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MOHOTOHHASA PASHOCTHAA CXEMA
IMTOBBIINEHHOTO ITOPAAKA TOYHOCTHA
AASL ABYMEPHBIX YPABHEHNUN KOHBEKILINN — AUODY3NU

B. K. TIOJIEBHKOB"

YBenopycckuii 2ocyoapcmeennviii yuusepcumem, np. Hezasucumocmu, 4, 220030, 2. Munck, Berapyco

JI1st IByMEpHOTO CTallMOHAPHOTO YPaBHEHHUSI KOHBEKIMH — MU Py3un 00IIeTO BU/IA TOCTPOCHA, TEOPETUIECKU 000C-
HOBaHAa U UCIIBITAHA Ha TECTOBOM 3a/1a4¢ yCTOMYMBAsI KOHCUHO-PA3HOCTHAS CXEMa, ONPEICTICHHAS HA MUHIMAJIbHOM I11a0-
JIOHE PAaBHOMEPHOI CETKH, YIOBJICTBOPSIONIAS MPHUHIIUIY MAKCHMyMa U OONaJaroIiasi YeTBEPTHIM MOPSIKOM aIpOK-
cUManuu. MOHOTOHHOCTh CXEMbI KOHTPOJHPYETCS IBYMS MapaMeTpaMu peryJspu3allii, BBEJCHHBIMA B Pa3HOCTHBIN
oreparop. Cxema OpHEeHTHpPOBaHA Ha PEIICHHE MPUKIAIHBIX 3a7a9 KOHBEKIHH — IH(Qy3un B yCIOBUAX PAa3BUTOTO ITO-
TPaHUYHOTO CJOS, BKITIOYasi TPABUTALMOHHYIO 1 TEPMOMATHUTHYIO KOHBEKITHIO, TU()(Y3HIO YaCTHII B MATHUTHOM KH-
koct. Cxema anmpoOrMpoBaHa Ha U3BECTHOH 3a/1aue BHICOKOMHTEHCUBHOW TPaBUTAIIMOHHON KOHBEKIIMH B TOPU3OHTAIb-
HOM KaHaJIe KBaJPaTHOTO CEUCHUS MPU OJHOPOIHOM HarpeBe cOOky. [IpoBeneHO neTalbHOE CPAaBHCHHE ¢ MOHOTOHHOMU
cxemoit CaMapcKoro BTOPOTO MOPSIIKA alIPOKCHMAIMH Ha TIOCIC0BATCIBHOCTH KBAJIPATHBIX CETOK C YHCIIOM pa30ue-
Huii ot 10 1o 1000 Ha Kax10i CTOpOHE KBajJpaTa BO BCEM JMara3oHe yucels Pasesi, COOTBETCTBYIOLIUX PEKUMY JIaMHU-
HapHOH KOHBEKIHH. [[0ka3aHO 3HAYUTEIFHOE MTPEUMYIIIECTBO CXEMBI YETBEPTOTO MOPSIKA B CKOPOCTH CXOAMMOCTH TIPH
YMEHBIIICHUH II1ara CeTKH.

Knrwouegvle cnoea: rpaBUTAIIMOHHAS KOHBEKIIMS; TEPMOMArHUTHASI KOHBEKIMS; NUQQy3HsT 4aCTUI]; ypaBHEHHE KOH-
BeKIMH — AU(Py3nH; pa3HOCTHAsI CXeMa TTOBBIIICHHOTO TOPsAKa arnMmpOKCUMAIMK; TPUHIUIT MaKCUMyMa; IapaMeTphl
peryisipu3anun.
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A MONOTONE FINITE-DIFFERENCE
HIGH ORDER ACCURACY SCHEME
FOR THE 2D CONVECTION — DIFFUSION EQUATIONS

V. K. POLEVIKOV*®

*Belarusian State University, 4 Niezalieznasci Avenue, Minsk 220030, Belarus

A stable finite-difference scheme is constructed on a minimum stencil of a uniform mesh for a two-dimensional
steady-state convection — diffusion equation of a general form; the scheme is theoretically studied and tested. It satisfies
the maximum principle and has the fourth order of approximation. The scheme monotonicity is controlled by two regula-
rization parameters introduced into the difference operator. The scheme is focused on solving applied convection — diffu-
sion problems with a developed boundary layer, including gravitational convection, thermomagnetic convection, and dif-
fusion of particles in a magnetic fluid. The scheme is tested on the well-known problem of a high-intensive gravitational
convection in a horizontal channel of a square cross-section with a uniform heating from the side. A detailed comparison
is performed with the monotone Samarskii scheme of the second order approximation on the sequences of square meshes
with the number of partitions from 10 to 1000 on each side of the square domain and over the entire range of the Rayleigh
numbers, corresponding to the laminar convection mode. A significant advantage of the fourth order scheme in the con-
vergence rate is shown for the decreasing mesh step.

Keywords: gravitational convection; thermomagnetic convection; diffusion of particles; convection — diffusion equa-
tion; finite-difference high order approximation scheme; maximum principle; parameters of regularization.
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Introduction

A solution of the applied convective heat transfer problems requires a transition to the region of high values
of the Rayleigh numbers, which is characterized by a formation of boundary layers with large velocity and
temperature gradients and small-scale convective motions. Similarly, the concentration of solid suspended
particles in colloidal systems is redistributed because of their diffusion under the action of mass forces. For
example, the ferromagnetic particles in a magnetic fluid diffuse in the direction of the magnetic-field gradient,
creating zones near the boundary with large gradients of the particle concentration [1; 2]. This imposes strong
requirements on stabilization and approximation properties of a difference scheme. The problem is particularly
crucial in a three-dimensional case. An increase of the approximation order of the difference scheme is one of
the way to solve the problem, although it is very difficult to fulfill contradictory requirements of stability and
accuracy.

A standard way to increase an approximation order of a difference scheme consists in a replacement of the
high order derivatives in the main part of the approximation error by the lower order derivatives, which are
suitable for a difference approximation on a minimum stencil, with the help of the original differential equation
under assumption of sufficiently smooth functions of the equation. The stable schemes of fourth order approxi-

1 _h
mation were constructed in this way in [3] for the two-dimensional Poisson equation with steps ﬁ < n <5
2

on a uniform mesh. In principle, it is not difficult to get the fourth order scheme for the convection — diffusion
equation with variable coefficients, but a serious problem is ensuring the scheme monotonicity, i. e. fulfilling
conditions of the maximum principle. The practice of numerical solution of convection and diffusion problems
has shown that the property of monotonicity is an important factor of a scheme applicability in conditions of
a developed boundary layer.

A lot of current publications in computational mathematics are devoted to the development of numerical
methods for convection — diffusion problems including two-dimensional ones (see, e. g., [4—7]). To solve them,
effective finite-difference and finite-element algorithms of the first or second order of accuracy are developed.

In this work, a monotone finite-difference scheme of the fourth order of approximation is constructed
for the two-dimensional steady-state convection — diffusion equations in magnetic and non-magnetic fluids.
The scheme is defined on a minimum nine-point stencil of a uniform mesh. Its monotonicity is provided by
two regularization parameters introduced into the difference operator. The scheme is tested on the well-known
problem of natural convection.
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Equations of gravitational and thermomagnetic convection

One has to deal with the problem of controlling convective heat exchange in closed cavities in design
of many technological devices (e. g., cooling systems for high-voltage electric cables, power transformers,
electric generators and electric motors, nuclear reactors, etc.). There are two mechanisms for convection in
a non-isothermal magnetic fluid located in gravitational and non-uniform magnetic fields: gravitational and
magnetic one. The first mechanism is due to the dependence of density on temperature, the second one is
due to the dependence of magnetization on temperature. The presence of the magnetic mechanism opens up
real possibilities in controlling the structure and the intensity of convective process by applied magnetic field.
This is especially important under zero-gravity conditions, when the gravitational mechanism is absent.

The most common and investigated model of a thermomagnetic convection is a model for homogeneous,
non-conducting and incompressible magnetic fluid without heat sources in the temperature equation and with
the linear state equations [8—12]. The system of the steady-state convective equations for this model under the
Boussinesq approximation for the density and the non-inductive approximation for the magnetic field takes
the form

(v-V)v=vV’v+ pL(—Vp +pg + U, MVH), (1)
0
V.v=0,v-VI=aV°T; ()
oM (T,, H,
p=po[1-B(T-T,)]. M =M(T, Ho)—K(T—ToH%(H—HO),
1 9p(7;) oM (T,, H,)
pO p( 0)’B pO aT s aT 5

where v is the velocity vector of the convective motion; T is the absolute temperature of the fluid; p is the pres-
sure; H is the given value of the magnetic-field intensity; p is the fluid density; g is the gravitational accelera-

tion vector; M = M (T , H ) is the magnetization of the fluid for the uniform distribution of magnetic particles;

U, =47 - 10”7 H/m is the magnetic constant; T, and H, are the characteristic values of the temperature and the
field intensity in the fluid bulk; v, a and B are the coefficients of the kinematic viscosity, the thermal conduc-
tivity and the volumetric thermal expansion of the fluid; K is the pyromagnetic coefficient. The last two terms
in equation (1) define the gravitational and magnetic mechanisms of convection, respectively.

The idea of the non-inductive approximation consists in neglecting the influence of the fluid on the external
magnetic field. The validity of the non-inductive approximation is shown in [8—11] for a wide class of thermo-
magnetic convection problems.

A Cartesian coordinate system x,, x,, x; with the coordinate orts i, j, k is introduced. We set in equa-

tions (1), (2) that v= V(Dla V,, 0)5 U, =Y (xp Xy )7 V, =V, (xp xz)a T= T(xla xz)a p= p(xla Xy )5 H= H(xp xz)a
g= g( g & 0) assuming that the convective problem is two-dimensional. Let us define a stream function

v(x, xz) and a vorticity ®(x;, xz) associated with the velocity components by relations

d 0 Jdv, Jv
:_W’ 02:__\”’ 0= —2 _ "L (3)
ox, ox, dx,  ox,
The continuity equation V - v =0 is automatically satisfied in these variables. We obtain the vector equation
for the vorticity by applying the rotor operator to motion equation (1) and taking into account (3):

V;

Vx[vx(0k)]=vVx[Vx(ok)]+ BV x (Tg) + (%)VT x VH.

Thus, equations (1), (2) in 2D case are transformed into a system of three scalar equations for the tempera-
ture 7, the stream function y and the vorticity o:

2 2 2 2
a_wa_T_a_wa_T_a[auaT] Py, Py

ox, dx, Ox, ox, ﬁ E ou

’ 2 2
ox;  ox,

+w=0,

“4)

oy 0o Y o o’  dw oT oT WK (0T 0H OT oH
-t —= -B| — + — :
ox, dx,  dx, ox,

= + -
ox, ox,  ox, ox, Y ox;  ox; ox, £ ox, & Po
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Let Ox,-axis be the vertical axis in the Cartesian coordinate system x|, x,, in which case g, =0, g, =—g. Let
T, and T, = T, + AT define the given minimum and maximum values of the temperature on the walls. We intro-
duce dimensionless variables by choosing the characteristic size of the computational domain / as the length
scale, the kinematic viscosity v as the scale for the stream function, the relation v/* as the scale for the vorticity,
the relation v/ as the scale for the velocity, the temperature difference AT as the scale for the temperature, and
the value ¥/ as the scale for the magnetic field intensity where ¥ is a characteristic value of the field gradient.
For convenience, we denote the dimensionless variables in the same way as the dimensional ones, and write
system (4) in new variables (see [12]):

J(H, T
V~VT=LV2T, Viy+0=0, v.-Vo=Vo + f, f=Gra—T+Grm—( - );
Pr ox, 9(x,, x,)
. . 6))
KI'AT
Ulza_w’ ‘02: a\lf Pr_— Gr: BgleT’ Grm=L2'Y7
ox, ox,’ a Y WY

where Pr is the Prandtl number; Gr is the Grashof number and Gr,, is the magnetic Grashof number. Equa-
tions (5) at Gr,, = 0 describe the process of natural (gravitational) convection.

Equation of particle diffusion in magnetic fluid

The magnetic fluid is a stable colloidal suspension of ferromagnetic nanoparticles in a nonmagnetic carrier
liquid. A particle size is of the order of 10 nm = 10* m and they are in a Brownian motion in the carrier liquid.
Due to the magnetic properties of particles, not only the Brownian motion but also the diffusion of particles un-
der the action of a non-uniform magnetic field (magnetophoresis) occurs in the magnetic fluid. The particles are
distributed in the fluid bulk as a result of the competition between these two mechanisms.

The steady-state diffusion equation for magnetic particles in a magnetic fluid in the presence of a convec-
tive motion takes the form [1; 2; 13]:

V:C - (ll)vm)-vcr—qc:o,
(6)

1
g=V-o,0=L(EVE E=""H, L(£)=coth(E) - >0,
kT S
where C is the volume particle concentration in the colloid; D is the diffusion coefficient; £(§) is the Langevin
function; m is the magnetic moment of a particle; k = 1.3806568 - 10 * J/K is the Boltzmann constant; T is the
particle temperature.
The magnetization M is a function of the field intensity and the particles concentration, i. e. M = M (H ,C ),
for isothermal magnetic fluids. Under the condition M (H , C) < H, the Maxwell equations are of the form
VxH=0,V-H=0.1In2D case of Cartesian coordinates, it follows that

OH, _OH, _, H, oM, -

where H,, H, are the components of the intensity vector H.
From the point of view of stability of the difference scheme, it is important to show that the coefficient ¢ in
equation (6) takes only positive values. We prove this taking into account (7). Consider first

2 2 2
|VH| aH + B_H =L H%+ 9H, + H%.,.Hai -
Bxl ox, H? ' ox, ? oy, ' o, ? ox,
! H} oA, +H2 %2+H2 % +HI| —2 oH, +
T 0 axl 2 oy, " oy, ax2

2 2 2 2
RE LA R AN A NN CARICA NN LAY )
H ox, dx,  Ox, Ox, ox, ox, ox, ox,

equal 0 by virtue of (7)
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Then

g2 Lol ) o (1 ol ez

ox, | 2H ox, ox,| 2H ox,
2 2 2 2
= L o, + OH, + OH, + oH, + IT-[IVZI‘[1 + H2V2H2 -
H |\ ox ox, ox, ox,
d(H? o(H?)) ).
__LjoH Ur') | o 3lrr) " Liguf >0t va #o.

2H*| dx, ox ox, ox, H

Hence
Ve = éwgf >0 if VE#0. ©)
Taking into account (9), we obtain
d 1
4=V 0=V (L(E)VE)=VL(E): V& + L(E)VE= - (ELE)£IVE 20

Thus, we get that ¢ > 0 in concentration equation (6). Moreover, we have ¢ = 0 if and only if VA =0, i. e.
when the magnetic field is uniform or absent.

Difference scheme of high order accuracy

Let us consider a two-dimensional steady-state convection — diffusion equation

3 £~ gx)u=£(x) x= (5. 3,) G (10

. 0 0 0 .

where £Ef’ Ju = Lou - Ua(x)k(x)—u, Lou=— k(x)—u , k(x)>0, g(x) 20, u=u(x), is the unknown
ox,, ox,, ox,

function satisfying equation (10); &, ¢, v,, v,, and f are the given functions; x,, x, are the space coordinates.

All functions are assumed to be sufficiently smooth. The first term in the differential operator Lg" “ly is the

diffusion term, the second one is the convective term. Note that each of equations (4)—(6) can be written in
form (10).

Scheme construction. We construct the finite-difference scheme for equation (10) which has the fourth or-
der of approximation on the minimal nine-point stencil of a uniform mesh and satisfies the maximum principle.
Note, that for ¢ = 0 the high order scheme is presented in [12].

We approximate the differential operators ﬁﬁf’ "), a =1, 2, by monotone difference operators A(;’ ») of the form

A(;’ by = mm(amufu )x - botaocuYu - b;a((:l“)uxa =
= (1+ @ R} (@, ) - %ba(aauxa + a((;la)uxﬂ) (11)

with the coefficients

aa:( 1 64 1)>o, by=v,+O0(h*), h= I+ 1,

1
&, = >0, R =—h_|b |>0, 12
“ 1+R,+R.+R) “ 2 °‘| “| (12)

L1 -1
b} =5(ba+|ba|)20, buza(ba—|ba|)so.
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Here h, and £, are steps of a uniform mesh relative to variables x, and x,, respectively. The standard non-
index notations are used for the left and right difference derivatives and for the function values at the peripheral
points of the stencil:

)

ke=k(x), k5% = k(x, £ 0.5k, x,), k") = k(x, x, £ 0.5h,),

where x = (x,, x, ) is the central node of the stencil.

The finite-difference operators A(g’b)u approximate the corresponding differential operators L((f’ *Ju with the
second order. We note that operators (11) are analogous to the operators of the well-known monotone scheme
of the second order described in the book of A. A. Samarskii [3], but we define the scheme coefficients a,, b,
and @, in a different way.

Under assumptions (12) for the coefficients a,, the following asymptotic expansions at the center node of
the mesh stencil are valid:

ou 1,09 (1 1, (1 )
u. =k—o— h Lu+=h \/E—a(—L u) - ahaLa(%Lau) +0(n}),

L T AL ™ W
13)
ey, = 1 S hLu MLVEN ICH () RL (1L )+Oh4 o=1,2
Tt = o 6 N o \ Uk )T 24“k°‘” (o) =12
Taking into account (13) we get the following relation
k), N A, P
Y _ a, n 4
ZLQ u—ZAa u+12Eu+O(h ), (14)

connecting the differential and difference operators for any sufficiently smooth function u(xl, X, ), where

Eu = 2{52 |: L5 (%L(O]: ")u) + poLou — rakaa—u:”,
X

a=1

pa:,ué+va ak aU(X’ra:Lg"“)&’azh_a.
k ox, ox k

o

Following the conventional methodology of increasing the approximation order on the minimal stencil,
we modify the operator Eu, by expressing L Vu = 1%y + qu — f, 1%y = —1**\u + qu — f from equa-
tion (10) and substituting them into a term with the derivatives of the order 3—4. We exclude in this way the

derivatives of a high order, which are not suitable for difference approximation on the minimum stencil.
In addition we introduce in the operator £Fu some regularization parameters ¢, = O'O(x) 20and o, = Gl(x) by

adding a term, which is identically zero on the solution of equation (10) u = u (x)
Due to these changes we get

= i{az[ (—( ku)u—qu+f))+pa rkaa—a]}

2
+ (GO+GI)[ZL(§’U)M - qu +f), B # o

a=1

equal 0

The introduced regularization parameters allow regulating the basic properties of the difference scheme
providing the maximum-principle conditions and keeping the fourth order of approximation.
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By simple manipulations, the operator Eu is reduced to the final form

Ju

2 1 q
Fu = 82| 1) (—L(k’n)u) +p Lo —rhk— — L5y
(12:‘1 o o k B pa o o axa k o
k) ou )(‘1) (k.v)
-2k -— - —lul|+ (o, +0, )L, "u;y+
dx, ox, k (00t o)L,

2 (2]
= z 52 L(.f’b)(%L(k’U)u)+paLau— r,+2 k ka—u+
a=1

bl

+2(L(B""’)u—qu+f) + (0, +0,) L +28 ( ]

28 ( ) + (0, +0,)(f - qu).

Thus, we get for the main part of the approximation error

izEu = Zz,(k L5y 4 ﬁcs L“‘"’)u) + EL(""’) (lL(k’%) + EL("’”) (lL(k’“)u) - Gu + |,
12 “~ 12 2" k7 127 (k™ ’
where
~ h* . q v, ok dv
ko =14 —=Py> Py=04p,+ ;- Lt o =v + L — 2%
o 12p(x pa p(x 1 p(x o k ax(x ax“
ol 4
.1 n ( )
v, = =—|v,+—7 |, 7, =8 0L+2—k +(8§1+01 v, r, =L Do |
k, 12 ax, k k

Py o), (2
+ 2[;%% (k)+(k+00+61)q],
f f+ [i () (Z+00+01)f].

(15)

(16)

We choose the regularization parameter ¢, in expression (15) from the conditions l;a =1 and g =0 for

0, 2 0. A feasible value of the parameter o, is determined from these inequalities:

(51=—rnin|:ngn( 20 ), éi ( )] o(1).

(17)
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Taking into account representation (15) for the main part of the approximation error, the scheme of high
approximation order can be written in the following form

2 - 2 2 2
~ a, h a,b h a,b 1 h ab 1 7 ~
a, Ny + g Al +—1A(’)(—A( )) W\ >( Al )—d+ —0, 18
Z,l(aaylzoaylzl ATy [+ AT ATy | v+ 6 (18)

where y = y(x) is the solution of the difference problem; x = (xl, xz) is the internal mesh node,

b,|,

ah)

Al

~ - 1 L]
& (ay.) -btay. —ba™y , &, =———— R =—=h
7= (“y)‘a)xa @ oz, ™ Dulla "1 T 1+R,+R,+R,” “ 2°°

(19)
a,=k,+O(h*)21, b,=0,+0(h*), d=G+0(n*)20, §=7+0(h")

Obviously, scheme (18) is defined on the minimum nine-point stencil.
Approximation order. Let us consider the approximation error for scheme (18):

2 . h2 ,
z a u - (a Yy + —GOA(;’ Ju |+
12

B (1 s Boan( 1 (e -
12A )(%A(;’" )u) IEA(“ )(%A(f” )uJ—du + ¢+ qu—f,

where u =u (x) is the solution of differential equation (10). Taking into account (12), (14) and (19), we have

2 [ 3 B 2 2 ou 2
V= e (A% — %)y, + 50 u— irk + s AEY, |
0;1[ a( o o ) lzpoc o ax 12 0 o

+£‘2L(k’°) lL(k"D)u +£L(kﬂ>) lL(k,U)u —((}—q)u+j7—f+
2" k"’ 127 \k

+0,0(h*)+0(h*) = i[lga(A(i’{’)u - (O’j’“)u)} + gEu +6,0(h*)+0(h*)=
a=1

= lizz i [ﬁa (A(é‘ﬁ)u — Lg’ﬁ)u)} + 600<h4) + 0(h4) = GOO(h4> + O(h“), (20)
a=1

It follows that scheme (18) has the fourth order approximation for 6,= O(l). A concrete value of the para-
meter 0, is determined from the monotonicity conditions of the difference scheme.

Stability and convergence. We investigate the stability of scheme (18) using the maximum principle [3].
For this purpose, scheme (18) is rewritten in the canonical form of the maximum principle:

2
=2 (Aay(’l“) + Bay(““)) b oA g By p )y p )
o=1

where
— 1 2 * _ 1 2 *
Aoc - mna (Goh - Aon)’ B,= mga(ooh - Boc)’
(-1) (-1)
A (e 1 (n
Alz_lz[hfn](k) +h12n2(k >0, (21)
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(-1a) (+1)
1|1 & 1., (n, ™"
Do=—|—n|2| +=&|—2 >0,

ST h;n“(k] hjg’ﬁ(k)

2
C:Z(Aa+Ba)+A12+BIZ+D12+D21+5’;

+ —
g, m & k

Ny = a, (=, + h,b5)> 0, &, = a™) (=, — h,b;)>0,

~ o~ 2 + (_lon) + £~ 2 + (+1“) +
A :—12“<ﬂ+h—°‘(nB E"‘] PR E“B, BZ;:—lzg‘*““ hy (—nﬁ E"‘) PR éﬁ,

ﬁa =4, (ééot + hagg) s O’ %0‘ = a‘(;l“) (Eéa h habN(;) >0.

The coefficients 4, and B, correspond to left, right, lower and upper peripheral nodes of the stencil relative
to the central node. Their signs depend on the choice of the regularization parameter 6,. The angular coeffi-
cients 4,,, B,,, D,, u D,, are positive for any mesh steps regardless of the regularization parameters.

From the requirement that the coefficients 4, and B, for o = 1, 2 are non-negative, we get the sufficient
condition under which scheme (18) satisfies the maximum principle:

[ty 2o
0, if max(4;, B;)<0.

Analysis of the coefficients A, B shows that they can be positive on coarse meshes. In this case we have

C,= O(h’z) and v= 000(h4) + O(h4) = O(hz) according to (20), (22). The use of formula (22) may seem
unreasonable due to the threat of a decrease in the order of approximation. However, it follows from formu-

2
. h h
las (21) that 4, B, hctn 10 + Z(h—“J <0if h—“‘ <5, B # o.. Consequently, if the mesh steps are related by

B B
the condition

1 h
— <[5,
NS

all coefficients A4, B, should become negative for sufficiently small steps 4, &,, thereby providing 6, =0 and

(23)

therefore the approximation error v = O(h4). For instance, for the test problem in the following section all
. * * . . 1
coefficients 4,, B, become negative on meshes with the step 4 < = at the Grashof number Gr = 10° and on

1
meshes with the step / < 35 at the Grashof number Gr = 10’.

Thus, scheme (18) with coefficients (16), (17), (19), (22) subject to constraint (23) satisfies the maximum
principle and has the fourth order of approximation. This means that scheme (18), supplemented by difference
boundary conditions with the same approximation and stabilization properties, converges with the rate of

0(h4) as h — 0, 1. e. is of fourth order of accuracy.

It should be noted that condition (23) relates the mesh steps but does not limit their values. It agrees with the
convergence condition of the high order accuracy scheme for the two-dimensional Poisson equation [3] which
corresponds to k=1,¢=0,v,=0,v,=0.

Scheme testing

Scheme (18) has been tested on the well-known problem of a natural convection in a horizontal channel of
a square cross-section with a uniform heating of the right vertical wall [12; 14; 15]. The problem geometry and
the boundary conditions for the temperature are shown in fig. 1.
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X,
T=x,
1
lg
T=0 T=1
0 X
T=x, 1 '

Fig. 1. Illustration of the test problem statement

The dimensionless mathematical model of the test problem is defined by equations (5) with respect to the
temperature T’ (xl, X, ), the stream function \V(xl, xz) and the vorticity 0)(x1, x2) at Gr,, = 0 with the boundary

temperature conditions: T(O, xz) =0, T(l, xz) =1, T(xl, 0) = T(xl, 1) =X,

The test computations were carried out for the Prandtl number Pr = 1 and the Grashof number in the range
Gr <5 - 10’ corresponding to the laminar mode of convection. A square mesh was used with a step 4 =h, = h,

1
and the number of partitions 10 < N = — <1000 on each side of the square domain. Note that the numerical

solution for N = 1000 requires to solve a system with more than 3 million of nonlinear difference equations.
An approximate condition of the fourth order was applied for the vorticity on the boundary [12; 16]. The rea-
lization of the difference scheme was carried out by a relaxation method described in [12; 17].

Figures 2 and 3 illustrate the temperature distribution (left) and the flow pattern (right) obtained with

1
scheme (18) on the square mesh with the step 4 = 500 for the Grashof numbers Gr = 10° and Gr=5 - 10.

The last of them is close to the critical value at which a turbulization of a laminar flow begins. The resulting
thermoconvective structures are characterized by a formed boundary layer, in which the dominant velocity and
temperature gradients are concentrated. Due to this, an extensive stagnation zone is formed in the central part

oT

X

of the domain with a constant vertical gradient of the temperature |VT | = = 0.656.

Figure 4 and table below show the dependences of the maximum values of the stream function and vorticity on
the number of the mesh partition, which are obtained by applying fourth order scheme (18) and the second order
monotone Samarskii scheme [3] to the test problem. The upper numbers in the cells of table correspond to the
second order scheme, the lower numbers — to the fourth order scheme. The comparison of the simulations results
shows that the fourth order scheme has significant advantages in the rate of convergence as N — . For exam-
ple, the solution, obtained by the fourth order scheme for N = 100, is not inferior in accuracy to the solution,

a b
1 1

)

0 0 1

Fig. 2. The convection structure for Gr = 10% a — isotherms; b — streamlines
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Fig. 4. The dependence of the maximum values of vorticity |0)|

\"max

b
70 F
50
30
10' 10
N

max

(lines 1, 2) and

. . 1
stream function . (lines 3, 4) on the mesh number N = 7 for Gr = 10° (a) and Gr = 107 (b):

1, 3 — the monotone second-order scheme (Samarskii); 2, 4 — fourth order scheme (18)

10t

max

o

obtained by the second order scheme for N = 300. It means a nine-fold decrease in size of the system of nonlinear
difference equations as well as decrease in the number of iterations to solve this system with the same accuracy.
However, the gain in time, expected due to the nine-fold decrease in the number of nodes as well as due to higher
convergence rate of iteration process for larger mesh steps, is somewhat compensated by the time difference for
the one iteration, which is a 4—5 times higher for scheme (18) than for the scheme of the second order.

Maximum values of the stream function (v, ) and vorticity |(.0|max

depending on the mesh step (%) for Gr = 10’

h L N 1 L L L L L
20 50 100 200 300 400 500 1000
63.505 | 42241 | 39.874 | 39.072 | 38879 | 38800 | 38760 | 38.704
Yinax - 39.840 | 38946 | 38.734 | 38701 | 38.689 | 38.685 | 38.683
o 86445.7 | 108591.1 | 974425 | 94287.3 | 93624.6 | 933772 | 93257.3 | 93088.9
max - 97033.3 | 93580.4 | 931324 | 930653 | 93044.7 | 93036.5 | 93028.7
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The test computations show that the constructed scheme of the higher approximation order becomes ef-
fective at the Rayleigh numbers Ra = GrPr corresponding to the developed laminar convection. Although the
high order scheme significantly complicates a computational algorithm, it could have significant advantages
over monotone schemes of the first and the second order [3; 12; 14; 18] for the Rayleigh numbers close to the
beginning of a convective flow turbulization because it allows to get numerical solutions with a high accuracy
on relatively coarse meshes.

Conclusion

The finite-difference scheme of high order accuracy for the two-dimensional steady-state convection —
diffusion equation is constructed. The scheme defined on the minimal stencil of a uniform mesh, has the
fourth order of approximation and satisfies the maximum principle for any mesh steps satisfied the condition
% < M < /5. The scheme is focused on solving a wide range of applied problems of convection — diffusion

2

such as the gravitational convection, a thermomagnetic convection and a diffusion of particles in magnetic
fluids. The high approximation and stabilization properties, compared with other methods, provide a higher
accuracy with less calculation cost. It is especially important for modeling of convection and diffusion proces-
ses in developed boundary layers with the large gradients of velocity, temperature and particle concentration.
The proposed scheme is tested on the well-known problem of the high-intensity gravitational convection in
the horizontal channel of a square cross-section with the uniform heating from the side. A detailed comparison
with the monotone Samarskii scheme of the second order [3] is performed on the sequences of square meshes
with the number of partitions from 10 to 1000 on each side of the square domain in the whole range of the Ray-
leigh numbers Ra < 5 - 107, corresponding to the laminar convection mode. A significant advantage of the fourth
order scheme in the convergence rate is shown for the decreasing mesh step.
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