

r
~eθ +

1

r sin θ
~eϕ.

5.142. ~a =
ϕ2

2
~er +

θ

r
~eθ +

ϕ

sin θ
~eϕ.

5.143. ~a = cosϕ sin θ~er + cosϕ cos θ~eθ − sinϕ~eϕ.

5.144. ~a = er sin θ~er +
er

r
cos θ~eθ +

2ϕ

(1 +ϕ2)r sin θ
~eϕ.

5.145. ~a =
1

r
eθϕ~er +

ϕ ln r

r
eθϕ~eθ +

θ ln r

r sin θ
eθϕ~eϕ.

5.146. Let (~eq1, ~eq2, ~eq3) be the physical basis of a curvilinear coordinate
system. Find div~eqi, i = 1, 2, 3. Write obtained results in the cylindrical
and spherical coordinates.

5.147. Let (~eq1, ~eq2, ~eq3) be the physical basis of a curvilinear coordi-

nate system. Prove that curl~eq1 =
1

H1
(gradH1 × ~eq1). Derive analogous

formulas for curl~eq2 and curl~eq3. Write obtained results in the cylindrical
and spherical coordinates.

5.148. Find the general solution of the Laplace’s equation ∆u = 0 in
the cylindrical coordinates that a) depends only on ρ; b) depends only onϕ;
c) depends only on z.

5.149. Find the general solution of the Laplace’s equation ∆u = 0 in
the spherical coordinates that a) depends only on r; b) depends only on θ;
c) depends only on ϕ.

5.150. Find the general solution of the Poissons’ equation
∆u(r) = rn−1 in the spherical coordinate system.

5.151. Write the expression for ∆Φ in the orthogonal coordinate sys-
tems described in Exercises 5.81–5.88.



Keys

Chapter 1

1.1. a1 = b 1
1 c1 + b 2

1 c2 + b 3
1 c3, a2 = b 1

2 c1 + b 2
2 c2 + b 3

2 c3, a3 = b 1
3 c1 +

+b 2
3 c2 + b 3

3 c3. 1.2. d = a11b
1c1 + a12b

1c2 + a21b
2c1 + a22b

2c2. 1.3. d =
= a1

1 + a2
2 + a3

3. 1.4. c1 1
1 + c1 2

2 + c1 3
3 = a1, c2 1

1 + c2 2
2 + c2 3

3 = a2, c3 1
1 +

+c3 2
2 +c3 3

3 = a3. 1.5. c1
11a

1+c1
12a

2 = a1b1, c2
11a

1+c2
12a

2 = a2b1, c1
21a

1+
+c1

22a
2 = a1b2, c2

21a
1 + c2

22a
2 = a2b2. 1.6. ak = bk. 1.7. 0. 1.8. akl =

= bkcl. 1.9. (aik − δik)bk. 1.10. (bic
k − δ k

i )a i
k . 1.11. a

i
rsb

r(δ s
k − bsck).

1.12. aljk(δ
i
l b

jbk−clbidjk). 1.14. δ i
m . 1.15. n. 1.16.

~
e1 =

(
−1

3
,−1

3
,−2

3

)
,

~
e2 =

(
−1

3
,−5

6
,−2

3

)
,
~
e3 = (−1,−1,−1), ~x = −3~e1 − 4~e2 − 6~e3.

1.17.
~
e1 =

(
2

3
,
1

3
,
2

3

)
,
~
e2 =

(
1

3
,
2

3
,
4

3

)
,
~
e3 =

(
1

3
,
2

3
,
1

3

)
, ~x = 2~e1 + ~e2.

1.18.
~
e1 =

(
1

3
,−5

3
,−2

3

)
,
~
e2 =

(
1

3
,
1

3
,
1

3

)
,
~
e3 =

(
−1

3
,
2

3
,
2

3

)
, ~x = −2~e1 +

+~e2+~e3. 1.19.
~
e1 = (0, 0, 1),

~
e2 = (1, 0,−1),

~
e3 = (0, 1,−1), ~x = −~e1+2~e3.

1.21.
~
e1 = (3,−2),

~
e2 = (−4, 3), ~x = ~e1 + ~e2,

~
y = 5

~
e1 + 4

~
e2, 〈~x,

~
y〉 = 9.

1.22.
~
e1 =

(
−1

3
,
2

3

)
,
~
e2 =

(
−1

2
,
1

2

)
, ~x = ~e1 + ~e2,

~
y = −3

~
e1 + 6

~
e2,

〈~x,
~
y〉 = 3. 1.23.

~
e1 =

(
−1

2
,
1

2

)
,
~
e2 = (−3, 2), ~x = −~e1 − 3~e2,

~
y =

= −8
~
e1 +

~
e2, 〈~x,

~
y〉 = 5. 1.24.

~
e1 =

(
1

2
,
5

2

)
,
~
e2 = (0, 1), ~x = −4~e1 − ~e2,

~
y = 2

~
e1 − 8

~
e2, 〈~x,

~
y〉 = 0. 1.27. (xi

′
) = (−5,−2), (fi′) = (7,−19).

1.28. (xi
′
) = (1, 2), (fi′) = (6,−4). 1.29. (xi

′
) = (−32,−24), (fi′) =

= (−3, 4). 1.30. (xi
′
) = (11, 9), (fi′) = (17,−18). 1.32. Ak

k′ =
∂xk

∂xk′
.

1.33. ai′j′k′ = Ai′

iA
j′

jA
k′

ka
ijk, ai

′j′

k′ = Ai′

iA
j′

jA
k

k′ a
ij
k, a

i′

j′k′ = Ai′

iA
j

j′ ×

×A k
k′ a

i
jk, ai′j′k′ = A i

i′ A
j

j′ A
k

k′ aijk. 1.34. a)
n(n + 1)

2
; b)

n(n− 1)

2
.
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1.39. No. 1.40. Consider specific tensors. 1.42. (aibk) =

(
1 −1
1 −1

)
.

1.43. (aibk) =

(
−1 1
−1 1

)
. 1.44. (aibjk) =

(
12 20
−6 −10

∣∣∣∣ 20 36
−10 −18

)
.

1.45. (aijkbl) =


−3 −4
−5 −7

∣∣∣∣ 3 4
5 7

−2 −5
−1 −3

∣∣∣∣ 2 5
1 3

.

1.46. (aibjkl) =


−1 −1
1 1

∣∣∣∣ −1 −1
1 1

−1 −1
1 1

∣∣∣∣ 1 1
−1 −1

.
1.47. a) (aijx

j) = (10,−21,−38); b) (aijx
i) = (−6, 6,−24); c) (aijx

iyj) =
= 30; d) (aijx

jyi) = −5. 1.48. a) (aijx
j) = (4, 6, 8); b) (aijyi) = (5, 9, 2);

c) aijxjyi = 14; d) aii = 6. 1.49. a) no; b) yes; c) no. 1.50. aii, b
j
j, a

i
jb

j
i.

1.51. Tensor of valence 5: aijb
klm, tensors of valence 3: aijb

ilm, aijbkim,
aijb

kli, aijbjlm, aijbkjm, aijbklj, tensors of valence 1: aijbijm, aijbjim, aijbilj,
aijb

jli, aijbkij, aijbkji. 1.52. a) (aiji ) = (5, 13); (aijj ) = (7, 11); b) (aiji ) =

= (3, 0); (aijj ) = (5, 3). 1.53. a)
(
−4 4
−7 7

)
; b)

(
1 3
2 2

)
; c)

(
2 −1
3 −2

)
;

d)
(
−8 8
−8 8

)
; e) 3; f) 0. 1.54. a) n!; b)

(
1 5
2 6

∣∣∣∣ 3 7
4 8

)
;
(

1 3
5 7

∣∣∣∣ 2 4
6 8

)
;(

1 2
3 4

∣∣∣∣ 5 6
7 8

)
;
(

1 5
3 7

∣∣∣∣ 2 6
4 8

)
;
(

1 3
2 4

∣∣∣∣ 5 7
6 8

)
. 1.55.

(
x1y1 x1y2

x2y1 x2y2

)
.

1.56.

 x1y1 1

2
(x1y2 + x2y1)

1

2
(x1y2 + x2y1) x2y2

.
1.57.

 0
1

2
(x1y2 − x2y1)

1

2
(x2y1 − x1y2) 0

.
1.58.

(
x1a11 x1a21

x2a11 x2a21

∣∣∣∣ x1a12 x1a22

x2a12 x2a22

)
. 1.59. (x1a11+x2a21, x

1a12+x2a22).

1.60.
(
x1(a1

1 + a2
2), x

2(a1
1 + a2

2)
)
. 1.61.

(
x1a1

1 +
1

2
(x1a2

2 + x2a1
2),

x2a2
2 +

1

2
(x2a1

1 + x1a2
1)
)
. 1.62.

(
1

2
(x1a2

2 − x2a1
2),

1

2
(x2a1

1 − x1a2
1)

)
.
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1.63. (a1
1 + a2

2)
2. 1.64. (a1

1)
2 + (a2

2)
2 + a1

1a
2
2 + a1

2a
2
1. 1.65. a1

1a
2
2 −

−a1
2a

2
1. 1.66.

(
a1

1 a1
2

a2
1 a2

2

)
. 1.67.

(
a1

1 a1
2

a2
1 a2

2

)
. 1.68. a1

1 + a2
2.

1.69.


a1

1 0
0 a1

1

∣∣∣∣ a1
2 0

0 a1
2

a2
1 0

0 a2
1

∣∣∣∣ a2
2 0

0 a2
2

. 1.70.


a1

1 a1
2

a2
1 a2

2

∣∣∣∣ 0 0
0 0

0 0
0 0

∣∣∣∣ a1
1 a1

2

a2
1 a2

2

.

1.71. (a(ij)) =

 1 3 6
3 0 2
6 2 6

, (a[ij]) =

 0 −1 1
1 0 1
−1 −1 0

.
1.72. (a(ij)) =


4 3 1

3 3
7

2

1
7

2
3

, (a[ij]) =


0 −2 1

2 0 −5

2

−1
5

2
0

.

1.73. (a(ij)) =


1 2

1

2

2 3
5

2
1

2

5

2
1

, (a[ij]) =


0 0 −1

2

0 0
5

2
1

2
−5

2
0

.

1.74. (a(ij)) =

 2 0 1
0 4 −1
1 −1 6

, (a[ij]) =

 0 −3 4
3 0 −3
−4 3 0

.
1.75. a)

 3
9

2
9

2
7

∣∣∣∣∣∣∣ 2 3
3 3

; b)

(
3 4
7

2
6

∣∣∣∣∣ 7

2
6

1 3

)
.

1.76. (a
[ij]

kl) =


0 3
−3 0

∣∣∣∣ 0 3
−3 0

0 −4
4 0

∣∣∣∣ 0 −4
4 0

;

(aij[kl]) =



0 0
0 0

∣∣∣∣
7

2

7

2

−7

2
−7

2

−7

2
−7

2
7

2

7

2

∣∣∣∣∣∣∣ 0 0
0 0


; (a

[ij]
[kl]) =



0 0
0 0

∣∣∣∣ 0
7

2

−7

2
0

0 −7

2
7

2
0

∣∣∣∣∣∣∣ 0 0
0 0


.
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1.77. (a(ijk)) =


1

10

3

19

3
10

3
3

19

3
19

3

19

3

19

3

∣∣∣∣∣∣∣∣∣∣∣∣

10

3
3

19

3

3 5 7

19

3
7 4

∣∣∣∣∣∣∣∣∣∣∣∣

19

3

19

3

19

3
19

3
7 4

19

3
4 1

,

(a[ijk]) =

 0 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
0 0 1
0 0 0
−1 0 0

∣∣∣∣∣∣
0 −1 0
1 0 0
0 0 0

.

1.78. (a(ijk)) =


2

14

3

16

3
14

3

10

3
6

16

3
6

8

3

∣∣∣∣∣∣∣∣∣∣∣∣

14

3

10

3
6

10

3
6 4

6 4
10

3

∣∣∣∣∣∣∣∣∣∣∣∣

16

3
6

8

3

6 4
10

3
8

3

10

3
6

,

(a[ijk]) =

 0 0 0
0 0 2
0 −2 0

∣∣∣∣∣∣
0 0 −2
0 0 0
2 0 0

∣∣∣∣∣∣
0 2 0
−2 0 0
0 0 0

.
1.79. The tensor is antisymmetric with respect to all indices. 1.80. The
tensor is antisymmetric with respect to the first and the third indices.
1.81. The tensor is antisymmetric with respect to the first and the second
indices. 1.82. akk = 6, ai[ia

k
k] = 1, ai[ia

j
ja

k
k] = 0. 1.83. akk = 11,

ai[ia
k
k] = 27, ai[ia

j
ja

k
k] = 1. 1.102. a) (2,0); b) no; c) no; d) no;

e) (1,1); f) no; g) (2,0); h) (0,2). 1.103. a)
(

2 4
3 5

)
; b)

(
−1 1
−5 7

)
;

c)
(
−1 27
1 −17

)
; d)

(
−164 102
248 −156

)
. 1.104. (xiyk) =

 0 1 0
0 0 0
0 0 0

,
(xi

′
yk′) =

 42 105 −42
−20 50 −20
−8 −20 8

. 1.105. a = (~e1 − 2~e2) ⊗ (2~e1 − ~e2).

1.106. a = (~e1 + ~e2) ⊗ (~e1 − ~e2) ⊗ (
~
e1 + 2

~
e2). 1.107. Euclidean, ~x · ~y =

= −1, ‖~x‖2 = 2, ‖~y‖2 = 5, (wij) =

 0
3

2

−3

2
0

, (vik) =

(
−5 6
−1 3

)
.
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1.108. Pseudo–Euclidean, ~x · ~y = −1, ‖~x‖2 = −3, ‖~y‖2 = 0, (wij) =

=

(
0 1
−1 0

)
, (vik) =


7

2
−27

2
3

2
−11

2

. 1.109. Euclidean, ~x · ~y = 1,

‖~x‖2 = 1, ‖~y‖2 = 3, (wij) =


0 −1

2
0

1

2
0 −1

0 1 0

, (vik) =

 −1 −1 2
1 1 −2
−1 −2 2

.
1.110. Pseudo–Euclidean, ~x · ~y = 0, ‖~x‖2 = 2, ‖~y‖2 = 0,

(wij) =



0 0 −1

2
−1

2

0 0 −1

2
−1

2
1

2

1

2
0 0

1

2

1

2
0 0


, (vik) =


2 2 −1 −1
−2 −2 1 1
1 1 0 0
1 1 0 0

.

1.111. (aij) =

(
60 −34
−37 21

)
, (a j

i ) =

(
60 −37
−34 21

)
,

(aij) =

(
402 −248
−248 153

)
. 1.112. (aij) =

(
−2 6
1 −2

)
,

(a j
i ) =

(
3 −1
19 −7

)
, (aij) =

(
−56 22
23 −9

)
. 1.113. (aij) =

 4 7 13
4 7 17
11 19 25

,
(a j

i ) =

 2 −1 13
8 9 19
13 17 25

, (aij) =

 18 17 51
18 9 71
49 67 87

.
1.114. (aijkl) =


39 101
100 259

∣∣∣∣ 39 101
100 259

39 101
100 259

∣∣∣∣ 78 202
200 518

,

(aijkl) =


89 89
0 89

∣∣∣∣ −34 −34
0 −34

−34 −34
0 −34

∣∣∣∣ 13 13
0 13

.
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1.115. (aijkl) =


−4 −5
−11 −15

∣∣∣∣ 4 7
1 3

4 7
15 24

∣∣∣∣ 12 19
27 42

,

(aijkl) =


4 5
−15 −14

∣∣∣∣ 2 2
2 2

-5 -5
9 9

∣∣∣∣ 0 0
0 0

. 1.116. gik = δik. 1.119.
~
e1 = −~i − ~j,

~
e2 = −2~i−~j. 1.120.

~
e1 = −3

5
~i+

2

5
~j,
~
e2 =

1

5
~i+

1

5
~j. 1.121.

~
e1 = −1

4
~j+

1

4
~k,

~
e2 = −1

3
~i − 1

4
~j +

7

12
~k,

~
e3 =

2

3
~i +

1

2
~j − 1

6
~k. 1.122.

~
e1 = −3

5
~i +

1

5
~j − 2~k,

~
e2 = −1

5
~i +

2

5
~j − ~k,

~
e3 = −4

5
~i +

3

5
~j − 2~k. 1.123.

 0 b3 −b2

−b3 0 b1

b2 −b1 0

.
1.129.~b(~a·~c)−~a(~b·~c). 1.130. (~a×~b)2 = ~a 2~b 2−(~a·~b)2. 1.135. a) ~a2(~b·~c)+

+(~a ·~b)(~a ·~c); b) [(~a×~b)×~c] · [(~a′×~b′)×~c′]. 1.136. Rotation by the angle
π

6

around the x3 axis corresponds to the matrix A1 =



√
3

2

1

2
0

−1

2

√
3

2
0

0 0 1

, and
rotation by the angle

π

2
around the x1′ axis in such a way that the axis x2′

coincides with the axis x3 corresponds to the matrix A2 =

 1 0 0
0 0 1
0 −1 0

.

Then the transformation matrix is A = A2A1 =


√

3

2

1

2
0

0 0 1

1

2
−
√

3

2
0

. In-

verse matrix A−1 =


√

3

2
0

1

2
1

2
0 −

√
3

2
0 1 0

. 1.137. The change of basis can
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be realized by three consecutive rotations: around the z axis by an angle ϕ

— A1 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

; then around the ~u by an angle θ — A2 =

=

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

; and finally around the z′ axis by an angle ψ —

A3 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

. The transformation matrix isA = A3A2A1 =

=

 cosψ cosϕ− cos θ sinψ sinϕ cosψ sinϕ+ cos θ sinψ cosϕ sin θ sinψ
− sinψ cosϕ− cos θ cosψ sinϕ − sinψ sinϕ+ cos θ cosψ cosϕ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ

.
Chapter 2

2.1. ~i + ~k. 2.2. −~i + ~j. 2.3. e~i − ~j. 2.4.
1

2
~i +

1

2
~j + ~k. 2.5. −a sin t~i +

+b cos t~j + c~k. 2.6. a sinh t~i + b cosh t~j + 2ct~k. 2.7. et(cos t − sin t)~i +

+et(sin t+cos t)~j+et~k. 2.8. (1−cos t)~i+sin t~j+2 cos
t

2
~k. 2.9. (t−1)et~i+

+
2t− sin 2t

4
~j − arctan t~k + ~c. 2.10.

1

2
ln(1 + t2)~i +

1

2
et

2~j + sin t~k + ~c.

2.11.
(

2− 3√
e

)
~i+ (

√
e− 1)~j + (e− 1)~k. 2.12. π2(~i+~j +~k). 2.13. The

straight line
x− 2

0
=

y

1
=

z

−1
. 2.14. The straight line x+y = 1. 2.15. The

circle x2+y2 = 1, z = 1. 2.16. y =
x2

3
, z =

x3

9
. 2.17. 2~r ·~r ′. 2.18. 2~r ′ ·~r ′′.

2.19. ~r ′ × ~r ′′′. 2.20. ~r ′~r ′′~r (4). 2.21. (~r ′ × ~r ′′′) × ~r ′′′ + (~r ′ × ~r ′′) × ~r (4).

2.22.
~r · ~r ′√
~r 2

. 2.23. ~r ′2(~r ′×~a)2, −(~r ′ ·~a)(~r ′×~a)2. 2.26. ~v 2 = ρ2 +ρ′2 +z′2.

2.27. ~v 2 = r′2 + r2θ′2 + r2 sin2 θϕ′2. 2.28. ~r ′′ = ~r ′′0 + ~ω′×~ρ+ 2~ω×~vr +
+~ω× (~ω× ~ρ), where ~vr = x′(t)~ex(t) + y′(t)~ey(t) + z′(t)~ez(t) is a velocity
with respect to the the moving frame of reference. 2.29. If we introduce
cartesian coordinates so that ~e = ~k, then x = c1e

t, y = c2e
t, z = c3, where

c1, c2, c3 are arbitrary constants. 2.30. If we introduce cartesian coordi-
nates so that ~e = ~k, then a~e + ~e× ~r = −y~i + x~j + a~k and the differential
equation is x′ = −y, y′ = x, z′ = a. From the equations x′ = −y, y′ = x
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we obtain that x2 + y2 = c1. Then we find:
dx

dz
= −y

a
,
dy

dz
=

x

a
, hence

dz =
a

1 + y2

x2

d
(y
x

)
and tan(z + c2) = a

y

x
. At last z = at+ c3. Finally it is

easy to express coordinates x, y, z as functions of t from obtained relations.
2.31. The circles that contact at the origin the axis Oz parallel to the vec-
tor ~e. 2.32. The helix whose axis is parallel to the vector ~a. 2.33. a) The
equality is true only if ~r ′ = λ~r, λ > 0; ?satisfies ∀~r. 2.35. ~r ′ = ~̇r l′,
~r ′′ = ~̈r l′2 + ~̇r l′′, ~r ′′′ =

...
~r l′3 +3~̈r l′l′′+ ~̇r l′′′, ~r ′2 = ~̇r 2 l′2, ~r ′×~r ′′ = (~̇r× ~̈r)l′3,

~r ′~r ′′~r ′′′ = (~̇r ~̈r
...
~r )l′ 6. 2.37. The inverse proposition is not always true, for

example for the function ~r(t) =

{
− cos t~i + sin t~j, if t 6 0;

cos t~i + sin t~j, if t > 0.
2.38. True.

2.39. True. 2.40. The necessity is obvious. To prove the sufficiency we
are to represent the function ~r(t) in the form ~r(t) = ϕ(t)~e(t), |~e(t)| = 1
and show that ~e ′(t) = ~0. 2.41. The given condition is not sufficient. For
example, for the function ~r(t) = x(t)~i + y(t)~j + z(t)~k, −∞ < t < +∞,

where x(t) =

{
e1/t, if t < 0,
0, if t > 0;

y(t) = t; z(t) =

{
e−1/t, if t > 0,
0, if t 6 0,

the

condition (~r × ~r ′) · ~r ′′ = 0 is true but for t ∈ (−∞, 0) vectors ~r(t) are
parallel to the plane xOy, and for t ∈ (0,+∞) vectors ~r(t) are parallel
to the plane yOz. If for each t ∈ (a, b) ~r × ~r ′ 6= 0, then the formulated
condition is sufficient. Prove that. 2.42. x = a cos t, y = a sin t, z = bt.
The quantity a is called the radius of a helix and 2πb is called a pitch. Pro-
jections: 1) x2 + y2 = a2; 2) y = a sin(z/b); 3) x = a cos(z/b). 2.43. x =
= a cos t, y = a sin t, z = bekt. 2.44. x = at cos t, y = at sin t, z = bt.
2.45. x = aekt cos t, y = aekt sin t, z = bekt. 2.46. x = at − d sin t, y =

= a−d cos t. 2.47. x = (r+R) cos
rt

R
−r cos

(r + R)t

R
, y = (r+R) sin

rt

R
−

−r sin
(r + R)t

R
. 2.48. x = (R− r) cos

rt

R
+ r cos

(R− r)t

R
, y = (R− r)×

× sin
rt

R
− r sin

(R− r)t

R
. 2.49. x = a cos t, y = ±

√
b2 − a2 sin2 t, z =

= a sin t. If a = b, the curve consists of two separated ellipses. 2.50. x =
= t, y = ±

√
2at− t2, z = ±

√
4a2 − 2at, t ∈ [0, 2a], or x = 2a cosu,

y = 2a cosu sinu, z = ±2a sinu, u ∈ [0, 2π]. 2.51. x = 1 + 3t,
y = −2 − t, t ∈ [0, 1]. 2.52. x = t, y = 2t2, t ∈ [−1, 2]. 2.53. x = t,
y =
√

3− t3 − 2t2, t ∈ (−∞, 1]. 2.54. x = et−sin t, y = t, t ∈ (−∞,+∞).
2.55. x = a cos t, y = b sin t, t ∈ [0, 2π]. 2.56. Right branch: x =
= a cosh t, y = b sinh t, t ∈ (−∞,+∞), left branch x = −a cosh t,
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y = b sinh t, t ∈ (−∞,+∞). 2.57. x = a cos4 t, y = b sin4 t, t ∈ [0,π/2].

2.58. x = a cos3 t, y = a sin3 t, t ∈ [0, 2π]. 2.59. x =
a

2
(cosh3 t +

+ sinh3 t), y =
a

2
(cosh3 t − sinh3 t), t ∈ (−∞,+∞). 2.60. x =

√
t

1 + t
,

y =
−t
√
t

1 + t
, t > 0. 2.61. x = t2 + t, y = t2− t, t ∈ (−∞,+∞). 2.62. x =

= a cos t, y = a(cos t+ sin t), t ∈ [0, 2π]. 2.63. x = a(t2 + t3), y = a(t3 +

+t4), t ∈ (−∞,+∞). 2.64. x = a cos t, y = a cos t sgn(sin t)
√
| sin t|,

t ∈ [0, 2π]. 2.65. x = (a2 cos4/3 t + b2 sin4/3 t)1/2 cos1/3 t, y = (a2 cos4/3 t +
+b2 sin4/3 t)1/2 sin1/3 t, t ∈ [0, 2π]. 2.66. x = a cos 2t cot t, y = a cos 2t,

t ∈ (0,π), or x =
a(t2 − 1)

1 + t2
, y =

at(t2 − 1)

1 + t2
, t ∈ (−∞,+∞). 2.67. x =

= a
√

sin 2t cos t, y = a
√

sin 2t sin t, t ∈
[
0,
π

2

]⋃[
π,

3π

2

]
. 2.68. x =

=

√
t

t4 − 1
, y = t

√
t

t4 − 1
, t ∈ [2,+∞). 2.69. x = 1 + t, y = 3,

z = −1 + t, t ∈ [0, 1]. 2.70. x = R cos t, y = R sin t, z = h, t ∈ [0, 2π].
2.71. x = R cos t, y = R sin t, z = R(cos t + sin t), t ∈ [0, 2π]. 2.72. x =

=
t2

2p
, y = t, z = t +

t2

2p
, t ∈ (−∞,+∞). 2.73. x =

R√
2

cos t, y =

=
R√

2
sin t, z =

R√
2
, t ∈ [0, 2π]. 2.74. x =

a

2
(1 + cos t), y =

a

2
sin t, z =

= ±a
√

1 + cos t

2
, t ∈ [0, 2π]. 2.75. x =

R√
2

(
sin t√

3
+ cos t

)
, y =

R√
2
×

×
(

sin t√
3
− cos t

)
, z = − 2√

6
R sin t, t ∈ [0, 2π]. 2.76. x = t, y = ±t, z =

= ±1, t ∈ (−∞,+∞). 2.77. Two straight lines x = t, y = −t, z =
0, t ∈ (−∞,+∞), and x = t, y = t − 1, z = 2t − 1, t ∈ (−∞,+∞).

2.78. x =
1

4

(
3
√

9at2 +
(3t)4/3

2a1/3

)
, y =

1

4

(
(3t)4/3

2a1/3
− 3
√

9at2
)
, z = t, t ∈

∈ [0, z0]. 2.79. x =
a cos t

cosh t
, y =

a sin t

cosh t
, z = a tanh t, t ∈ [0, t0]. 2.86. C∞.

2.87. Equivalent. 2.90. 2a sinh 1. 2.91. 2π2a. 2.92. 16a. 2.93.
a

2
ln 2.

2.94. 2πa. 2.95. 8a. 2.96.
a

8
(4π − 3

√
3). 2.97.

a

2

(
2π
√

1 + 4π2 +

+ ln(2π+
√

1 + 4π2)
)
. 2.98. a

(
π−tanh(π/2)

)
. 2.99. a

(√
2+ln(1+

√
2)
)
.
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2.100. 2. 2.101.
31

12
. 2.102. x = a cos

l√
a2 + h2

, y = a sin
l√

a2 + h2
,

z = h
l√

a2 + h2
. 2.103. x =

(
1− 2l

5

)3/2

, y =

(
2l

5

)3/2

, z = 1 − 4l

5
.

2.104. x = a

√
1 +

l2

2a2
, y =

l√
2
, z = a ln

(
l

a
√

2
+

√
1 +

l2

2a2

)
.

2.105. x =
l

2
− sin

l

2
, y = 1 − cos

l

2
, z = 4 sin

l

4
. 2.106. x =

l

2
+

+

√
1 +

l2

4
, y =

(
l

2
+

√
1 +

l2

4

)−1

, z =
√

2 ln

(
l

2
+

√
1 +

l2

4

)
. 2.107.Nor-

mal plane: (x−1)+3(y−1)+2(z−5) = 0; osculating plane: −3(x−1)−
−(y−1)+3(z−5) = 0; rectifying plane: 11(x−1)−9(y−1)+8(z−5) = 0;

k =
1

7

√
19

14
, κ = − 3

19
. 2.108. Normal plane: (x − 1) +

(
y − 1

3

)
+

+
1

2

(
z +

1

2

)
= 0; osculating plane: −2(x−1)+

(
y − 1

3

)
+2

(
z +

1

2

)
= 0;

rectifying plane:
1

2
(x − 1) −

(
y − 1

3

)
+

(
z +

1

2

)
= 0; k =

8

9
, κ =

8

9
.

2.109. Normal plane:
√

6

(
x−

√
3

2

)
− (y − 1) + 3(z − 1) = 0; os-

culating plane: −
√

6

(
x−

√
3

2

)
− 3(y − 1) + (z − 1) = 0; rectifying

plane:
√

2

(
x−

√
3

2

)
−
√

3(y − 1) −
√

3(z − 1) = 0; k =

√
6

16
, κ =

√
6

16
.

2.110. Normal plane:
(
x− a

2

)
− 1√

2

(
z − a√

2

)
= 0; osculating plane:

−2
(
x− a

2

)
+
(
y − a

2

)
−2
√

2

(
z − a√

2

)
= 0; rectifying plane:

(
x− a

2

)
+

+6
(
y − a

2

)
+
√

2

(
z − a√

2

)
= 0; k =

2

3a

√
13

3
, κ =

6
√

2

13a
. 2.111. Nor-

mal plane: 3

(
x− 1

2
√

2

)
− 3

(
y − 1

2
√

2

)
+ 4
√

2z = 0; osculating plane:

3√
2

(
x− 1

2
√

2

)
− 3√

2

(
y − 1

2
√

2

)
−9

4
z = 0; rectifying plane:

(
x− 1

2
√

2

)
+
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+

(
y − 1

2
√

2

)
= 0; k =

6

25
, κ =

8

25
. 2.112. Normal plane: ay + hz = 0;

osculating plane: hy − az = 0; rectifying plane: x = a; k =
a

a2 + h2
,

κ =
h

a2 + h2
. 2.113. Normal plane: −

(
x +

ln 2

2

)
+

(
y +

ln 2

2

)
+

+
√

2

(
z − π

2
√

2

)
= 0; osculating plane:

(
x +

ln 2

2

)
−
(
y +

ln 2

2

)
+

+
√

2

(
z − π

2
√

2

)
= 0; rectifying plane:

(
x +

ln 2

2

)
+

(
y +

ln 2

2

)
= 0;

k =
1√
2
, κ = − 1√

2
. 2.114. Normal plane:

(
x + 1− π

2

)
+ (y − 1) +

+
√

2
(
z − 2

√
2
)

= 0; osculating plane:
(
x + 1− π

2

)
− 3 (y − 1) +

+
√

2
(
z − 2

√
2
)

= 0; rectifying plane:
√

2
(
x + 1− π

2

)
−
(
z − 2

√
2
)

= 0;

k =
1

4

√
3

2
, κ = − 5

12
√

2
. 2.115. Normal plane: (x− 1) + y + (z − 1) = 0;

osculating plane: (x−1)+y−2(z−1) = 0; rectifying plane: (x−1)−y = 0;

k =

√
2

3
, κ =

1

3
. 2.116. Normal plane:

(
x− 1√

2

)
−
(
y − 1√

2

)
+

+2
√

2(z − 1) = 0; osculating plane:
√

2

(
x− 1√

2

)
+ 3
√

2

(
y − 1√

2

)
+

+(z−1) = 0; rectifying plane: 13

(
x− 1√

2

)
−3

(
y − 1√

2

)
−4
√

2(z−1) =

= 0, k =
1

5

√
21

5
, κ = −6

7
. 2.117. Normal plane: x + az = 0; os-

culating plane: z − ax = 0; rectifying plane: y = 0; k =
2

a2 + 1
,

κ =
3a

2(a2 + 1)
. 2.118. Normal plane: (x − 1) − (y − 1) = 0; osculat-

ing plane: z = 0; rectifying plane: (x − 1) + (y − 1) = 0; k =
1√
2
,

κ = 0. 2.119. Normal plane: (x − 1) − 1

3
(y − 3) +

1

4
(z − 4) = 0;

osculating plane: 5(x − 1) − 81(y − 3) − 128(z − 4) = 0; rectifying

plane: 755(x − 1) + 1551(y − 3) − 952(z − 4) = 0; k =
5
√

22970

2197
,
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κ =
540

2297
. 2.120. Normal plane:

√
2

(
x− 1

2

)
−
(
z − 1√

2

)
= 0; oscu-

lating plane: 2

(
x− 1

2

)
−
(
y − 1

2

)
+ 2
√

2

(
z − 1√

2

)
= 0; rectifying

plane:
(
x− 1

2

)
+6

(
y − 1

2

)
+
√

2

(
z − 1√

2

)
= 0; k =

2

3

√
13

3
, κ =

6
√

2

13
.

2.121. Normal plane: 5(x− 3) + 5(y− 4) + 7(z− 5) = 0; osculating plane:
(x−3)− (y−4) = 0; rectifying plane: 7(x−3) + 7(y−4)−10(z−5) = 0;

k =
1

297

√
2

11
, κ = 0. 2.122. Normal plane: 2(x−1)+(y−1)+4(z−1) = 0;

osculating plane: 6(x − 1) − 8(y − 1) − (z − 1) = 0; rectifying plane:

31(x−1)+26(y−1)−22(z−1) = 0; k =
2

21

√
101

21
, κ = − 12

101
. 2.123. Nor-

mal plane: (x− 1)− (y − 1) = 0; osculating plane: (x− 1) + (y − 1) = 0;
rectifying plane: z − 1 = 0; k = 1, κ = 0. 2.124. Normal plane:
(x− 1) + (y − 1) = 0; osculating plane: (x− 1) − (y − 1) + (z − 1) = 0;

rectifying plane: (x− 1) − (y − 1) − 2 (z − 1) = 0; k =
1√
6
, κ = 1.

2.125. Normal plane: x + y + z = 0; osculating plane: x− y = 0; rectify-

ing plane: x + y − 2z = 0; k =
1

3

√
2

3
, κ =

1

2
. 2.128.

x + 2

−3
=

y − 12

4
=

=
z − 14

5
and

x + 2

0
=

y − 3

−1
=

z + 4

1
. 2.129.

x− 4

2
=

y − 1

1
=

z − e

e
.

2.130. 3x+ 3y + z + 1 = 0, 3x− 3y + z − 1 = 0, 108x− 18y + z − 216 =
= 0. 2.132. M(1, ln 2,−4). 2.134. Apply Rolle’s theorem to the func-
tion ~a · (~r(t) − ~r(t0)). 2.139. Darboux vector ~ω = κ~τ + k~β is instan-
taneous angular velocity of Frenet trihedron while the point speed along

a curve is unit. 2.143. k =
|f ′′|

(1 + f ′2)3/2
. 2.144. k =

|ρ2 + 2ρ′2 − ρρ′′|
(ρ2 + ρ′2)3/2

.

2.150. (~r−~c )~a~b = 0, where ~a = (a1, a2, a3),~b = (b1, b2, b3), ~c = (c1, c2, c3).
2.151. f(t) = C1 + C2 sin t + C3 cos t. 2.152. Equating to zero the tor-
sion we obtain the differential equation t(f ′′′ − f ′) + 3f ′′ − f = 0, which
can be solved by the substitution f(t) = u(t)/t: f(t) = t−1(C1 + C2e

t +
+C3e

−t). 2.154. x = (a + b cosu) cos v, y = (a + b cosu) sin v, z =
= b sinu. 2.155. x = a cosh(u/a) cos v, y = a cosh(u/a) sin v, z = u.
2.156. x = a cos v sinu, y = a sin v sinu, z = a cosu + a ln tan(u/a).
2.157. x = a(u + v), y = b(u − v), z = 2uv; x = u, y = v, z = puv
2.158. x = ϕ(u), y = ψ(u), z = v. 2.159. ~r = ~ρ(u) + v~e. 2.160. x =
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= u + v, y = u2 + 2v, z = u3 + 3v. 2.162. (2x − z)2 + (2y + 3z)2 = 4.
2.163. (nx− lz)2 +(ny−mz)2 = a(ny−mz). 2.164. x−a = v(ϕ(u)−a),
y− b = v(ψ(u)− b), z− c = v(χ(u)− c). 2.165. (bz− cy)2 = 2p(z− c)×
×(az − cx). 2.166. (x + 1)2 = 2y2 + z2. 2.167. a) x = a cos(u + v), y =
= a sin(u + v), z = bu; b) x = a cosu, y = a sinu, z = bu + v; c) x =
= a cos(u+ v), y = a sin(u+ v), z = b(u− v). 2.168. ~r = ~ρ(u) + v~ρ ′(u).
2.169. x = a(cosu−v sinu), y = a(sinu+v cosu), z = b(u+v). Obtained
figure is not a surface. Excluding points of the original helix we obtain a sur-
face. 2.170. x = u cos v, y = u sin v, z = f(u)+av. 2.171. Right helicoid:
x = u cos v, y = y sin v, z = av; oblique helicoid: x = u cos v, y = y sin v,
z = mu + av. 2.172. x = a(1 − u) cos v, y = a(1 − u) sin v, z = bv.

2.173. x = u cos v, y = u sin v, z = f(v). 2.175. ~n = cos v sinu~i +

+ sin v sinu~j + cosu~k. 2.176. ~n = cosu cos v~i + cosu sin v~j + sinu~k.

2.177. ~n =
a
√
u2 + a2 cos v~i + a

√
u2 + a2 sin v~j − u~k√

a2(u2 + a2) + u2
.

2.178. ~n =
cos v~i + sin v~j − u~k√

u2 + 1
. 2.179. ~n =

cos v~i + sin v~j − sinhu~k

coshu
.

2.180. ~n =
(u2 + v2)~i + (v2 − u2)~j − 4uv ~k√

2
√
u4 + 8u2v2 + v4

.

2.181. ~n =
sin v~i− cos v~j + u~k√

u2 + 1
.

2.182. ~n =
(u cos v − sin v)~i + (cos v + u sin v)~j − u~k√

2u2 + 1
. 2.183. y = z.

2.184. 18x + 3y − 4z − 41 = 0. 2.185. 3x− y − 2z − 4 = 0. 2.186. 6x +
+3y−2z−7 = 0. 2.187. 2x+2y−z−2 = 0. 2.188. 3x+12y−z−18 = 0.

2.189. x+y+z−19 = 0. 2.190.
x0

a2
(x−x0)+

y0

b2
(y−y0)+

z0

c2
(z−z0) = 0.

2.191. x + y + z − 3 = 0. 2.195. tanu = ±C/
√
A2 + B2, tan v = B/A.

2.196. cosu cos(v − π/4) + sinu = 0. 2.197. A torus can be obtained
by rotation of a circle γ that does not cross an axis of rotation axis.
Let P1 and P2 are contact points of the straight line passing through
the center and the circle γ. While rotating γ the points P1 and P2 cir-
cumscribe circles γ1 and γ2. At these circles ~n · ~r = 0, at the “outer”
part of the torus ~n · ~r > 0, at the “inner” part ~n · ~r < 0. 2.208. E =
= c2 sin2 u+cos2 u(a2 cos2 v+b2 sin2 v), F = (b2−a2) cosu sinu cos v sin v,
G = sin2 u(b2 cos2 v + a2 sin2 v). 2.209. E =

(
a4 + (a2 + 1)u2

)
/(a2 + u2),

F = 0, G = a2 + u2. 2.210. E = (u2 + 1)/(a2 + u2), F = 0, G =
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= a2 + u2. 2.211. E = 8u2 + v2, F = uv, G = u2 + 8v2. 2.212. E =
= cosh 2u, F = 0, G = sinh2 u. 2.213. E = 1 + f ′2, F = af ′, G =
= a2 + u2. 2.214. E = 1 + (z′x)2, F = z′xz

′
y, G = 1 + (z′y)

2. 2.215. The
first quadratic form is positive definite, but forms a), b), d) are not.

2.216. E ′ =
1

J2

[
E

(
∂v′

∂v

)2

− 2F
∂v′

∂u

∂v′

∂v
+ G

(
∂v′

∂v

)2
]
∂v′

∂u

∂v′

∂v
,

G′ =
1

J2

[
E

(
∂u′

∂u

)2

− 2F
∂u′

∂u

∂u′

∂v
+ G

(
∂u′

∂u

)2
]
,

F ′ =
1

J2

[
−E∂u′

∂v

∂v′

∂v
+ F

(
∂u′

∂u

∂v′

∂v
+

∂v′

∂u

∂u′

∂v

)
+ G

∂u′

∂u

∂v′

∂u

]
, H ′ =

H

|J |
,

J =
D(u′, v′)

D(u, v)
6= 0. 2.218. ũ is the natural parameter of the merid-

ian; sphere: dl2 = dũ2 + R2 cos2(ũ/R)dṽ2; torus: dl2 = dũ2 +
(
a +

+ b cos(ũ/b)
)2

dṽ2; catenoid: dl2 = dũ2 + (a2 + ũ2)dṽ2; pseudosphere:
dl2 = dũ2 + e−2ũ/adṽ2. 2.219. dl2 = dũ2 + e−2ũ/adṽ2. Assuming u∗ =

= ṽ, v∗ = eũ/a, we obtain dl2 =
a2

ṽ2
(dũ2 + dṽ2). 2.220.

√
2a |v2 − v1|.

2.221.
√

2|u2 − u1|. 2.222.
1

2

(√
5 + 4 arcsh

1

2

)
. 2.223.

√
2 | sinhu2 −

− sinhu1|. 2.224.
1

3
(5
√

5 − 8). 2.225. | sinhu2 − sinhu1|. 2.228. π −

− arccos
1

2
√

2
. 2.229.

π

2
. 2.230. arccos

2

3
. 2.231. π − arccos

3

5
.

2.232. cosϕ =
a2xy

√
1 + a2x2

√
1 + a2y2

. 2.233. Let A(0, 0), B(4, 2) and

C(−4, 2) be vertexes of the triangle. Then p =
64

3
, cos∠A = 1, cos∠B =

= cos∠C =
2

3
. 2.234. p = 2 +

√
3 + 2 ln

1 +
√

3√
2

; if A(0, 0), B(1, 1),

C(−1, 1), then cos∠A = 0, cos∠B = cos∠C =
1√
3
. 2.235. 4π2ab.

2.236. 2a2(π− 2), a is the sphere radius. 2.239. ln(u +
√
u2 + a2)± v =

= const. 2.240. The first quadratic form of a surface of revolution
d~r 2 = (ϕ′(u)2 +ψ′(u)2)du2 +ϕ(u)2dv2 can be rewritten as d~r 2 = dU 2 +

+G(U)dv2, where U =
w √

ϕ′(u)2 +ψ′(u)2du. Then the equation of a
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loxodrome is v cotα = ±
u2w

u1

dU√
G(U)

. 2.241. v cotα = ±R ln tan
(π

4
+

u

2

)
.

2.242.
(
E
∂ϕ

∂v
− F

∂ϕ

∂u

)
du+

(
F
∂ϕ

∂v
−G

∂ϕ

∂u

)
dv = 0. 2.243. v−tanu = C.

2.244. u2 + u + 1 = Ce−v. 2.245. X =
U − V

2
cosV, Y =

U − V

2
sinV ,

Z =
U + V

2
, U = 2u+v, V = v. 2.246. (1+a2x2)y2 = C1, (1+a2y2)x2 =

= C2. 2.248. L/E and N/G. 2.249. kn|u=const =
1√

(u2 + a2)(u2 + 1)
,

kn|v=const = −
√
u2 + a2

(u2 + 1)3/2
. 2.250.

2

49
√

5
. 2.251. k1 =

a

b2
, k2 =

a

c2
.

2.252. k1 =

√
3

9
, k2 = −

√
3

3
. 2.253. k1 =

1

p
, k2 = −1

q
. 2.254. k1 =

1

2
√

5
,

k2 = 0. 2.255. k1 =
1

u
√

2
, k2 = 0. 2.257. K =

c2

(a2 cos2 u + c2 sin2 u)2
,

H = − c

2a

a2(cos2 u + 1) + c2 sin2 u

a2 cos2 u + c2 sin2 u2
. 2.258. K =

cosu

b(a + b cosu)
, H =

=
a + 2b cosu

2b(a + b cosu)
. 2.259. K = − 1

cosh2 2u
, H =

sinh2 u

(cosh 2u)3/2
. 2.260. K =

=
1

cosh2 2u
, H =

cosh2 u

(cosh 2u)3/2
. 2.261.K =

4

(1 + 4u2)2
, H =

2 + 4u2

(1 + 4u2)3/2
.

2.262. K = − 1

cosh4 u
, H = 0. 2.263. K = − 1

(u2 + 1)2
, H = 0.

2.264. K =
f ′f ′′

ρ(1 + f ′2)2
, H =

f ′

2ρ
√

1 + f ′2
+

f ′′

2(1 + f ′2)3/2
, where ρ =

=
√

x2 + y2 and f ′ and f ′′ are derivatives with respect to ρ.

2.265. a) K =
−1

(∂xF )2 + (∂yF )2 + (∂zF )2

∣∣∣∣∣∣∣∣
∂xxF ∂xyF ∂xzF ∂xF
∂yxF ∂yyF ∂yzF ∂yF
∂zxF ∂zyF ∂zzF ∂zF
∂xF ∂yF ∂zF 0

∣∣∣∣∣∣∣∣;
b) K =

z′′xxz
′′
yy − z′′xyz

′′
yx

1 + (z′x)2 + (z′y)
2
. 2.266. 1 − f ′2 − ff ′′ = 0, hence f(u) =

= a cosh(u/a), a = const. 2.267. K = −1. 2.269. K = − 1

A2
(∂uu lnA +

+∂vv lnA), see exercise 2.219.
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Chapter 3

3.1. 2x − y = C — the family of parallel straight lines. 3.2. x2 − y2 =
= C — the family of hyperbols. 3.3. y = Cx — the pencil of straight
lines. 3.4. (x−C)2 + y2 = C2 — the family of circles, passing through the
origin of coordinates. 3.5. y2 = Cx — the family of parabolas. 3.6. y =
= Cx2 + 2x + 1 — the family of parabolas. 3.7. x2 = Cy — the family of
parabolas. 3.8. x2 + y2 = C — the family of concentric circles. 3.9. x2 +
+y2 − z = C — the family of of paraboloids. 3.10. x2 + y2 + z2 = C —
the family of concentric spheres. 3.11. x − y2 + z2 = C — the family of
hyperbolic paraboloids. 3.12. x2 + y2 = Cz — the family of paraboloids.
3.13. x + 2y − z = C — the family of parallel planes. 3.14. ~a · ~r = C —
the family of parallel planes with the normal vector ~a. 3.15. (~a−C~b) ·~r =
= 0 — the sheaf of planes. 3.16. For C > 16 the level surfaces are the
ellipsoids of revolution around Oz axis with foci at the point (0, 0, 8) and
(0, 0,−8). 3.17. y = −x lnC − C, (C > 0) — the family of straight lines.

3.25.
2x

x2 + y2 + z2
~i+

2y

x2 + y2 + z2
~j +

2z

x2 + y2 + z2
~k. 3.26. 3(x2− yz)~i+

+3(y2 − xz)~j + 3(z2 − xy)~k. 3.27. ex2+y2+z2(2xz~i + 2yz~j + (1 + 2z2)~k).
3.28. (y− z)(z − 2x + y)~i + (z − x)(x− 2y + z)~j + (x− y)(y− 2z + x)~k.
3.29. ex+y+z(yz(x+1)~i+xz(y+1)~j+xy(z+1)~k). 3.30. (y−2)(z−3)~i+

+(x−1)(z−3)~j+(x−1)(y−2)~k. 3.31. (1+x2)−1~i+(1+y2)−1~j+(1+z2)−1~k.

3.32.
u

u2 − xy
(y~i+x~j). 3.33.

~i +~j

eu − 1
. 3.34. −~i−~j. 3.35. 3√

17
. 3.36. −7

3
.

3.37.
√

15

5
. 3.38. −2

5
. 3.39. 0. 3.40.

2√
3
. 3.41. 0. 3.42.

3

5

√
2. 3.43.

1

4
.

3.44. −2. 3.45. M1(0, 0), M2(1, 1). 3.46. M(−2, 1, 1). 3.47. M(7, 2, 1).

3.48. M(0, 0, 0). 3.49. 0. 3.50. π−arccos
8

9
. 3.51. 0. 3.52.

2u

|~r|
; if a = b =

= c. 3.53. ex
√
y2 + z2 + y2z2. 3.54.

(gradu) · (grad v)

|(grad v)|
. 3.55. x2 = C1y,

z = C2. 3.56.
1

x
− 1

y
= C1, z = C2. 3.57. y2 +z2 = C1, x = C2. 3.58. z =

= C1x, y = C2. 3.59. x = C1y, x
2 = C2z. 3.60.

1

x
− 1

y
= C1,

1

x
− 1

z
= C2.

3.61. x2 +y2 +z2 = C1, x+y+z = C2. 3.62.
1

x
− 1

z
= C1,

1

x
+

1

2y2
= C2.

3.69. 0. 3.70. 2(x2 + y2 + z2). 3.71. 0. 3.72. 0. 3.73. 3. 3.74. f1(y, z) +
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+f2(x, z) + f3(x, y). 3.75. ~0. 3.76. ~0. 3.77. − 1

x2
~j− 2y

x3
~k. 3.78. 2xy(3z2−

−y)~i+2yz(y−z2)~k. 3.79. (1+2yz)~j−z2~k. 3.80.−1

y
~i−1

z
~j−1

x
~k. 3.81. x(x−

−2z)~i+y(y−2x)~j+z(z−2y)~k. 3.82.~i+x(y−2)~j+(2−xz)~k. 3.83.
∂~a

∂l1
=

= y~i + z~k,
∂~a

∂l2
=

(x + y)~i + z~j + z~k√
2

,
∂~a

∂l3
=

x~i + (y + z)~j + x~k√
2

,
∂~a

∂l4
=

=
(x + y)~i + (y + z)~j + (x + z)~k√

3
. 3.92. (~b·~∇)~a = yz(x+y)~i+xz(y+z)~k+

+xy(z + x)~k, (~a · ~∇)~b = y(z2 + x2)~i+ z(x2 + y2)~j + x(y2 + z2)~k. 3.94.
~r

r
.

3.95. − ~r

r3
. 3.96. nrn. 3.97. ~a. 3.98. f(r)~a + f ′(r)

(~a · ~r)~r

r
. 3.99.

~a

r3
−

−3
(~a · ~r)~r

r3
. 3.100. 2(~a2~r−(~a·~r)~a). 3.101.

~r × (~a×~b)

(~b · ~r)2
. 3.102. 3. 3.103.

2

r
.

3.104. ~a · ~b. 3.105. 4~a · ~r. 3.106. f ′(r)
~a · ~r
r

. 3.107.
~a · ~r
r

. 3.108. 2~a · ~r.

3.109. 0. 3.110. 2~a ·~b. 3.111. 2~a ·~r. 3.112. ~0. 3.113. ~a×~b. 3.114. ~a×~r.

3.115.
~r × ~a

r
. 3.116. f ′(r)

~r × ~a

r
. 3.117. − ~a

r3
+

3~r(~a · ~r)

r5
. 3.118. 2f(r)~a+

+f ′(r)
~r × (~a× ~r)

r
. 3.119. 2~a. 3.120. ~a×~b. 3.121. 3~a×~r. 3.122.

(
~a′(r) ·

·~b(r) + ~a(r) ·~b′(r)
)~r
r
. 3.123. ~a(r) +

(~a′(r) · ~r)~r

r
. 3.124.

~b · ~r
r

(
f ′(r)~a(r) +

+f(r)~a′(r)
)
. 3.125.

~r

r
·
(
f ′(r)~a(r) + f(r)~a′(r)

)
. 3.126.

~r

r
×
(
f ′(r)~a(r) +

+f(r)~a′(r)
)
. 3.127. div ~p = nrn−2(~a ·~r), curl ~p = nrn−2(~r×~a), (~c · ~∇)~p =

= ~a(~r · ~c)nrn−2. 3.128. div ~p = (n + 3)rn, curl ~p = ~0, (~c · ~∇)~p = ~crn +

+~r(~c · ~r)nrn−2. 3.129. div ~p = (~a · ~b)rn + (~a · ~r)(b · ~r)nrn−2, curl ~p =

= (~b×~a)rn + (~r×~a)(~b ·~r)nrn−2, (~c · ~∇)~p = ~a(~c ·~b)rn +~a(~c ·~r)(~b ·~r)nrn−2.

3.130. div ~p = (n+ 4)(~a · ~r)rn, curl ~p = (~a× ~r)rn, (~c · ~∇)~p = ~c(~a · ~r)rn +

+~r(~a·~c)rn+~r(~a·~r)(~c·~r)nrn−2. 3.131. div ~p = (n+5)(~a·~r)(~b·~r)rn, curl ~p =

= (~a×~r)(~b·~r)rn+(~b×~r)(~a·~r)rn, (~c· ~∇)~p = ~c(~a·~r)(~b·~r)rn+~r
(
(~a·~c)(~b·~r)+

+(~b ·~c)(~a ·~r)
)
rn+~r(~a ·~r)(~b ·~r)(~c ·~r)nrn−2. 3.132. div ~p = 0, curl ~p = ~a(n+

+2)rn−~r(~a·~r)nrn−2, (~c·~∇)~p = (~a×~c)rn+(~a×~r)(~c·~r)nrn−2. 3.133. div ~p =

= (~r~b~a)rn, curl ~p = (n+2)rn(~b·~r)~a−rn(~a·~b)~r−nrn−2(~b·~r)(~a·~r)~r, (~c·~∇)~p =
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= (~a×~c)(~b·~r)rn+(~a×~r)(~b·~r)(~c·~r)nrn−2+(~a×~r)(~b·~c)rn. 3.134. ~∇u× ~∇v.
3.135. f ′′(r) +

2

r
f ′(r). 3.136. (curl~b · ~∇)~a − div~a curl~b − (~a · ~∇) curl~b.

3.137. 0. 3.138. grad div ~p = n(n− 2)rn−4(~a · ~r)~r + nrn−2~a, curl curl ~p =
= n(n−2)rn−4(~a ·~r)~r−n2rn−2~a, ∆~p = n(n+1)rn−2~a. 3.139. grad div ~p =
= n(n+3)rn−2~r, curl curl ~p = ~0, ∆~p = n(n+3)rn−2~r. 3.140. grad div ~p =
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= z sin(xy)+C. 5.40. a) u = r+C; b) u = ln r+C, c) u =
1

3
r3+C. 5.41. 4.

5.42. 1. 5.43. 37. 5.44. 4. 5.45. 4. 5.46. −2. 5.47.
a+bw

0

f(u)du. 5.48. π+1.

5.49. arctan 3− arctan 5. 5.50. − arctan
3

2
. 5.51. 9. 5.52. 1. 5.53. 123.

5.54. 4095. 5.55. −1

3
. 5.56. −9

2
. 5.57. b − a. 5.58.

√
a2+b2+c2w

0

uf(u)du.

5.59. u = x2 cos y + y2 cosx + C. 5.60. u = x + yex/y + C. 5.61. u =

=
√

x2 + y2 +
y

x
. 5.62. u = x

√
1− y2 + y

√
1− x2 + arctan

y

x
+ ln y + C.

5.63. u = x2y + y2z + z2x + xyz + C. 5.64. u = x2yz +
x

z
− y

z2
+ C.

5.65. ~A = x~j + (y − x)~k. 5.66. ~A = (y2 − 2xz)~k. 5.67. ~A = (ex − xey)~j.

5.68. ~A = −2

z
sin(zx)~k. 5.69. ~A = −5x2yz~j. 5.70. ~A = 9zx~j + 15yx~k.

5.71. ~A = − ln
√

x2 + y2 ~k. 5.72. ~A =

(
x2

2
+ xy

)
~j+

(
− x2

2
−zx+yz+

+
y2

2

)
~k. 5.73. ~A = x2~j + (xz + y2)~k. 5.74. ~A =

(
zy2x− zx3

3

)
~j +

+

(
z2yx− yx3

3

)
~k. 5.75. ~A = 3xy2z~j +

(
x3 + y3

3
+ y3x

)
~k. 5.76. ~A =

= (z2xy − 2zxy + x)~j + (y2zx + y)~k. 5.77. ~A = 3x2~j + (2y3 − 6xz)~k.

5.78. ~A = −(xz2 + yzex
2

)~j − 2xyz~k. 5.79. b) 1)
π

2
, 2) 0, 3) π, 4) 0;

c) 1) at the point A: ~i = ~eρ, ~j = ~eϕ, ~k = ~ez; at the point B: ~i =

−~eϕ, ~j = ~eρ, ~k = ~ez; 2) at the point A: ~eρ = ~i, ~eϕ = ~j, ~ez = ~k;
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at the point B: ~eρ = ~j, ~eϕ = −~i, ~ez = ~k. 5.80. b) 1)
π

2
, 2) 0, 3) π,

4) 0; c) 1) at the point A: ~i = ~er,~j = ~eϕ, ~k = −~eθ; at the point B:
~i = −~eϕ, ~j = ~er, ~k = −~eθ; 2) at the point A: ~er = ~i, ~eθ = −~k, ~eϕ = ~j;
at the point B: ~er = ~j, ~eθ = −~k, ~eϕ = −~i.
5.81. Elliptic cylindrical coordinates. Coordinate surfaces:
a) elliptic cylinders:

x2

a2 cosh2 u
+

y2

a2 sinh2 u
= 1, u = const;

b) hyperbolic cylinders:

x2

a2 cos2 v
− y2

a2 sin2 v
= 1, v = const;

c) planes parallel to the plane xOy: z = const.
Lamé coefficients:

Hu = a
√

sinh2 u + sin2 v, Hv = a
√

sinh2 u + sin2 v, Hz = 1.

5.82. Parabolic cylindrical coordinates. Coordinate surfaces:
a) confocal straight parabolic cylinders:

x2

ξ2
= 2y + ξ2, ξ = const;

b) confocal straight parabolic cylinders:

x2

η2
= −2y + η2, η = const;

c) planes parallel to the plane xOy: z = const.
Lamé coefficients:

Hξ =
√
ξ2 + η2, Hη =

√
ξ2 + η2, Hz = 1.

5.83. Bipolar coordinates. Coordinate surfaces:
a) circular cylinders:

x2 + (y − a cot ξ)2 =
a2

sin2 ξ
, ξ = const;
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b) circular cylinders:

(x− a cotη)2 + y2 =
a2

sinh2 η
, µ = const;

c) planes parallel to the plane xOy: z = const.
Lamé coefficients:

Hξ =
a

coshη− cos ξ
, Hη =

a

coshη− cos ξ
, Hz = 1.

5.84. Ellipsoidal coordinates. Relation to cartesian coordinates:

x2 =
(a2 + ξ)(a2 + η)(a2 + ζ)

(a2 − b2)(a2 − c2)
,

y2 =
(b2 + ξ)(b2 + η)(b2 + ζ)

(b2 − c2)(b2 − a2)
,

z2 =
(c2 + ξ)(c2 + η)(c2 + ζ)

(c2 − a2)(c2 − b2)
.

Lamé coefficients:

Hξ =
1

2

√
(ξ− η)(ξ− ζ)

(a2 + ξ)(b2 + ξ)(c2 + ξ)
,

Hη =
1

2

√
(η− ζ)(ξ− η)

(a2 + η)(b2 + η)(c2 + η)
,

Hζ =
1

2

√
(ξ− ζ)(η− ζ)

(a2 + ζ)(b2 + ζ)(c2 + ζ)
.

5.85. Prolate ellipsoidal system. Coordinate surfaces:
a) prolate ellipsoids of revolution:

x2 + y2

a2 sinh2 u
+

z2

a2 cosh2 u
= 1, u = const;

b) two-sheeted hyperboloids of revolution:

− x2 + y2

a2 sin2 v
+

z2

a2 cos2 v
= 1, v = const;
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c) half-planes adjoining the axis Oz: ϕ = const.
Lamé coefficients:

Hu = a
√

sinh2 u + sin2 v, Hv = a
√

sinh2 u + sin2 v,

Hϕ = a sinhu sin v.

5.86. Oblate ellipsoidal system. Coordinate surfaces:
a) oblate ellipsoids of revolution:

x2 + y2

a2 cosh2 u
+

z2

a2 sinh2 u
= 1, u = const;

b) one-sheeted hyperboloids of revolution:

x2 + y2

a2 sin2 v
− z2

a2 cos2 v
= 1, v = const;

c) half-planes adjoining the axis Oz: ϕ = const.
Lamé coefficients:

Hu = a
√

sinh2 u + cos2 v, Hv = a
√

sinh2 u + cos2 v,

Hϕ = a coshu sin v.

5.87. Parabolic coordinates. Coordinate surfaces:
a) confocal paraboloids:

x2 + y2

ξ2
= 2z + ξ2, ξ = const;

b) confocal paraboloids:

x2 + y2

η2
= −2z + η2, η = const;

c) half-planes adjoining the axis Oz: ϕ = const.
Lamé coefficients:

Hξ =
√
ξ2 + η2, Hη =

√
ξ2 + η2, Hz = ξη.

5.88. Toroidal coordinates. Coordinate surfaces:
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a) spheres:

x2 + y2 + (z − a cot ξ)2 =
a2

sin2 ξ
, ξ = const;

b) tori:

(
√
x2 + y2 − a cothη)2 + z2 =

a2

sinh2 η
, η = const;

c) half-planes adjoining the axis Oz: ϕ = const.
Lamé coefficients:

Hξ =
a

coshη− cos ξ
, Hη =

a

coshη− cos ξ
, Hϕ =

a sinhη

coshη− cos ξ
.

5.89. ρ = C1ϕ, z = C2. 5.90. r = C1 sin2 θ, ϕ = C2. 5.91. cosϕ~ez +

+~eρ−
z

ρ
sinϕ~eϕ. 5.92. 2(ρ+cosϕ)~eρ−

(
ez

ρ
cosϕ+ 2 sinϕ

)
~eϕ−ez sinϕ~ez.

5.93. cosϕ~eρ+

(
z

ρ
sin 2ϕ− sinϕ

)
~eϕ+sin2ϕ~ez.5.94. (2ρ sinϕ−3z)~eρ+

+

(
ρ cosϕ− z

ρ
sin 2ϕ

)
~eϕ + (cos2ϕ− 3ρ)~ez. 5.95. 2r cos θ~er − r sin θ~eθ.

5.96. (−2+3 cos θ+er sinϕ)~er−3 sin θ~eθ+
er cosϕ

r sin θ
~eϕ. 5.97.

(
2r sin θ−

− 1

r2
cos θ

)
~er +

(
r cos θ− 1

r2
sin θ

)
~eθ. 5.98. −2 cos θ

r3
~er −

sin θ

r3
~eθ.

5.99. div~a = 3ρ+ eϕ cos z − z

ρ
sinϕ, curl~a =

(
− cosϕ+

eϕ

ρ
sin z

)
~eρ +

+
z

ρ
cosϕ~ez. 5.100. div~a = −2zez − ezz2 +

ϕ

1 + ρ2
+
ϕ

ρ
arctan ρ, curl~a =

=
2− arctan ρ

ρ
~ez. 5.101. div~a = −ρ+

1

ρ
sinϕ− 1

ρ2
sinϕ, curl~a = z~eϕ−

−1

ρ
cosϕ~ez. 5.102. div~a = 1, curl~a = 2ϕ~ez. 5.103. div~a = 4r +

+
1

r(r2 + 1) sin θ
− 2 cos θ

r sin θ
cos2ϕ, curl~a =

1

r sin θ

(
ϕ cos θ

1 + r2
−2 sin 2ϕ

)
~er+

+
ϕ

r

r2 − 1

(1 + r2)2
~eθ −

2 cos2ϕ

r
~eϕ. 5.104. div~a =

2

r
(3r − cos θ + cosϕ),

curl~a =
cos 2θ

sin θ
~er −

(
2 cos θ+

sinϕ

r sin θ

)
~eθ −

sin θ

r
~eϕ. 5.105. div~a = 4r +
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+
cos2 θ

r sin θ
−3

r
sin θ, curl~a = −ϕ

r
cot θ~er+

ϕ

r
~eθ+

2 cos θ

r
~eϕ. 5.106. div~a = 0,

curl~a = ~0. 5.108. 0. 5.109. −zϕ
ρ

+
6z2ϕ

ρ2
+ 4ϕ + 2ϕ3. 5.110. −2

r
(1 +

+2 cos 2θ). 5.111.
(

2θ

r2
+ϕ

)
cot θ + 2

(
1

r2
+ 3θϕ+ 6rϕ2 +

r

sin2 θ

)
.

5.112. 16π. 5.113.
3π

2
. 5.114. 2πR4. 5.115. 0. 5.116.

2

3
πR3.

5.117.
πR2

2

(
R2 − π

4

)
. 5.118. 2πR4. 5.119. 2

√
2. 5.120. −2πa2.

5.121. 2πR2. 5.122. π3. 5.123. 1. 5.124.
π

4
+

1√
2
− 1. 5.125.

π2

4
− 1

2
.

5.126. −πR2. 5.127.
π

2
. 5.128. π. 5.129. 4πR2. 5.130. 2. 5.131. u =

= ρ+ϕ+z+C. 5.132. u =
ρ2

2
+zϕ+C. 5.133. u = ρϕz+C. 5.134. u =

= eρ sinϕ+ z2 +C. 5.135. u = ρϕ sin z +C. 5.136. u = ln ρ · arctan z−
−ρ sinϕ + C. 5.137. u = ln ρ · sinϕ + z2 + C. 5.138. u = rθ + C.
5.139. u = erθ+C. 5.140. u = rϕ cos θ+C. 5.141. u = r2 +θ+ϕ+C.

5.142. u =
r

2
ϕ2 +

θ2

2
+ C. 5.143. u = r sin θ cosϕ + C. 5.144. u =

= er sin θ + ln(1 + ϕ2) + C. 5.145. u = eθϕ ln r + C. 5.146. div~eq1 =

=
1

H1H2H3

∂(H2H3)

∂q1
, div~eq2 =

1

H1H2H3

∂(H1H3)

∂q2
, div~eq3 =

1

H1H2H3
×

×∂(H1H2)

∂q3
; div~eρ =

1

ρ
, div~eϕ = 0, div~ez = 0; div~er =

2

r
, div~eθ =

=
1

r
cot θ, div~eϕ = 0. 5.147. curl~eρ = ~0, curl~eϕ =

1

ρ
~ez, curl~ez = ~0;

curl~er = ~0, curl~eθ =
1

r
~eϕ, curl~eϕ =

1

r
cot θ~er −

1

r
~eθ. 5.148. a) u =

= C1 ln ρ+C2, b) u = C1ϕ+C2, c) u = C1z+C2. 5.149. a) u =
C1

r
+C2,

b) u = C1 ln tan
θ

2
+ C2, c) u = C1ϕ + C2. 5.150. u =

rn+1

(n + 1)(n + 2)
+

+
C1

r
+ C2.

5.151. Elliptic cylindric coordinates:

∆Φ =
1

a2(sinh2 u + sin2 v)

(
∂2Φ

∂u2
+

∂2Φ

∂v2

)
+

∂2Φ

∂z2
.
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Parabolic cylindrical coordinates:

∆Φ =
1

ξ2 + η2

(
∂2Φ

∂ξ2
+

∂2Φ

∂η2

)
+

∂2Φ

∂z2
.

Bipolar coordinates:

∆Φ =
1

a2
(cosh2 η− cos ξ)

(
∂2Φ

∂ξ2
+

∂2Φ

∂η2

)
+

∂2Φ

∂z2
.

Ellipsoidal coordinates:

∆Φ =
4f(ξ)

(ξ− η)(ξ− ζ)
∂

∂ξ

(√
f(ξ)

∂Φ

∂ξ

)
+

+
4f(η)

(η− ξ)(η− ζ)
∂

∂η

(√
f(η)

∂Φ

∂η

)
+

+
4f(ζ)

(ζ− η)(ζ− ξ)

∂

∂ζ

(√
f(ζ)

∂Φ

∂ζ

)
,

f(t) = (a2 + t)(b2 + t)(c2 + t).

Prolate ellipsoidal coordinates:

∆Φ =
1

a2(sinh2 u + sin2 v)

[
1

sinhu

∂

∂u

(
sinhu

∂Φ

∂u

)
+

+
1

sin v

∂

∂v

(
sin v

∂Φ

∂v

)]
+

1

a2 sinh2 u sin2 v

∂2Φ

∂ϕ2
.

Oblate ellipsoidal coordinates:

∆Φ =
1

a2(sinh2 u + cos2 v)

[
1

coshu

∂

∂u

(
coshu

∂Φ

∂u

)
+

+
1

cos v

∂

∂v

(
cos v

∂Φ

∂v

)]
+

1

a2 cosh2 u sin2 v

∂2Φ

∂ϕ2
.

Parabolic coordinates:

∆Φ =
1

ξ2 + η2

[
1

ξ

∂

∂ξ

(
ξ
∂Φ

∂ξ

)
+

1

η

∂

∂η

(
η
∂Φ

∂η

)]
+

1

ξ2η2

∂2Φ

∂z2
.
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Toroidal coordinates:

∆Φ =
(coshη− cos ξ)3

a2 sinhη

[
∂

∂ξ

(
sinη

coshη− cos ξ

∂Φ

∂ξ

)
+

+
∂

∂η

(
sinhη

coshη− cos ξ

∂Φ

∂η

)
+

1

sinhη(coshη− cos ξ)

∂2Φ

∂ϕ2

]
.
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