Радиология и радиобиология, радиационная безопасность

RADIOLOGY AND RADIOBIOLOGY, RADIATION SAFETY

УДК 621.039; 621.039.52

ИССЛЕДОВАНИЯ НЕЙТРОННО-ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ПОДКРИТИЧЕСКИХ СИСТЕМ НА СТЕНДЕ «ЯЛІНА»

А. И. КИЕВИЦКАЯ¹⁾

¹⁾Международный государственный экологический институт имени А. Д. Сахарова, Белорусский государственный университет, ул. Долгобродская, 23/1, 220070, г. Минск, Беларусь

Настоящая работа сфокусирована на репрезентации исследований нейтронно-физических характеристик подкритических систем на подкритическом стенде «ЯЛІНА». Приводятся новые результаты: обоснована концепция использования низкоэнергетических ускорителей (циклотроны, генераторы нейтронов) для изучения физики и кинетики подкритических систем, а также управляемых ускорителями заряженных частиц высоких энергий и создан успешно функционирующий подкритический стенд, состоящий из двух подкритических сборок, генератора нейтронов, измерительного комплекса и системы жизнеобеспечения. Стенд «ЯЛІНА» не имеет аналогов и является уникальной установкой для получения надежных экспериментальных данных («каталога»), которые требуются для разработки технического проекта индустриального прототипа инновационного подкритического реактора (ADS).

Ключевые слова: подкритические системы; нейтронно-физические характеристики; трансмутация; скорости реакций; подкритический стенд; ядерный топливный цикл; экологические проблемы.

Образец цитирования:

Киевицкая АИ. Исследования нейтронно-физических характеристик подкритических систем на стенде «Яліна». *Журнал Белорусского государственного университета*. Экология. 2019;3:41–50.

Авторы:

Анна Ивановна Киевицкая – доктор физико-математических наук; заведующий кафедрой ядерной и радиационной безопасности.

For citation:

Kiyavitskaya HI. Neutronics investgation of subcritical systems at the Yalina facility. *Journal of the Belarusian State University. Ecology.* 2019;3:41–50. Russian.

Author:

Hanna I. Kiyavitskaya, doctor of science (physics and mathematics); head of the department of nuclear and radiation safe. *kiyavitskaya@iseu.by; hannakiev@gmail.com*

NEUTRONICS INVESTGATION OF SUBCRITICAL SYSTEMS AT THE YALINA FACILITY

H. I. KIYAVITSKAYA^a

^aInternational Sakharov Environmental Institute, Belarusian State University, 23/1 Daŭhabrodskaja Street, Minsk 220070, Belarus

The present work focuses on short description of the research on neutronics of subcritical system at the subcritical facility «YALINA». This work yields a number of innovative results: (a) provides argumentation for the concept of using low-energy accelerators (cyclotrons, neutron generators) for studying physics and kinetics of subcritical systems driven by high-energy particles accelerators; (b) shows the creation of a new functioning subcritical facility consisting of two sub-critical assemblies, a neutron generator, a measurement complex, and a life-support system. The «YALINA» facility is a unique system that has no equivalent across the world. It can be used to obtain reliable experimental data, i.e. a catalogue, that is indispensable for elaborating a technical design for an innovative industrial prototype of a subcritical reactor (accelerator-driven system, aka ADS).

Keywords: subcritical systems; neutronics; transmutation, reaction rates; subcritical facility; nuclear fuel cycle, ecology problems.

Введение

Подкритические системы, управляемые ускорителями заряженных частиц высоких энергий, рассматриваются как наиболее перспективные для решения ключевых проблем атоной энергии (АЭ): 1) безопасность АЭС и установок ядерного топливного цикла (ЯТЦ), 2) экологические проблемы, в том числе связанные с захоронением радиоактивных отходов и использованием отработавшего ядерного топлива (ОЯТ), 3) ограниченные запасы уранового топлива.

Для реализации ADS-систем необходимо решить ряд физических и технических задач [1–2]: 1) выбрать энергию и ток протонного пучка и создать ускоритель с требуемыми параметрами; 2) выбрать материал мишени и создать ее оптимальную конструкцию для получения нейтронов расщепления; 3) разработать схему съема тепла в мишенном блоке; 4) разработать схему и конструкцию подкритического бланкета и обеспечить ядерную безопасность; 5) разработать схему съема тепла в подкритическом бланкете; 6) определить скорости реакций трансмутации долгоживущих нуклидов и скорости их наработки. ADS-система состоит из трех основных компонентов: ускорителя заряженных частиц высоких энергий, мишенного блока и подкритического бланкета. Изучение взаимосвязи между ускорителем и мишенным блоком, а также подкритическим реактором является сложной проблемой. Эта задача может быть разделена на несколько подзадач. В данной работе представлены возможные схема и конструкция системы «мишень – подкритический бланкет» и некоторые вопросы, связанные с обеспечением ядерной безопасности.

К настоящему времени, несмотря на достаточно большое количество теоретических работ, проблема получения наиболее оптимального энергетического спектра нейтронов для трансмутации долгоживущих осколков деления (йод, цезий, стронций, цирконий) и минор-актинидов (нептуний, плутоний, америций, кюрий) остается одной из наиболее актуальных. Это связано с недостаточно точными данными по сечениям взаимодействия нейтронов с радиоактивными ядрами в широком диапазоне энергий от нескольких эВ до 10 ГэВ. Поэтому представляет значительный интерес возможность экспериментальных исследований различных аспектов ADS на основе ускорителей низких энергий (до 30 МэВ) – циклотронов, микротронов, а также ускорителей ионов дейтерия – генераторов нейтронов высокой интенсивности [3-6]. Использование таких установок позволяет проводить экспериментальные исследования с целью: а) изучения поведения реактора при наличии внешнего источника; б) структуры активной зоны и др. для последующего планирования экспериментов на ускорителях высоких энергий. Аналогичная ситуация в свое время имела место и в атомной энергетике. Многие физические характеристики энергетических ядерных реакторов, преимущественно активных зон, изучались и изучаются на критических сборках. Концепция использования низкоэнергетических ускорителей ионов (циклотронов, микротронов, генераторов нейтронов) для изучения физики и кинетики подкритических систем, управляемых внешними источниками, и технологий трансмутации явилась фундаментом при проектировании и сооружении первого в мире уникального ядерно-физического подкритического экспериментального комплекса «ЯЛІНА» [3-6].

Материалы и методы исследования

В процессе прохождения частиц и ядер высоких энергий через вещество можно выделить два этапа, которые отличаются характером протекания реакций, энергией и типом частиц [7–8]. Первый этап связан с интенсивной генерацией адронов в высокоэнергетических ядерных реакциях и их распространением в веществе. Второй этап характеризуется распространением в веществе лишь низкоэнергетических нейтронов $(E_{p} \le 20 \text{ МэВ})$, образованных в реакциях расщепления и деления. Вследствие этого расчет межьядерного каскада сводится к нахождению характеристик низкоэнергетического (E_n ≤ 20 МэВ) источника нейтронов (энергетического и пространственного распределений) с последующим расчетом переноса нейтронов на основе методов, развитых в теории ядерных реакторов. В процессе прохождения высокоэнергетических частиц и ядер через различные среды выделяются две стадии, отличающиеся временем и характером взаимодействия. Первая стадия связана с интенсивной генерацией частиц в высокоэнергетических реакциях расщепления, деления, их распространения в веществе, оканчивающаяся образованием нейтронов с энергией $E_p \le 20$ МэВ. Вторая стадия обусловлена распространением рожденных низкоэнергетических нейтронов. Это означает, что проблему расчета межъядерного каскада можно свести к задаче нахождения характеристик низкоэнергетического нейтронного источника (его энергетического, пространственного и углового распределений) с последующим расчетом переноса нейтронов на основе методов расчета, развитых в теории переноса, а в случае сред с делящимися ядрами – и теории ядерных реакторов. Ядерные реакции в области высоких энергий достаточно корректно описываются в рамках каскадно-экситонной модели, в которой взаимодействие частиц с атомными ядрами трактуется как трехстадийный процесс: каскадная, предравновесная и равновесная стадии. В энергетическом спектре вторичных нейтронов могут быть выделены характерные энергетические диапазоны, соответствующие стадиям ядерных реакций. Например, равновесная стадия ответственна, главным образом, за генерацию низкоэнергетических нейтронов (E_n < 20 МэВ).

При облучении мишеней, содержащих делящиеся ядра (Th, U, Pu, ...), значительный вклад в нейтронную составляющую будут вносить и нейтроны реакций деления. Энергетическое распределение плотности потока нейтронов, безусловно, следует определять материальным составом среды. Очевидно, что с увеличением размера мишени доля частиц высоких энергий уменьшается за счет уменьшения как упругих, так и неупругих взаимодействий. Энергетический спектр нейтронов, вылетающих из мишени из тяжелых элементов, в большей степени будет определяться нейтронами с энергией E_n < 20 МэВ, которые в основном образовываются на медленной испарительной стадии ядерных реакций.

Исходя из механизма предравновесной и каскадной стадий ядерных реакций, которые определяются свойствами двухчастичных N-N и π-N взаимодействий, следует ожидать, что в интервалах энергий, соответствующих этим стадиям реакций, спектры будут также подобны (рис. 1–2).

Рис. 1. Экспериментальные и расчетные спектры нейтронов, вылетающих из свинцовой мишени 15×15×20 см³, при облучении протонами с энергией 0,5 и 1,5 ГэВ. Гистограммы – расчеты по SONET+MCNP4A [11], символы – экспериментальные данные [12]

Fig.1. Experimental and calculated neutron spectra escaped from the lead target $15 \times 15 \times 20$ cm³ at the irradiation by the 0,5 and 1,5 GeV protons. Histograms are the calculations by SONET+MCNP4A [11], symbols – experimental data [12]

Оба распределения содержат два характерных пика в области тепловой энергии и в области энергии выше 10 МэВ, а также достаточно широкую сферу резонансных энергий. Таким образом, первичные исследования по определению скоростей реакций трансмутации можно проводить на подкритических сборках физической мощности, которые достаточно дешевы и безопасны.

В рамках программы работ Международной коллаборации «Энергия-Трансмутация» [11] по исследованию трансмутации ядер ¹²⁹I и ²³⁷Np под действием релятивистских протонов с энергиями 1,5 ГэВ, 3,7 ГэВ и 7,4 ГэВ были проведены эксперименты, которые подтвердили вывод о независимости спектра нейтронов от энергии и типа первичной частицы в протяженных мишенях. Экспериментальная установка (рис. 3) состояла из нейтрон-производящих мишеней из свинца диаметром 8 см и длиной 21 см и из урана и свинца (центральная часть состояла из уранового цилиндра диаметром 3,6 см и длиной 21 см, заключенного в свинцовый контейнер с толщиной стенки 2,2 см). Снаружи мишень окружена парафиновым замедлителем толщиной 6 см, на поверхности которого размещались радиоактивные мишени из ¹²⁹I и ²³⁷Np, а также детекторы из урана и лантана. Радиоактивные мишени, содержащие ¹²⁷I, ¹²⁹I и ²³⁷Np, а также детекторы из урана и лантана, показания которых использовались для коррекции плотности потока нейтронов Ф (E,r,z), из-за несимметричного азимутального распределения первичного пучка протонов располагались на поверхности замедлителя в отверстиях глубиной 1 см и диаметром 1,6 см. Радиоактивные мишени ¹²⁹I (0,425 г) и ¹²⁷I (0,075 г) в форме NaI и ²³⁷Np (0,742 г) в форме NpO₂ находились в закрытых алюминиевых капсулах, геометрия и материальный состав которых также учитывались при расчетах величины скорости трансмутации. На рис. 4 представлены рассчитанные энергетические спектры нейтронов, усредненные по объему La-образца (№ 3) в системе «Рb и U(Pb)замедлитель» для протонных и нейтронных пучков. Данные нормированы на одну частицу первичного пучка. Для всех рассматриваемых случаев имеет место: 1) независимость величины скорости трансмутации от типа первичной частицы и ее энергии; 2) энергетические распределения плотности потока нейтронов в системах «мишень-бланкет» одинаковы.

Рис. 2. Экспериментальные и расчетные спектры нейтронов, вылетающих из свинцовой мишени 15×15×20 см³, при облучении нейтронами с энергией ~14 МэВ. Гистограммы – расчеты по SONET+MCNP4A [11], символы – экспериментальные данные [12]

Fig. 2. Experimental and calculated neutron spectra escaped from the lead target $15 \times 15 \times 20$ cm³ at the irradiation by the ~14 MeV neutrons. Histograms are the calculations by SONET+MCNP4A [11], symbols – experimental data [12]

На рис. 5 представлены расчетные плотности потока нейтронов в экспериментальных каналах уранполиэтиленовой подкритической сборки, управляемой генератором нейтронов. Интенсивность генератора нейтронов в расчетах принята 10^{12} нейтр./с. Наблюдается одна и та же форма спектральных распределений как для высоких (рис. 1, 2), так и для низких энергий (рис. 3–5). Энергетические распределения для представленной подкритической системы отличаются от Ф (r,z,E) для реакторов на тепловых нейтронах, в этом смысле они являются уникальными. Такие спектры характерны для ADS. Обращает на себя внимание слабая зависимость плотности потока от энергии нейтронов в интервале $2 \cdot 10^{-1}$ эВ до 10^5 эВ. Эта особенность, присущая подкритической системе, позволяет получать данные по сечениям взаимодействия в резонансной области, где средние сечения для некоторых нуклидов могут принимать достаточно высокие значения.

Ядерно-физический подкритический стенд «ЯЛІНА» создавался для экспериментального определения и апробации результатов теоретических расчетов нейтронно-физических характеристик (НФХ) инновационных ЯЭУ для выжигания долгоживущих нуклидов и производства энергии. Он состоит из двух подкритических сборок, генератора нейтронов, измерительного комплекса и системы жизнеобеспечения. Генератор нейтронов НГ-12-1 спроектирован и изготовлен в Научно-исследовательском институте электрофизической аппаратуры им. Ефремова (г. Санкт-Петербург) в 1994 г. и пущен в эксплуатацию в 1998 г. (табл. 1). Генератор нейтронов НГ-12-1 представляет собой линейный ускоритель ионов дейтерия с магнитной сепарацией ускоренного пучка и вращающейся титан-тритиевой или титандейтериевой мишенью. Тракт ускорения и транспортировки пучка расположены горизонтально. На рис. 6 представлен общий вид уран-полиэтиленовой сборки. Основные нейтронно-физические характеристики подкритической сборки «ЯЛІНА-Тепловая» представлены в табл. 2, 3 и на рис. 5–7.

Таблица 1

Основные параметры генератора нейтронов НГ-12-1

Table 1

Main parameters of a neutron generator NG-12-1					
Наименование параметра	Размерность	Титан-дейтериевая мишень	Титан-тритиевая мишень		
Максимальный выход нейтронов	н/с	2,3·10 ¹⁰	10 ¹²		
Энергия нейтронов	МэВ	2,5	14		
Ускоряющее напряжение	кВ	250	250		
Диаметр пучка на мишени	MM	30	30		
Максимальный ток пучка атомарных ионов	мА	10	10		
Режимы работы		Непрерывный	Непрерывный		

20 cm

Fig. 3. Layout of the Np, I, La samples in lead-paraffine target irradiated by 1,5: 3,7 and 7,4 GeV protons

Рис. 4. Рассчитанные энергетические спектры нейтронов, усредненные по объему La-образца (№ 3) в системе «Рb и U(Pb)-замедлитель», для протонных и нейтронных пучков. Данные нормированы на одну частицу первичного пучка

Fig. 4. Calculated neutron spectra averaged by the La-sample (N_{2} 3) in the «Pb and U(Pb)-moderator» for the proton and neutron beam. Data is normalized per one primary beam particle

Рис. 5. Плотность потока нейтронов в экспериментальных каналах уран-полиэтиленовой подкритической сборки, управляемой генератором нейтронов. Интенсивность генератора нейтронов в расчетах принята 10¹² нейтр./с

Fig. 5. Neutron flux density in the experimental channels of the uranium-polyethylene assembly driven by neutron generator. In the calculations intensity of neutron generator was 10^{12} n/s

Таблица 2

Основные нейтронно-физические характеристики подкритической сборки «ЯЛІНА-Тепловая»

Table 2

Main neutronics of the subcritical assembly «YALINA-Thermal»

Параметр	Значение
$k_{_{3\Phi}}$	0,96504±0,00004
β_{ab}	0,00781±0,00006
Мощность энерговыделения для (d-d) режима при интенсивности 3,3·10 ⁹ нейтр./с, Вт	0,6
Мощность энерговыделения для (d-t) режима при интенсивности 10 ¹² нейтр./с, Вт	100

Fig. 6. Dependence of effective multiplication factor SA YALINA-Thermal on thr number of loading fuel rods: calculations by MCNP 4A code; experimental data

Рис. 7. Радиальное распределение плотностей потока нейтронов в канале ЕС1 (R=5 см) ПКС «ЯЛІНА-Тепловая» для ²⁵²Cf-источника: --- нейтроны с E_n > 0,75 МэВ; --•-- нейтроны с энергией < 1 эВ; нейтроны с энергией >100 эВ; – нейтроны всех энергий;

--- экспериментальные данные, измеренные ³Не-детектором

Fig. 7. Neutron density flux radial distributions in the experimental challel EC1 (R=5 cm) SA «YALINA-Thermal» for ²⁵²Cf-source:

--- $E_n > 0.75$ MeV neutrons; --- < 1 eV neutrons;

..... > 100 eV neutrons; - all neutrons;

--- experimental data by ³He-detector

Наиболее важными аспектами при функционировании подкритических установок являются: 1) проблема мониторирования уровня подкритичности в режиме реального времени, 2) выбор спектра для выжигания МА и ПД. Для решения перечисленных задач были инициированы «бенчмарки» или «реперные эксперименты» по изучению нейтронной физики и кинетики подкритических систем, управляемых внешними источниками, для понимания процессов трансмутации, взаимосвязи внешнего источника и размножающей подкритической системы. Расчетно-экспериментальные «бенчмарки» проводятся с целью получения независимых данных разными научными центрами по различным компьютерным программам с использованием различных библиотек оцененных ядерных данных и сравнением с экспериментальными результатами (рис. 8). Подробное описание «реперных экспериментов» на уран-полиэтиленовой подкритической сборке приводится в работах [13-14] и на сайте МАГАТЭ [15]. Похожие исследования проводились на критической сборке МАЗУРКА (Франция, Кадараш) по программам MUSE в рамках 5-ой и 6-ой Европейских рамочных программ [16].

Таблица 3

Участники аналитического бенчмарка на ПКС «ЯЛІНА-Тепловая»

Table 3

Страна	Институт	Код	Библиотека
Аргентина	Instituto Balseiro – Centro Atómico Bariloche – Comisión Nacional de Energía Atómica	MCNP5	ENDF/B-VI.6
Беларусь	Joint Institute for Power&Nuclear Research-SOSNY	MCNP4c	ENDF/B-VI.6
Индия	Theoretical Physics Division – Bhabha Atomic Research Centre.	ATES3	WIMS
Корея	Seoul National University	McCARD	ENDF/B-VII.0
Польша	Institute of Atomic Energy	MCNP5	ENDF/B-VI.8
Сербия	Vinca Institute of nuclear sciences	MCNP5 1.2	ENDF/B-VI.6
США	Arganna National Laboratory	ERANOS	ENDF/B-VI.8
	Argonne ivational Laboratory	ERANOS	JEF3.1
США	Arganna National Laboratory	MCNPX	ENDF/B-VI.6
	Argonne Mational Laboratory	PARTISN	ENDF/B-VI.8

Participants of the analytical benchmark at «YALINA-Thermal»

Yalina thermal configuration

Рис. 8. Зависимость эффективного коэффициента размножения к_{эфф} для ПКС «ЯЛІНА-Тепловая» от количества загруженных твэлов Fig. 8. Dependence of effective multiplication factor kef for SA «YALINA-Thermal» on the number of loaded fuel rods

Заключение

Вработе изложено теоретическое и экспериментальное обоснование применения низкоэнергетических ускорителей типа циклотронов или ускорителей ионов (нейтронных генераторов) для изучения физики и кинетики подкритических систем, управляемых ускорителями заряженных частиц высоких энергий. Представлена физическая модель и конструкция первой в мире подкритической сборки с тепловым спектром нейтронов ПКС «ЯЛІНА-Тепловая», управляемой генератором нейтронов НГ-12-1, на основе концепции, предложенной в ГНУ ИРФХП (в настоящее время – ГНУ «ОИЯИ-Сосны») Национальной академии наук Беларуси. Характерной особенностью ПКС «ЯЛІНА» является оригинальная конструкция, позволяющая изменять конфигурацию активной зоны для проведения экспериментальных исследований с различными уровнями подкритичности, использовать различные типы внешних источников нейтронов (252 Cf; d(d,n)³He или d(t,n)⁴He), размещать их на различных расстояниях от центра активной зоны; перемещать сборку в трех измерениях. Представлены также некоторые результаты экспериментальных исследований.

Библиографические ссылки

1. OECD/NEA, Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. In: *A Comparative Study*. [Place unknown]; 2002.

2. Salvatores M, Slessarev I. & Uemastu M. Global Physics Approach to Transmutation of Radioactive Nuclei. *Nuclei Science* & *Technology*. 1994;116(1):215–227.

3. Киевицкая АИ, Фоков ЮГ. Подкритический стенд «ЯЛІНА» для изучения нейтронно-физических характеристик подкритических систем, управляемых ускорителями. Вопросы атомной науки и техники. Серия. Термоядерный синтез. 2015; 38:53–58.

4. Kiavitskaya H, Chigrinov S, Routkovskaya C, Serafimovich I, et al. Experimental investigations on neutronics of the Accelerator Driven Transmutation Technologies at the subcritical facility «Yalina». In: *ARWIF Workshop; 2001 October 22–25; Chester; Great Britain*. Chester: [publisher unknown]; 2001.

5. Kiyavitskaya, A, Chigrinov S, Routkovskaya C, Serafimovich V, Mazanik S. Experimental Investigations on Neutronics of the Accelerator Driven Transmutation Technologies at the Subcritical Facility «YALINA». In: *Proceedings of the ANA/ADTTA; 2001 November 11–15; Reno, Nevada*. Reno: [publisher unknown]; 2001.

6. Kiayvitskaya H, Bournos V, Serafimovich I, Routkovskaya C, Fokov Y. Application of the low energy accelerators to study neutronics of ADSIn. In: *Proceedings of the International Symposium on Utilization of Accelerators; 2005 June 5–9; Croatia, Dubrovnik.* Dubrovnik: [publisher unknown]; 2005. p. 64.

7. Chigrinov S, Kievitskaya A, Rakhno I. Computer study of interaction of high energy particles with matter. Spallation neutron production in Pb- and W-targets. In: *Proceedings of the Ninth International Conference on Emerging Nuclear Energy Systems. Tel-Aviv, Israel*; 1998 June 28 – July 2. Tel-Aviv: [publisher unknown]; 1998. p. 241–248.

8. Kievitskaia A, Chigrinov S, Gudima K, Petlitski V. π -mesons and Nucleon Yields from Light Targets Irradiated by Deuterium and Tritium Nuclei Beams at Energies 1 GeV/nucleon. *Hyperfine Interactions*. 1993. Volume 77. p. 149–159.

9. Kievitskaia A, Chigrinov S, Petlitskij V. Relevance of Mesocatalytic Hybrid Reactors for Accumulation of Fissile Nuclei and Energy Balance Analysis. *Nuclear Fusion*. 1993;33(5): 815–820.

10. Chigrinov S, Rakhno I, Kiyavitskaya A.The Code SONET to calculate accelerator driven system performance. In: Procttdings of the 3rd International Conference on Accelerator Driven Transmutation Technologies and Application (99'ADTTA). Praha (Pruhonice), Czech Republic; 1999 June 7–11. Praha: [publisher unknown]; 1999. p. 1–8.

11. Kievitskaia A, Chigrinov S, Rakhno I. Monte Carlo calculation of relativistic protons interaction with extended targets and transmutation of Iodine-129 and Neptunium-237. In: *Proceedings of the International Conference on the Physics of Nuclear Science and Technology; 1998 October 5–8; New York, USA.* New York: [publisher unknown]; 1998. p. 1455–1461.

12. Takada H, Meigo S, Sasa T, NishidaT, et al. Accelerator driven systems: Energy generation and transmutation of nuclear waste. In: *Status report*. Vienna: IAEA;1997. p. 117.

13. Gudowski W, Stanculescu A, Kiavitskaya H, Perrson C-M, Routkovskaya C. IAEA Benchmark on Accelerator-Driven Systems. In: ANS Topical Meeting on Accelerator Applications/Accelerator Driven Transmutation Technologies Applications'01; 2001 November 11–15; Reno, Nevada. Reno: [publisher unknown]; 2001.

14. Gudowski W, Stanculescu A, Kiavitskaya H, Abderrahim H Ait, Gohar Y, Gonzales E. Research Coordinated Meeting of the Coordinated Research Project on Analytical and Experimental Benchmark Analyses of Accelerator Driven System. In: *IAEA*, *Working Material*; 2005 December 5–9; Minsk, Belarus. Vienna: IAEA; 2006.

15. Kiavitskaya H, coordinator.YALINA-Booster Benchmark. Specifications for the IAEA Coordinated Research Projects on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems and Low Enriched Uranium Fuel Utilization in Accelerator Driven Sub-Critical Assembly Systems. IAEA [Internet]. 2007 [cited 2019 September 5]. Available from: http://www-nfcis.iaea.org.

16. Villamari D, Gonzalez E. Benchmark on Computer Simulation of MASURCA Critical and Subcritical experiments. In: *Final Report. MUSE-4 Benchm ark.* Paris: OECD; 2006. 269 p. NEA 4439.

References

1. OECD/NEA, Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. In: A Comparative Study. [Place unknown]; 2002.

2. Salvatores M, Slessarev I. & Uemastu M. Global Physics Approach to Transmutation of Radioactive Nuclei. *Nuclei Science* & *Technology*. 1994;116(1):215–227.

3. Kiayvitskaya H, Fokov YuG. Podkriticheskiy stend «Yalina» dla izucheniy nejronno-fizicheskikh kharakteristik podkriticheskikh system, upravlaemykh uskoritelami [The subcritical facility Yalina to study netronics of the subcritical systems driven by accelerators]. Problems of atomic science and technology. Series Thermonuclear fusion. 2015;38(3):53–58. Russian.

4. Kiavitskaya H, Chigrinov S, Routkovskaya C, Serafimovich I, et al. Experimental investigations on neutronics of the Accelerator Driven Transmutation Technologies at the subcritical facility «Yalina». In: *ARWIF Workshop; 2001 October 22–25; Chester, Great Britain.* Chester: [publisher unknown]; 2001.

5. Kiyavitskaya, A, Chigrinov S, Routkovskaya C, Serafimovich V, Mazanik S. Experimental Investigations on Neutronics of the Accelerator Driven Transmutation Technologies at the Subcritical Facility «YALINA». In: *Proceedings of the ANA/ADTTA; 2001* November 11–15; Reno, Nevada. Reno: [publisher unknown]; 2001.

6. Kiayvitskaya H, Bournos V, Serafimovich I, Routkovskaya C, Fokov Y. Application of the low energy accelerators to study neutronics of ADSIn. In: *Proceedings of the International Symposium on Utilization of Accelerators; 2005 June 5–9; Croatia, Dubrovnik.* Dubrovnik: [publisher unknown]; 2005. p. 64.

7. Chigrinov S, Kievitskaya A, Rakhno I. Computer study of interaction of high energy particles with matter. Spallation neutron production in Pb- and W-targets. In: *Proceedings of the Ninth International Conference on Emerging Nuclear Energy Systems. Tel-Aviv, Israel*; 1998 June 28 – July 2. Tel-Aviv; [publisher unknown]; 1998. p. 241–248.

8. Kievitskaia A, Chigrinov S, Gudima K, Petlitski V. π-mesons and Nucleon Yields from Light Targets Irradiated by Deuterium and Tritium Nuclei Beams at Energies 1 GeV/nucleon. *Hyperfine Interactions*. 1993. Volume 77. p. 149–159.

9. Kievitskaia A, Chigrinov S, Petlitskij V. Relevance of Mesocatalytic Hybrid Reactors for Accumulation of Fissile Nuclei and Energy Balance Analysis. *Nuclear Fusion*. 1993;33(5):815–820.

10. Chigrinov S, Rakhno I, Kiyavitskaya A. The Code SONET to calculate accelerator driven system performance. In: *Procttdings of the* 3rd *International Conference on Accelerator Driven Transmutation Technologies and Application (99'ADTTA). Praha (Pruhonice),* Czech *Republic; 1999 June 7–11.* Praha: [publisher unknown]; 1999. p. 1–8.

11. Kievitskaia A, Chigrinov S, Rakhno I. Monte Carlo calculation of relativistic protons interaction with extended targets and transmutation of Iodine-129 and Neptunium-237. In: *Proceedings of the International Conference on the Physics of Nuclear Science and Technology; 1998 October 5–8; New York, USA.* New York: [publisher unknown]; 1998. p. 1455–1461.

12. Takada H, Meigo S, Sasa T, NishidaT, et al. Accelerator driven systems: Energy generation and transmutation of nuclear waste. In: *Status report.* Vienna: IAEA;1997. p. 117.

13. Gudowski W, Stanculescu A, Kiavitskaya H, Perrson C-M, Routkovskaya C. IAEA Benchmark on Accelerator-Driven Systems. In: ANS Topical Meeting on Accelerator Applications/Accelerator Driven Transmutation Technologies Applications'01; 2001 November 11–15; Reno, Nevada. Reno: [publisher unknown]; 2001.

14. Gudowski W, Stanculescu A, Kiavitskaya H, Abderrahim H Ait, Gohar Y, Gonzales E. Research Coordinated Meeting of the Coordinated Research Project on Analytical and Experimental Benchmark Analyses of Accelerator Driven System. In: *IAEA, Working Material; 2005 December 5–9; Minsk, Belarus.* Vienna: IAEA; 2006.

15. Kiavitskaya H, coordinator.YALINA-Booster Benchmark. Specifications for the IAEA Coordinated Research Projects on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems and Low Enriched Uranium Fuel Utilization in Accelerator Driven Sub-Critical Assembly Systems. IAEA [Internet]. 2007 [cited 2019 September 5]. Available from: http://www-nfcis.iaea.org.

16. Villamari D, Gonzalez E. Benchmark on Computer Simulation of MASURCA Critical and Subcritical experiments. In: *Final Report. MUSE-4 Benchmark*. Paris: OECD; 2006. 269 p. NEA 4439.

Статья поступила в редколлегию 28.08.2019. Received by editorial board 28.08.2019.