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Continued fractions and S-units in hyperelliptic fields

V.V. Benyash-Krivets and V.P. Platonov

The aim of this note is twofold: to present some results about continued fractions
in function fields and to show how continued fractions can be used to find fundamental
S-units in hyperelliptic fields.

Let k be an arbitrary field and let k(x) be the field of rational functions of one variable
over k. For a polynomial v = x − a, denote by | · | = | · |v the valuation corresponding
to v. The completion of k(x) with respect to the valuation v can be identified with the
field k((v)) of formal power series. The extension of | · | to k((v)) is denoted by | · | as
before.

Continued fractions in function fields for the case of the valuation | · |∞ were first
introduced by E. Artin [1]. Here we consider the case of the valuation | · |v. For an
element β =

∑∞
i=−s div

i ∈ k((v)) we define [β] =
∑0

i=−s div
i ∈ k[v−1]. Let a0 = [β]. If

β − a0 ̸= 0, then let β1 = 1/(β − a0) ∈ k((v)) and a1 = [β1]. The elements ai and βi are
defined inductively: if βi−1 − ai−1 ̸= 0, then βi = 1/(βi−1 − ai−1) and ai = [βi]. This
process terminates if and only if β ∈ k(v). We use the standard abbreviated notation
β = [a0; a1, a2, . . . ] for the continued fraction.

We define elements pi, qi ∈ k[v−1] by induction. Let p−2 = 0, p−1 = 1, q−2 = 1, and
q−1 = 0; for n > 0 let pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2. Then pn, qn ∈ k[v−1]
and pn/qn = [a0; a1, . . . , an] for n > 0. For n > −1, the following relations hold:

qnpn−1 − pnqn−1 = (−1)n, qnβ − pn =
(−1)n

qnβn+1 + qn−1
, β =

pnβn+1 + pn−1

qnβn+1 + qn−1
. (1)

The fraction pn/qn is called the nth convergent of β. It is not difficult to show that

lim
n→∞

pn

qn
= β.

By construction, |an| = |βn| < 0. The following relations are easily derived from (1) by
induction:

|qn| =
n∑

j=1

|aj |, |qnβ − pn| = −|qn+1| > −|qn|. (2)

Let us introduce a notion of best approximation. A fraction p/q with p, q ∈ k[v−1] and
q ̸= 0 is a best approximation of β if |β − p/q| > |β − a/b| for any other fraction a/b with
a, b ∈ k[v−1] and b ̸= 0 such that a/b ̸= p/q in k(v) and |b| > |q|.

Proposition 1. A reduced rational fraction p/q with p, q ∈ k[v−1] and q ̸= 0 is a best
approximation of β if and only if |β − p/q| > −2|q| (equivalently, |qβ − p| > −|q|).

Proposition 1 and the relations (2) immediately imply that the n th convergent pn/qn

of β is a best approximation of β. The following theorem asserts that the converse is true
as well.
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Theorem 1. If a/b is a best approximation of β, then there exist a convergent pn/qn of
β and a constant c ∈ k∗ such that a = cpn and b = cqn.

One can show in a standard way that if the continued fraction [a0; a1, a2, . . . ] for β is
periodic, then β is a quadratic irrationality. In the case of an infinite field k, the converse
of this statement does not always hold [2]. In what follows we assume that k = Fq is
a field with q elements and that the characteristic of k is not equal to 2. We have the
following result.

Proposition 2. If β ∈ k((v)) is a quadratic irrationality, then the continued fraction
for β is periodic.

We show below how continued fractions can be used to find fundamental S-units in
hyperelliptic fields. Let d(x) = b0x

2n+1 + b1x
2n + · · · + b2n+1 ∈ k[x], where b0 ̸= 0, be

a square-free polynomial, and let K = k(x)(
√

d ). Assume that our valuation | · | = | · |v
has two extensions | · |1 and | · |2 to K. The valuation | · |∞ has a unique extension to K.
Let S = {| · |∞, | · |1}, let OS be the ring of S-integers in K, and let US = O∗S be the
group of S-units of the field K. It is known that the group US is the direct product of
the group k∗ and a free Abelian group G of rank 1. A generator of the group G is called
a fundamental S-unit.

An effective algorithm for computing a fundamental S-unit was found in [3]. In the
classical case of a quadratic extension L = Q(

√
d ) of Q, one can find a fundamental unit

of L using the continued fraction expansion of
√

d or (
√

d− 1)/2. Our aim is to show that
also in the case of a hyperelliptic field K one can find a fundamental S-unit using the
continued fraction method. It is proved in [3] that to compute a fundamental S-unit it is
necessary to find the minimal positive integer m such that the norm equation

f2 − g2d = avm, (3)

where a ∈ k∗, is soluble in polynomials f, g ∈ k[v] with g ̸= 0. Then either f + g
√

d
or f − g

√
d is a fundamental S-unit. The following theorem provides an algorithm for

determining a fundamental S-unit by means of continued fractions.

Theorem 2. Let m be the minimal positive integer such that the norm equation (3) is
soluble in polynomials f, g ∈ k[v] with g ̸= 0.

1. If m is odd, then f/g = pn/qn for some convergent pn/qn of
√

d .

2. If m = 2t is even, then there exists a divisor h of the polynomial d with the following
properties : i) 1 6 deg h 6 (deg d− 1)/2; ii) the equation

hf2
1 −

d

h
g2
1 = bvt, (4)

where b ∈ k∗, is soluble in polynomials f1, g1 ∈ k[v], and f1/g1 = pn/qn for some conver-
gent pn/qn of

√
d/h. Conversely, if f1, g1 ∈ k[x] is a solution of (4), then the polynomials f

and g defined by f = hf2
1 +(d/h)g2

1 and g = 2f1g1 are solutions of the norm equation (3).
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