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Abstract

Let Q ∈ R be a sufficiently large number, P (x) ∈ Z[x] denotes
a polynomial with degree deg P 6 n and height H(P ) 6 Q. The
discriminant of the polynomial P (x) we denote as D(P ). In the paper
we obtain the lower bound for the number of the polynomials with
the absolute value of their discriminants less than arbitrarily chosen
value in assumption that n > 3.

1 Introduction

The discriminant of a polynomial is one of its main characteristics both in
algebra and in number theory. For example, if one consider the polynomial of
second degree P (x) = ax2+bx+c, the value of the discriminant D = b2−4ac
is necessary for calculating roots, determining whether they are real or not.

There are two ways to define the discriminant D(P ) of the polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

with height H = H(P ) = max06j6n |aj| and roots α1, α2, . . . ,αn.
D(P ) can be defined as a determinant

D(P ) = (−1)C2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 an−1 an−2 . . . a0 0 . . .
0 an an−1 . . . a1 a0 . . .

. . .
0 . . . 0 an . . . a1 a0

n (n− 1)an−1 (n− 2)an−2 . . . a1 0 . . .
0 nan (n− 1)an−1 . . . 2a2 a1 . . .

. . .
0 . . . . . . 0 nan . . . a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1)

or as the transformed product of roots differences

D(P ) = a2n−2
n

∏
16i<j6n

(αi − αj)
2. (2)
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In the following we consider polynomials with integer rational coefficients
only. Hence from (1) we obtain, that if D(P ) 6= 0 then

|D(P )| > 1. (3)

From (2) it obviously follows that D(P ) 6= 0 if and only if P (x) has no
multiple roots.

Now fix n ∈ N. Let Q be a sufficiently large number, Q > Q0(n). By
Pn(Q) we denote the class of polynomials P (x) with deg P 6 n and H(P ) 6
Q. By c(n), cj, j = 0, 1, . . . , we denote constants depending on n only. We
shall use Vinogradov’s symbols: A � B denotes that A 6 c0B, and A � B
denotes B � A � B. From (1) we obtain that |D(P )| < c(n)Q2n−2 and if
D(P ) 6= 0, by (3) we have

1 6 |D(P )| < c(n)Q2n−2. (4)

From the restrictions on degree and height of polynomials we obtain that

#Pn(Q) < 22n+2Qn+1.

The last estimate and (4) ensure the existence of intervals in [1, c(n)Q2n−2]
of length c(n)Qn−3, such that we can’t find a polynomial from the class
Pn(Q) with discriminant from these intervals. For n > 4 these intervals
can be arbitrary large. In the paper we show how methods of Diophantine
approximation theory allow to obtain lower boundary for the number of
polynomials P (x) ∈ Pn(Q), whose values of discriminants are close to the
maximum possible.

Note that the distribution of discriminants of integer polynomials is im-
portant for Diophantine equations [1, 2, 3] and Diophantine approximations
[4, 5]. .

2 Main theorems

In the paper we prove two theorems.

Theorem 1 There are at least c(n)Qn+1−2v polynomials P (x) in Pn(Q) with
discriminants

|D(P )| < Q2n−2−2v, (5)

where v ∈ [0, 1
2
].
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Theorem 2 Let Q denote a sufficiently large number, and let c1 and c2

denote constants depending on n only such that c1c2 < n−12−n−11, v ∈ [0, 1
2
].

Define Ln,Q(c1, c2) as the set of x ∈ I ⊂ [−1
2
, 1

2
] such that the system of

inequalities {
|P (x)| < c1Q

−n+v,

|P ′(x)| < c2Q
1−v

has solutions in polynomials P (x) ∈ Pn(Q). Then

µLn,Q(c1, c2) <
|I|
2

.

The first theorem deals with the topic described in the title. The second
theorem shows that Minkowski’s theorem about linear forms can’t be consid-
erably improved for most points of any interval I ⊂ R. We shall show how
Theorem 1 follows from Theorem 2. Let P (x) ∈ Z[x], deg P 6 n, |an| > cH.

In Lemma 6 below we show that the last inequality does not impose a
restriction and that polynomials with |an| 6 cH can be transformed into
polynomials with a large highest coefficient without changing the value of
the discriminant.

For any point x ∈ I ⊂ R and Q > 1 we shall prove using Dirichlet’s
principle that there are two real positive numbers c3 and c4 wth max(c3, c4) 6
1 and c3c4 > 8n such that the following system of inequalities holds{

|P (x)| < c3Q
−n+v,

|P ′(x)| < c4Q
1−v, H(P ) 6 Q,

(6)

for some polynomials P ∈ Pn(Q).
Let c3 = 1, c4 = 8n. Then the system (6) may be rewritten as{

|P (x)| < Q−n+v,

|P ′(x)| < 8nQ1−v.
(7)

The existence of solutions to (7) and Theorem 2 imply that for γ =
n−12−n−12 the system of inequalities{

γQ−n+v < |P (x)| < Q−n+v,

γQ1−v < |P ′(x)| < 8nQ1−v
(8)

has solutions in P ∈ Pn(Q) for all x ∈ B1, µB1 > |I|
2

. Indeed if one of the
inequalities in (8) doesn’t hold then |P (x)| 6 γQ−n+v, |P ′(x)| < 8nQ−1−v and
8nγ < 2−n−9. If |P ′(x)| < γQ1−v, |P (x)| 6 Q−n+v then c1c2 < n−12−n−12.
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The claim reduces to the fact that the system of inequalities doesn’t hold on
the set B with measure µB < |I|

2
and holds for all x ∈ B1 = I \B, µB1 > |I|

2
.

Let us choose x1 ∈ B1. Then we can find a polynomial P1(x), for which

the system (8) holds for x = x1. For all x in the interval |x− x1| < Q− 2
3 , we

obtain by Lagrange’s theorem about finite increments gives

P ′
1(x) = P ′

1(x1) + P ′′
1 (ξ1)(x− x1), for some ξ1 ∈ [x, x1]. (9)

The evident estimate |P ′′(ξ2)| < n3Q implies |P ′′(ξ1)(x − x1)| < n3Q
1
3 .

But |P ′
1(x1)| � Q

1
2 for v 6 1

2
and therefore for sufficiently large Q from (9)

and the second inequality in (8) we obtain

γ

2
Q1−v <

1

2
|P ′

1(x1)| < |P ′
1(x)| < 2|P ′

1(x1)| < 16nQ1−v.

In view of the values of P (x1) and P ′(x1) in (8) we can distinguish four
possible combinations of signs. We will consider one of them: P1(x1) < 0,
P ′

1(x1) > 0. The remains ones can be dealt with in a similar manner. Again
we use Lagrange’s theorem.

P1(x) = P1(x1) + P ′
1(ξ2)(x− x1), for some ξ2 ∈ [x1, x]. (10)

Let x = x1 + ∆, ∆ > 2γ−1Q−n−1+2v. On the one hand side if P1(x1) <
P1(x1 + ∆) < 0, then the first inequality of (8) implies

0 < P1(x1 + ∆)− P1(x1) < Q−n+v.

On the other side we have

|P ′(ξ2)∆| >
γ

2
Q1−v2γ−1Q−n−1+2v = Q−n+v.

We thus obtain a contradiction to equality (10). This means that P1(x1 +
∆) > 0 and there is a real root α of the polynomial P1(x) between x1 and
x1 + ∆.

At the same time

|x1 − α| < 2γ−1Q−n−1+2v = n2n+13Q−n−1+2v. (11)

Let us obtain a lower bound for the absolute value of the difference |x1−α|.
Again we consider only one of four possibilities P1(x1) > 0, P ′

1(x1) < 0. At
the point x = x1 + ∆1 we have

P1(x) = P1(x1) + P ′
1(ξ3)∆1, ξ3 ∈ [x1, x]. (12)
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If ∆1 < 2−4n−1γQ−n−1+2v, then in (12) the following holds: |P1(x1)| >
γQ−n+v and |P ′(ξ3)∆1| < γQ−n+v. It implies that the polynomial P1(x) can’t
have any root in the interval [x1, x1 + ∆1] and therefore for any root α, we
have

n−12−n−13Q−n−1+2v < |x− α|.

Let α be the closest root to x1 of the polynomial P1(x). Using the represen-
tation

P ′
1(α) = P ′

1(x1) + P ′′
1 (ξ4)(x1 − α), ξ4 ∈ [x, α],

we obtain the estimate |P ′′
1 (ξ)| < n3Q and (11) for sufficiently large Q we get

n−12−n−13Q1−v < |P ′
1(α)| < 16nQ1−v.

The square of derivative is a factor in the discriminant of the polynomial.
Taking into account that for |an| � H(P ) all roots of the polynomial are
bounded [see Lemma 3] we can estimate the differences |αi − αj|, 2 6 i <
j 6 n, by a constant c(n). Thus, in the point x1 ∈ B1 we can construct a
polynomial P1(x) with discriminant:

|D(P1)| � Q2n−2−2v.

Let us introduce x01 = inf{x : x ∈ I ∩ B1}. Clearly that the point
x1 ∈ B1 can be taken from the interval J1 = [x01, x01 + Q−n−1]. Let us
J ′

1 = [x01, x01 +Q−n−1 +4γ−1Q−n−1+2v] and x02 = inf{x : x ∈ (I \J ′
1)∩B1}.

Let choose x2 ∈ J2 = [x02, x02 + Q−n−1] and at the same time x2 ∈ B2. By
construction we have

|x2 − x1| > 4γ−1Q−n−1+2v (13)

Let choose a point x2 ∈ B1 such, that

|x2 − x1| > 4γ−1Q−n−1+2v. (14)

For this point we can construct a polynomial P2(x) again such that it
will satisfy the system of inequalities (8) in the point x2. Let show that
P2(x) 6= P1(x). Consider the value of the polynomial P1(x) in the point
x = x2. Then

P1(x2) = P1(x1) + P ′
1(ξ5)(x2 − x1), ξ5 ∈ [x1, x2].

Using |P1(x1)| < Q−n+v, |P ′
1(ξ5)| > γ

2
Q1−v and (14) we obtain

|P1(x2)| > Q−n+v,
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which contradicts the first inequality of (8). Thus, the polynomial, con-
structed at the point x2, is different from P1(x). Its discriminant D(P2) also
satisfies (5). Futhermore, the point x3 ∈ B1 x3 − x2 > 4γ−1Q−n−1+2v we
construct a polynomial P3(x) different from P1(x) and P2(x), that satisfies
conditions (5) and (8). It’s clear that repeating the described procedure we
can construct c(n)Qn+1−2v polynomials P (x), with discriminants satisfying
(5).

Let introduce several lemmas, that will be useful for proof of the Theorem
2.

Let α1, α2, . . . , αn are roots of the polynomial P (x).
For each polynomial P (x) ∈ Zn[x],

P (x) = an(x− α1)(x− α2) . . . (x− αn),

we may choose one of its roots (say α1) and consider only those x ∈ I such
that min16i6n |x − αi| = |x − α1|. Furthermore, assume that the roots are
ordered such that

|α1 − α2| 6 |α1 − α3| 6 . . . 6 |α1 − αn|.

Denote
|α1 − αj| = H−µj , lj − 1 = [µjT ], j = 2, n,

where T = [n
ε
] + 1 and ε is a small positive value. Therefore (lj − 1)T−1 6

µj < ljT
−1

We introduce pj =
lj+1+···+ln

T
, j = 1, n− 1.

Thus all polynomials P (x) can be divided into subclasses according the
vector s̄ = (l2, . . . , ln). We denote them by Pn(H, s̄).

We denote

S(αi) = {x ∈ R : |x− αi| = min
16j6n

|x− αj|}.

Lemma 1 (See [6]). If P ∈ Pn(H) and x ∈ S(α1), then

|x− α1| 6 2n|P (x)||P ′(α1)|−1,

|x− α1| 6 min
26j6n

(2n−j|P (x)||P ′(α1)|−1

j∏
k=2

|α1 − αk|)
1
j .

Lemma 2 If x ∈ S(α1), then

|x− α1| < n
|P (x)|
|P ′(x)|

.
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Proof. From the representation P (x) = an(x− α1) . . . (x− αn) we obtain

|P ′(x)|
|P (x)|

=
n∑

j=1

1

|x− αj|
6

n

|x− α1|
.

Lemma 3 (See [5]). If |an| � H, then for any root of the polynomial the
following is true

|αj| � 1.

Lemma 4 (See [5]). Let k,m ∈ Z, P ∈ Pn(H). Then

max
k6m6k+n

|P (m)| > c(n)H.

Lemma 5 (See [7]). For any n ∈ N, n > 1 and real δ > 0 there is an
effectively calculable bound H0(δ, n) such that for any H > H0 and positive
real µ, τ , η the following holds. If P1(x), P2(x) ∈ Z[x] are coprime,

max(deg(P1), deg(P2)) 6 n,

max(H(P1), H(P2)) 6 Hµ

and there is an interval I ⊂ R with

|I| = H−η,

such that for all x ∈ I

max(|P1(x)|, |P2(x)|) < H−τ ,

then
τ + µ + 2 max{τ + µ− η, 0} < 2nµ + δ.

Lemma 6 Let P (x) ∈ Pn(H) and |D(P )| < Q2n−2−2v. Then there is a
polynomial T (x) = bnx

n + bn−1x
n−1 + · · ·+ b0 that additionally satisfies

|D(T )| = |D(P )|, H(T ) � H, |bn| � H.

Proof. Assume that P (x) = anx
n + · · ·+a1x+a0 has roots α1, α2, . . . , αn.

By Lemma 4 there is a number m0, 1 6 m0 6 n + 1, that

|P (m0)| > c(n)H.
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Let us consider the polynomial P1(x) = P (x + m0) = anx
n + a′n−1x

n−1 +
· · ·+ a′1x + P (m0). Its roots are βj = αj −m0, 1 6 j 6 n, and the absolute
value of the discriminant equals

|D(P1)| = a2n−2
n |

∏
16i<j6n

(βi − βj)
2| = a2n−2

n |
∏

16i<j6n

(αi − αj)
2| = |D(P )|.

The polynomial T (x) = xnP1(
1
x
) = P (m0)x

n +a′′n−1x
n−1 + · · ·+a′′1x+an))

has roots γj = 1
βj

= 1
αj−m0

, 1 6 j 6 n. The absolute value of its discriminant

equals

|D(T )| = P (m0)
2n−2|

∏
16i<j6n

(βi − βj)
2β−2

i β−2
j |.

But |
∏

16i<j6n β−2
i β−2

j | = (P (m0)a
−1
n )2n−2, therefore |D(T )| = |D(P )|. The

condition H(T ) < c(n)H is obviously satisfied because H(T ) = H(P1) and
H(P1) � H(P ).

Lemma 7 (See [6]). Let P (x) ∈ Pn(H). Then

|P (l)(α1)| � H1−pl , 1 6 l 6 n− 1.

Lemma 8 (See [7]). The measure of those x such that the inequality

|Pn(x)| < H−w,

holds for w > n− 1 and H > H0, has infinitely many solutions in reducible
polynomials P (x) tends to zero measure when H0 →∞.

3 Proof of the Theorem 2

We will start with estimating the measure of those x such that the system{
|P (x)| < c1Q

−n+v,

Q1−v1 < |P ′(x)| < c2Q
1−v

(15)

is solvable, where v1, v < v1 < 1, will be specified later.
In the second inequality of (15) we shall replace P ′(x) by P ′(α), where α

denotes the closest root to x. This is done by Lagrange formula for P ′(x)

P ′(x) = P ′(α) + P ′′(ξ1)(x− α), ξ1 ∈ (α, x)

and the estimate of |x− α| by Lemma 2

|x− α| < n
|P (x)|
|P ′(x)|

.
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Then
|P ′(α)| = |P ′(x)− P ′′(ξ1)(x− α)|.

As
|P ′′(ξ1)(x− α)| 6 n3Qc1nQ−n−1+v+v1 = c1n

4Q−n+v+v1

for sufficiently large Q we obtain

3

4
Q1−v1 6

3

4
|P ′(x)| 6 |P ′(α)| 6 4

3
|P ′(x)| 6 4

3
c2Q

1−v

and
3

4
|P ′(α)| 6 |P ′(x)| 6 4

3
|P ′(α)|.

Therefore for sufficiently large Q we can consider the following system
|P (x)| < c1Q

−n+v

3
4
Q1−v1 < |P ′(α)| < 4

3
c2Q

1−v

|aj| 6 Q.

(16)

Let L′
n(v) denotes the set of x, for which the system (16) is solvable. Now

we are able to prove that µL′
n(v) < 3

8
|I|.

Consider the intervals:

σ1(P ) : |x− α| < 4

3
c1nQ−n+v|P ′(α)|−1

and
σ2(P ) : |x− α| < c5Q

−1+v|P ′(α)|−1.

The value of c5 we will specify below. Obviously

|σ1(P )| 6 4

3
c1c

−1
5 nQ−n+1|σ2(P )|. (17)

Fix the vector b = (an, . . . , a2) of part of the coefficients of P (x). All
polynomials with the same vector b̄ form the class P(b). Thus we divide
Pn(Q) in classes according the vector b̄.

The interval σ2(P1), P1 ∈ P(b) is called inessential if there is another
interval σ2(P2), P2 ∈ P(b) such that

|σ2(P1) ∩ σ2(P2)| > 0, 5|σ2(P1)|.

Otherwise the interval σ2(P2) is called essential and for any P2 ∈ P(b) holds

|σ2(P1) ∩ σ2(P2)| < 0, 5|σ2(P1)|.
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The case of essential intervals. In this case every point x ∈ I belongs
to not more than two essential intervals σ2(P ). Therefore for any vector b∑

P∈P1(b)

|σ2(P )| 6 2|I|. (18)

We have to sum over the lengths of essential intervals σ1(P ) inside the class
P(b) with fixed vector b, and then over all classes. We can estimate the
number of classes as the number of all possible vectors b

(2Q + 1)n−1 = (2Q)n−1(1 +
1

2Q
)n−1 6 2n−1Qn−1e

n−1
2Q < 2nQn−1

From (17) and (18) obtain∑
b,|aj |6Q

∑
P∈P(b)

|σ1(P )| < 4

3
c1c

−1
5 nQ−n+12|I|2nQn−1 = n2n+2c1c

−1
5 .

Thus for c5 = n2n+5c1 the measure µ1 will be not larger than |I|
8

.
The case of inessential intervals. Let us estimate the values of

|Pj(x)|, j = 1, 2, on the intersection σ2(P1, P2) of the intervals σ2(P1) and
σ2(P2). By Lagrange’s formula

Pj(x) = P ′
j(α)(x− α) +

1

2
P ′′

j (ξ2)(x− α)2, for some ξ2 ∈ (α, x).

and
P ′

j(x) = P ′
j(α) + P ′′

j (ξ3)(x− α), for some ξ3 ∈ (α, x).

The second summand is estimated by

|P ′′(ξ2)(x− α)2| 6 2n3c2
5Q

−3+2v+2v1 ,

while
|P ′(α)(x− α)| < c5Q

−1+v.

As 2v1 < 2− v for an appropriate choice of v1 < 3
4

we obtain

|Pj(x)| 6 4

3
c5Q

−1+v, j = 1, 2. (19)

Similarly we obtain the following estimate for P ′
j(x)

|P ′
j(α)| < 4

3
c2Q

1−v,
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|P ′′
j (ξ3)(x− α)| < 2n3c5Q

−1+v+v1

and for v1 6 1

|P ′
j(x)| 6 4

3
c2Q

1−v, j = 1, 2. (20)

Denote the difference of the chosen polynomials P1(x) and P2(x) by
K(x) = P2(x) − P1(x), K(x) is not identically zero. Obviously it can be
represented as K(x) = b1x + b0. Besides, (19) and (20) imply

|b1x + b0| <
8

3
c5Q

−1+v (21)

and

|b1| = |K ′(x)| < 8

3
c2Q

1−v.

For fixed b0 and b1 the measure of those x ∈ I that satisfy (21) doesn’t
exceed 16

3
c5Q

−λb−1
1 . Thus, provided that x ∈ I and taking into account (21)

it follows that b0 can have not more than |I||b1| + 2 values. Summing over
all b0 we obtain an estimate for the measure when b1 is fixed

16

3
c5Q

−1+vb−1
1 (|I||b|+ 2) < 6c5Q

−1+v. (22)

After summing (22) over all |b1| we have

25c2c5Q
1−v−λ|I| = n2n+8c1c2|I| =

1

8
|I|.

From c1c2 < n−12−n−11 we can estimate the total measure both for essential
and nonessential intervals by |I|

4
.

Now we are to consider the remaining cases. Our task is to estimate the
measure of L′′

n(v) of the set of all x such that the system
|P (x)| < Q−n+v

|P ′(x)| < Q1−v1

|aj| 6 Q

(23)

is solvable in P ∈ Pn(Q).
To prove the Theorem 2 it remains to show that

µL′′
n(v) � 1

4
|I|.

The proof splits into the following cases:
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1. l2T
−1 + p1 > n + 1− v,

2. n + 0, 1 6 l2T
−1 + p1 < n + 1− v,

3. 7
4

6 l2T
−1 + p1 < n + 0, 1,

4. l2T
−1 + p1 < 7

4
.

Case 1.
l2T

−1 + p1 > n + 1− v. (24)

Denote the class Pt(s̄) =
⋃

2t6H<2t+1 Pn(H, s̄). Since Q is a sufficiantly
large number and H 6 Q, we have t0 < t � log Q. Let consider two estimates
of |x− α1|, obtained from (23) and Lemma 1 for x ∈ S(α1)

|x− α1| 6 2n |P (x)|
|P ′(α1)|

� 2t(−n+v−1+p1+(n−1)ε), (25)

and

|x− α1| 6
(
2n−1 |P (x)||α1 − α2|

|P ′(α1)|

) 1
2 � 2

t
2
(−n+v−1+p2+(n−2)ε). (26)

In the case (24) we use the estimate (26). Let us divide the interval I into

smaller parts Ij, µIj = 2−t(
n+1−v−p2

2
−γ), where γ is a positive constant.

For an integer polynomial P (x) and an interval Ij we shall write ”P (x)
belongs to Ij” or ”Ij contains P (x)”, if there is a point x ∈ Ij, that satisfies
the system (23). Let σ(P ) denote the measure of those x ∈ S(α1), that
satisfy (23).

a) Assume that not more than one polynomial P (x) ∈ Pt(s̄) belongs to
every Ij. Then for every polynomial the measure of those x, that satisfy

(23), doesn’t exceed c(n)2−t(
n+1−v−p2−(n−2)ε

2
) and the number of Ij is less than

2t(
n+1−v−p2

2
−γ)|I|. Therefore∑

P∈Pt(s̄)

σ(P ) �
∑

P (x)∈Pt(s̄)

2t(
n+1−v−p2

2
−γ)|I| · c(n)2−t(

n+1−v−p2−(n−2)ε
2

) � 2−tγ1 ,

(27)
where γ1 = γ − n−2

2
ε.

The sum (27) extends over all t > t0. Since
∑

t>t0
2−tγ1 � 2−t0γ1 then for

sufficiently large t0 the measure of those x such that the system (23) holds

and polynomials P (x) satisfy the case 1 a), doesn’t exceed |I|
32

b) Suppose to thecontrary, that there are intervals Ij, that contains at
least two polynomials, i.e. we can find polynomials P1 and P2 from the class

12



Pt(s̄), points x1 and x2 from Ij, that satisfy the system of inequalities{
|P1(x1)| � 2t(−n+v),

|P ′
1(x1)| � 2t(1−v1)

{
|P2(x2)| � 2t(−n+v),

|P ′
2(x2)| � 2t(1−v1).

Let us estimate the value of P1(x) and P2(x) for points of the interval Ij.
Using Taylor’s expansion for Pi(x) at the point say α1

Pi(x) =
n∑

j=1

P
(j)
i (α1) · (x− α1)

j

j!
.

and estimates |P j(α1)| from the Lemmas 1 and 7 we get

|Pj(x)| � 2t(1−pj+j(
−n+v−1+pj+(n−j)ε

j
+γ)) � 2t(−n+v+nγ1).

Now for polynomials P1 and P2 without common roots we can apply
Lemma 5.

Since we have τ = n− v − nγ1, µ = 1, η = n+1−v−p2

2
− γ then

n− v − nγ1 + 1 + 2(n− v − nγ1 + 1− n + 1− v − p2

2
+ γ) < 2n + δ.

Hence it follows
2− 2v < δ + (3n− 2)γ1,

which leads to a contradiction for v 6 1
2

and sufficiently small γ, ε and δ.
Case 2.

n + 0.1 6 l2T
−1 + p1 < n + 1− v. (28)

Let us divide the interval I into intervals Ij, where |Ij| = 2t(− l2
T

+γ).
a) Assume that not more than one polynomial P (x) ∈ Pt(s̄) belongs to

every Ij. We use the inequality (25). Then for every polynomial the measure
of those x, that satisfy (23), doesn’t exceed c(n)2−t(n+1−v−p1−(n−1)ε) and the
number of Ij is less than 2t(n+1−v−p1−γ)|I|. Therefore∑

P∈Pt(s̄)

σ(P ) �
∑

P (x)∈Pt(s̄)

2t(
l2
T
−γ) · 2−t(n+1−v−p1−(n−1)ε) � 2−tγ2 , (29)

where γ2 = γ − (n− 1)ε. Again we sum the estimate (29) over all t > t0 as

in formula (27). It is clear that the total sum is less than |I|
32
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b) Assuming like above in Case 1 above the existence of an interval Ij that
contains at least two different polynomials P1(x) and P2(x), for any x ∈ Ij,
by Taylor expansion we get

|Pi(x)| � 2−t(l2T−1+p1−1−2γ), i = 1, 2.

For P1(x) and P2(x), which have no common roots, on Ij we apply may
Lemma 5 with µ = 1, η = l2T

−1 − γ, τ + 1 = l2T
−1 + p1 − 2γ. Note that

l2T
−1 6 p1. Then

l2T
−1 + 3p1 − 4γ < 2n + δ.

This together with (28) implies the inequality

2n +
1

5
− 4γ 6 l2T

−1 + 3p1 − 4γ < 2n− δ,

1

5
< δ + 4γ.

which is a contradiction for small δ and γ.
Case 3.

7

4
6 l2T

−1 + p1 < n +
1

10
. (30)

This case represents the largest interval for l2T
−1 + p1 and is the most

difficult case. We divide I into intervals Ij of length 2−tl2T−1
. At first let us

estimate the value of a polynomial P ∈ Pn and its derivative on the interval
Ij. For this purpose expand by Taylor’s formula in neighborhood of the point
α1:

P (x) =
n∑

j=1

P (j)(α1) · (x− α1)
j

j!
.

|P ′(α1) · (x− α1)| � 2t(1−p1−l2T−1),

|P ′′(α1) · (x− α1)
2| � 2t(1−p2−2l2T−1) � 2t(1−p1−l2T−1),

|P (i)(α1) · (x− α1)
i| � 2t(1−pi−il2T−1) � 2t(1−p1−l2T−1), 3 6 i 6 n.

For the derivative we have use

P ′(x) =
n−1∑
j=0

P (j+1)(α1) · (x− α1)
j

j!
.
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|P ′(α1)| � 2t(1−p1),

|P (i)(α1) · (x− α1)
i−1| � 2t(1−pi−(i−1)l2T−1) � 2t(1−p1), 2 6 i 6 n.

Thus, if the polynomial P (x) belongs to the interval Ij it should satisfy
the system {

|P (x)| � 2t(1−p1−l2t−1),

|P ′(x)| � 2t(1−p1).
(31)

Consider those intervals that contain c(n)2tρ polynomials. Then the mea-
sure of x ∈ I, that satisfy (23) is

2t(−n+v−1+p1+(n−1)ε)c(n)2tρ2tl2T−1

.

If ρ < n + 1− v − (p1 + l2T
−1) and t > t0 the measure can be estimated by

|I|
32

.
To simplify further calculations we introduce

u := n + 1− v − p1 − l2T
−1,

From (30) and v 6 1
2

it follows that for u > 2
5
. Let introduce u1 = u− 1

5
> 1

5

and represent u1 as a sum u1 = [u1] + {u1}.
Let n+1−v−p1−ρ−l2T

−1 6 0, i.e. ρ > u. By Dirichlet’s principle there
exist at least c(n) · 2t({u1}+0.2) polynomials P1(x), P2(x), . . . , Pk(x), where
k � 2t({u1}+0.2), with [u1] first identical coefficients.

Consider the polynomials Rj(x) = Pj+1(x)− P1(x), which obviously sat-
isfy:

deg Rj(x) 6 n− [u1],
H(Rj) � 2t.

From (31) we get{
|Rj(x)| � 2t(1−p1−l2T−1), i = 1, . . . , k,

|R′
j(x)| � 2t(1−p1).

(32)

Every coefficient of the polynomial Rj ranges in the segment [−2t+1; 2t+1].

We divide all segments into equal parts of length 2tµ, where µ = 1− {u1}
n−[u1]

.

Then at least c(n)2
1
5
t polynomials will fall into the same segments. Hence

their differences Rj(x) will have a height less than c(n)2tµ = c(n)2
t(1− {u1}

n−[u1]
)
.
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Introduce Sj(x) = Rj+1(x) − R1(x). Thus the system of inequalities (32)
may be written as

|Sj(x)| � 2t(1−p1−l2·T−1), j = 1, 2 . . . , k − 1,

|S ′
j(x)| � 2t(1−p1), j = 1, 2 . . . , k − 1,

deg Sj(x) 6 n− [u1],

H(Si) < 2
t(1− {u1}

n−[u1]−1
)
.

(33)

a) Suppose there are coprime polynomials of type Si(x). Then applying
Lemma 5 to the interval Ij with

τ = p1 + l2 · T−1 − 1,

µ = 1− {u1}
n− [u1]

,

max{deg S1, deg S2} 6 deg S = n− [u1],

η = l2T
−1

we get

p1 + l2T
−1 − {u1}

n− [u1]
+ 2(p1 + l2T

−1 − {u1}
n− [u1]

− l2T
−1) 6

6 2(n− [u1])(1−
{u1}

n− [u1]
) + δ.

This implies

3p1 − l2T
−1 − 3{u1}

n− [u1]
6 2p1 + 2l2T

−1 + 2v + 0.4− 2 + δ.

Replacing p1 by l2T
−1 and representing n−[u1]−1 as p1+l2·T−1+0, 2+{u1}−1

we obtain
8

5
− 2v <

3{u1}
p1 + l2T−1 + v + 0, 2 + {u1} − 1

+ δ. (34)

Having written the right side of the inequality as the function of {u1} and
v in [0; 1)× [0; 1/4), we show that it doesn’t exceed 0.4+ 3

p1+l2·T−1+0.2
+δ, but

our assumption p1 + l2 ·T−1 > 1 leads to a contradictin to inequality (34) for
small enough δ.

b) If all polynomials Sj(x) are of the type lS0(x), it implies |20.4tS0(x)| �
2t(1−p1−l2·T−1)
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|S0(x)| � H(S0)

1−p1−l2T−1−0.2

1− {u1}
n−[u1]

−0.2
.

If the inequality

p1 + l2 · T−1 + 0.2− 1 > (n− [u1])(1−
{u1}

n− [u1]
− 0.2) (35)

fails to hold Sprindzuk’s theorem [5] implies that we can estimate in this case

2 b) by |I|
32

.
Since the product on the right side of (35) is p1+l2·T−1−0.8 the inequality

(35) leads again to a contradiction.
c) If there are reducible polynomials among the already constructed Si(x)

then the system (33) for one of the multipliers T1 or T2 (say T1), such that
Si(x) = T1(x)T2(x), implies the bounds{

|T1(x)| � H(T1)
(1−p1−l2T−1)(1− {u1}

n−[u1]
)−1

,

deg T (x) ≤ n− [u1]− 1.

To apply the Sprindzuk’s theorem we again need to check the inequality

p1 + l2 · T−1 − 1 > (n− [u1]− 1)(1− {u1}
n− [u1]

). (36)

We rewrite the right hand side of (36) as

p1 + l2 · T−1 + 0.2− 2 +
1

p1 + l2 · T−1 + 0.2
.

Determing the maximum of this expression as the function of {u1} we obtain
that the right side does not exceed p1 + l2 ·T−1 + d2− 2 + 1

p1+l2·T−1+0.2
. Thus

we again obtain that the measure in case c) doesn’t exceed |I|
32

.
Case 4.

l2T
−1 + p1 <

7

4
.

Let us estimate the expression l2T
−1 + p1 below. To do this we have to

prove that |P ′(x)| � 2t(1−p1). By the Taylor’s formula for P ′(x) at α (the
closest root to x) we get

P ′(x) =
n−1∑
j=0

P (j+1)(α) · (x− α)j

j!
.
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We have |P ′(α)| � 2t(1−p1), and for the remaining summands of the ex-
pansion we note

|P (i)(α)(x− α)i−1| � 2t(1−p1), 2 6 i 6 n.

Since |P ′(x)| � 2t/3, then 1− p1 6 1
3

or 2
3

6 p1.
Thus we need to consider the system

|P (x)| < 2t(−n+v),

|P ′(x)| < 2t/3,
2
3

< l2T
−1 + p1 < 7

4
.

(37)

All solutions of the system of the inequalities (37), with α1 being the
closest root to x, are contained in the interval

σ(P ) = {x ∈ I : |x− α1| < 2t(−n+v)|P ′(α1)|−1}. (38)

Besides σ(P ) we also introduce the following interval σ1(P ), that involves
σ(P ).

σ1(P ) = {x ∈ I : |x− α1| < 2t(v−0.9)|P ′(α1)|−1}. (39)

From (38) and (39) we get

µσ(P ) � 2t(−n+v+1−v)µσ1(P ) = 2t(−n+0.9)µσ1(P ).

Divide all polynomials in Pn into classes Pb̄ according the n − 1 first
coefficients b̄ = (an, an−1, . . . , a2). Obviously #b̄ � 2t(n−1).

a) If µσ1(P1)∩µσ1(P2) < 1
2
µσ1(P1) then

∑
P∈Pb̄

µσ1(P ) � |I|. Summing
over all classes we obtain∑

b̄

∑
P∈Pb̄

µσ(P ) 6 2n2t(n−1)n2t(−n+0.9)2|I| 6 n2n+12−0.1t|I|.

b) If µσ1(P1) ∩ µσ1(P2) > 1
2
µσ1(P1) we denote R(x) = P1(x) − P2(x).

Since P1 and P2 belong to the same class Pb̄, then R(x) is of the type ax+ b.
Moreover taking into account the estimates of the polynomials and their
derivatives we obtain {

|ax + b| � 2t(−0.9+v),

|a| � 2t(1−p1).

|x +
b

a
| � 2t(−0.9+v)|a|−1. (40)
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It is clear that the inequality (40) holds in the entire essential interval.
Summing the estimates (40) first over all b, which do not exceed c(n)|a||I|,
and then over all a we obtain c(n)2t(−0.9+v+1−p1)|I| = c(n)2t(v−p1+0.1)|I| �
2−0.1t|I|. Let us sum the estimates of the cases a) and b) over all t > t0. We
obtain that in the Case 4 the measure of those x that satisfy (23) doesn’t

exceed |I|
32

, and for the cases 1 – 4 together the measure of the set L′′
n(v)

doesn’t exceed |I|
4

, thus proving the theorem.
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