

Home Search Collections Journals About Contact us My IOPscience

Continued fractions and S-units in hyperelliptic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 Russ. Math. Surv. 63 357 (http://iopscience.iop.org/0036-0279/63/2/L06)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.128.207.120 The article was downloaded on 09/03/2011 at 00:49

Please note that terms and conditions apply.

Uspekhi Mat. Nauk 63:2 157-184

COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY

Continued fractions and S-units in hyperelliptic fields

V.V. Benyash-Krivets and V.P. Platonov

The aim of this note is twofold: to present some results about continued fractions in function fields and to show how continued fractions can be used to find fundamental S-units in hyperelliptic fields.

Let k be an arbitrary field and let k(x) be the field of rational functions of one variable over k. For a polynomial v = x - a, denote by $|\cdot| = |\cdot|_v$ the valuation corresponding to v. The completion of k(x) with respect to the valuation v can be identified with the field k((v)) of formal power series. The extension of $|\cdot|$ to k((v)) is denoted by $|\cdot|$ as before.

Continued fractions in function fields for the case of the valuation $|\cdot|_{\infty}$ were first introduced by E. Artin [1]. Here we consider the case of the valuation $|\cdot|_{\infty}$. For an element $\beta = \sum_{i=-s}^{\infty} d_i v^i \in k((v))$ we define $[\beta] = \sum_{i=-s}^{0} d_i v^i \in k[v^{-1}]$. Let $a_0 = [\beta]$. If $\beta - a_0 \neq 0$, then let $\beta_1 = 1/(\beta - a_0) \in k((v))$ and $a_1 = [\beta_1]$. The elements a_i and β_i are defined inductively: if $\beta_{i-1} - a_{i-1} \neq 0$, then $\beta_i = 1/(\beta_{i-1} - a_{i-1})$ and $a_i = [\beta_i]$. This process terminates if and only if $\beta \in k(v)$. We use the standard abbreviated notation $\beta = [a_0; a_1, a_2, ...]$ for the continued fraction.

We define elements $p_i, q_i \in k[v^{-1}]$ by induction. Let $p_{-2} = 0$, $p_{-1} = 1$, $q_{-2} = 1$, and $q_{-1} = 0$; for $n \ge 0$ let $p_n = a_n p_{n-1} + p_{n-2}$ and $q_n = a_n q_{n-1} + q_{n-2}$. Then $p_n, q_n \in k[v^{-1}]$ and $p_n/q_n = [a_0; a_1, \ldots, a_n]$ for $n \ge 0$. For $n \ge -1$, the following relations hold:

$$q_n p_{n-1} - p_n q_{n-1} = (-1)^n, \quad q_n \beta - p_n = \frac{(-1)^n}{q_n \beta_{n+1} + q_{n-1}}, \quad \beta = \frac{p_n \beta_{n+1} + p_{n-1}}{q_n \beta_{n+1} + q_{n-1}}.$$
 (1)

The fraction p_n/q_n is called the *n*th convergent of β . It is not difficult to show that

$$\lim_{n \to \infty} \frac{p_n}{q_n} = \beta.$$

By construction, $|a_n| = |\beta_n| < 0$. The following relations are easily derived from (1) by induction:

$$|q_n| = \sum_{j=1}^n |a_j|, \qquad |q_n\beta - p_n| = -|q_{n+1}| > -|q_n|.$$
(2)

Let us introduce a notion of best approximation. A fraction p/q with $p, q \in k[v^{-1}]$ and $q \neq 0$ is a best approximation of β if $|\beta - p/q| > |\beta - a/b|$ for any other fraction a/b with $a, b \in k[v^{-1}]$ and $b \neq 0$ such that $a/b \neq p/q$ in k(v) and $|b| \ge |q|$.

Proposition 1. A reduced rational fraction p/q with $p, q \in k[v^{-1}]$ and $q \neq 0$ is a best approximation of β if and only if $|\beta - p/q| > -2|q|$ (equivalently, $|q\beta - p| > -|q|$).

Proposition 1 and the relations (2) immediately imply that the *n*th convergent p_n/q_n of β is a best approximation of β . The following theorem asserts that the converse is true as well.

AMS 2000 Mathematics Subject Classification. Primary 11A55; Secondary 12E20. DOI 10.1070/RM2008v063n02ABEH004519.

Theorem 1. If a/b is a best approximation of β , then there exist a convergent p_n/q_n of β and a constant $c \in k^*$ such that $a = cp_n$ and $b = cq_n$.

One can show in a standard way that if the continued fraction $[a_0; a_1, a_2, ...]$ for β is periodic, then β is a quadratic irrationality. In the case of an infinite field k, the converse of this statement does not always hold [2]. In what follows we assume that $k = \mathbb{F}_q$ is a field with q elements and that the characteristic of k is not equal to 2. We have the following result.

Proposition 2. If $\beta \in k((v))$ is a quadratic irrationality, then the continued fraction for β is periodic.

We show below how continued fractions can be used to find fundamental S-units in hyperelliptic fields. Let $d(x) = b_0 x^{2n+1} + b_1 x^{2n} + \cdots + b_{2n+1} \in k[x]$, where $b_0 \neq 0$, be a square-free polynomial, and let $K = k(x)(\sqrt{d})$. Assume that our valuation $|\cdot| = |\cdot|_v$ has two extensions $|\cdot|_1$ and $|\cdot|_2$ to K. The valuation $|\cdot|_{\infty}$ has a unique extension to K. Let $S = \{|\cdot|_{\infty}, |\cdot|_1\}$, let \mathcal{O}_S be the ring of S-integers in K, and let $U_S = \mathcal{O}_S^*$ be the group of S-units of the field K. It is known that the group U_S is the direct product of the group k^* and a free Abelian group G of rank 1. A generator of the group G is called a fundamental S-unit.

An effective algorithm for computing a fundamental S-unit was found in [3]. In the classical case of a quadratic extension $L = \mathbb{Q}(\sqrt{d})$ of \mathbb{Q} , one can find a fundamental unit of L using the continued fraction expansion of \sqrt{d} or $(\sqrt{d}-1)/2$. Our aim is to show that also in the case of a hyperelliptic field K one can find a fundamental S-unit using the continued fraction method. It is proved in [3] that to compute a fundamental S-unit it is necessary to find the minimal positive integer m such that the norm equation

$$f^2 - g^2 d = av^m, (3)$$

where $a \in k^*$, is soluble in polynomials $f, g \in k[v]$ with $g \neq 0$. Then either $f + g\sqrt{d}$ or $f - g\sqrt{d}$ is a fundamental S-unit. The following theorem provides an algorithm for determining a fundamental S-unit by means of continued fractions.

Theorem 2. Let m be the minimal positive integer such that the norm equation (3) is soluble in polynomials $f, g \in k[v]$ with $g \neq 0$.

1. If m is odd, then $f/g = p_n/q_n$ for some convergent p_n/q_n of \sqrt{d} .

2. If m = 2t is even, then there exists a divisor h of the polynomial d with the following properties: i) $1 \leq \deg h \leq (\deg d - 1)/2$; ii) the equation

$$hf_1^2 - \frac{d}{h}g_1^2 = bv^t, (4)$$

where $b \in k^*$, is soluble in polynomials $f_1, g_1 \in k[v]$, and $f_1/g_1 = p_n/q_n$ for some convergent p_n/q_n of \sqrt{d}/h . Conversely, if $f_1, g_1 \in k[x]$ is a solution of (4), then the polynomials f and g defined by $f = hf_1^2 + (d/h)g_1^2$ and $g = 2f_1g_1$ are solutions of the norm equation (3).

Bibliography

- [1] E. Artin, Math. Z. 19:1 (1924), 153-206.
- [2] W. W. Adams and M. J. Razar, Proc. London Math. Soc. (3) 41:3 (1980), 481–498.

 [3] В.В. Беняш-Кривец, В.П. Платонов, Докл. PAH 417:4 (2007), 446–450; English transl., V.V. Benyash-Krivets and V.P. Platonov, Dokl. Math. 76:3 (2007), 886–890.

V.V. Benyash-Krivets

Belarusian State University *E-mail*: benyash@bsu.by Presented by D. V. Anosov Accepted 12/FEB/08 Translated by THE AUTHORS

V.P. Platonov

Scientific Research Institute for Systems Analysis, Russian Academy of Sciences *E-mail*: platonov@niisi.ras.ru