MATHEMATICS =

Continued Fractions and S-Units in Function Fields

V. V. Benyash-Krivets^a and Academician V. P. Platonov^b

Received July 17, 2008

DOI: 10.1134/S1064562408060082

The purpose of this paper is two-fold: to present some results on continued fractions in function fields and show how continued fractions can be applied to find fundamental *S*-units in hyperelliptic fields.

Let *k* be an arbitrary field, and let k(x) be the field of rational functions of one variable over *k*. For an irreducible polynomial $v \in k[x]$, $|\cdot| = |\cdot|_v$ denotes the corresponding valuation, $O_v = \{z \in k(x) | |z| \ge 0\}$ denotes the corresponding valuation ring, and $p_v = \{z \in k(x) | |z| > 0\}$ is the ideal of the valuation $|\cdot|$. The residue field O_v/p_v coincides with k[x]/(v) and is a finite extension of *k*. Let $k(x)_v$ be the completion of the field k(x) in the valuation $|\cdot|$. We denote the extension of $|\cdot|$ to k(x) by the same symbol $|\cdot|$. Let Σ be the system of coset representatives for the ideal (v) in k[x] consisting of all polynomials of degree less than degv. Then, each element $z \in k(x)_v$ has a unique representation in the form of a formal power

series $z = \sum_{i=s} a_i v^i$, where $s \in \mathbb{Z}$ and $a_i \in \Sigma$. If degv = 1,

then the field $k(x)_v$ can be identified with the field k((v)) of formal power series.

Continued fractions in function fields in the case of the valuation $|\cdot|_{\infty}$ were introduced by Artin [1]. We consider the general case of an arbitrary valuation $|\cdot| = |\cdot|_{\nu}$. Let $\beta \in k(x)_{\nu}$. We represent β as a formal power series

 $\beta = \sum_{i=s}^{\infty} d_i v^i, \text{ where } d_i \in \Sigma, \text{ and set } [\beta] = \sum_{i=s}^{0} d_i v^i \text{ if } s \le 0$ or $[\beta] = 0 \text{ if } s > 0.$ Let $a_0 = [\beta].$ If $\beta - a_0 \ne 0$, then we set $\beta_1 = \frac{1}{\beta - a_0} \in k(x)_v \text{ and } a_1 = [\beta_1].$ Then, by induction, we define elements a_i and β_i ; namely, if $\beta_{i-1} - a_{i-1} \ne 0$,

e-mail: platonov@niisi.ras.ru

then we set
$$\beta_i = \frac{1}{\beta_{i-1} - a_{i-1}} \in k(x)_v$$
 and $a_i = [\beta_i]$. It is

easy to show that the process terminates if and only if $\beta \in k(x)$. We use the standard shorthand notation $\beta = [a_0, a_1, a_2, ...]$ for continued fractions. By construction, $\beta_n = [a_n, a_{n+1}, ...]$.

Let us define elements $p_i, q_i \in k(x)$ by induction. We set $p_{-2} = 0, p_{-1} = 1, q_{-2} = 1, q_{-1} = 0$, and

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}$$
 (1)

for $n \ge 0$. We have $\frac{p_n}{q_n} = [a_0, a_1, a_2, ..., a_n]$ for $n \ge 0$. It can be shown in a standard way that, for $n \ge -1$,

$$q_n p_{n-1} - p_n q_{n-1} = (-1)^n, (2)$$

$$q_n\beta - p_n = \frac{(-1)^n}{q_n\beta_{n+1} + q_{n-1}},$$
(3)

$$\beta = \frac{p_n \beta_{n+1} + p_{n-1}}{q_n \beta_{n+1} + q_{n-1}}.$$
(4)

The fraction $\frac{p_n}{q_n}$ is called the *n*th convergent of β . By construction, $|a_n| = |\beta_n| < 0$ for $n \ge 1$. From (1) the following relation easily follows by induction:

$$|q_n| = |a_n| + |q_{n-1}| = \sum_{j=1}^n |a_j|,$$
 (5)

and (3) implies

$$|q_n\beta - p_n| = -|q_{n+1}| = -|a_{n+1}| - |q_n| > -|q_n|$$
(6)

or, equivalently,

$$\left|\beta - \frac{p_n}{q_n}\right| > -2|q_n|. \tag{7}$$

Thus, $\lim_{n \to \infty} \frac{p_n}{q_n} = \beta$. Let us introduce the notion of best approximation to β . If $\frac{a}{b} \in k(x)$, where $a, b \in k[x]$ are coprime polynomials, then we decompose a and b into

^a Belarussian State University, pr. Nezavisimosti 4, Minsk, 220030 Belarus e-mail: benyash@bsu.by

^b Research Institute for System Studies, Russian Academy of Sciences, Nakhimovskii pr. 36, korp. 1, Moscow, 117218 Russia

powers of v as $a = a_0 + a_1v + ... + a_sv^s$ and $b = b_0 + b_1v + ... + b_tv^t$, where $a_i, b_i \in \Sigma$, $a_s \neq 0$, and $b_t \neq 0$. Dividing *a* and *b* by v^{*r*}, where $r = \max\{s, t\}$, we represent the fraction $\frac{a}{b}$ in the form

$$\frac{a}{b} = \frac{c_{-p} \mathbf{v}^{-p} + \dots + c_0}{d_{-q} \mathbf{v}^{-q} + \dots + d_0},\tag{8}$$

where c_i , $d_i \in \Sigma$; $c_{-p} \neq 0$; $d_{-q} \neq 0$; and c_0 and d_0 are not both zero. In what follows, we assume that all elements of k(x) are written in the form (8).

Definition. An irreducible fraction $\frac{p}{q} \in k(x)$ is a best approximation to β if, for any other irreducible fraction $\frac{a}{b} \neq \frac{p}{q}$ such that $|b| \ge |q|$, $\left|\beta - \frac{p}{q}\right| > \left|\beta - \frac{a}{b}\right|$ (or, equivalently, $|q\beta - p| > |b\beta - a|$).

Proposition 1. A fraction $\frac{p}{q}$ is a best approximation

to
$$\beta$$
 if and only if $\left|\beta - \frac{p}{q}\right| > -2|q|$ (or $|q\beta - p| > -|q|$).

Proof. Let us write the elements p, q, β , and $q\beta$ as formal power series in ν :

$$p = \sum_{i=-r}^{0} a_i \mathbf{v}^i, \quad q = \sum_{i=-s}^{0} b_i \mathbf{v}^i, \quad \beta = \sum_{i=m}^{\infty} c_i \mathbf{v}^i,$$
$$q\beta = \sum_{i=m-s}^{\infty} d_i \mathbf{v}^i,$$

where $a_i, b_i, c_i, d_i \in \Sigma$, $a_{-r} \neq 0$, and $b_{-s} \neq 0$. Let $n = \deg v$. Then,

$$a_{i} = \sum_{j=0}^{n-1} a_{ij} x^{j}, \quad b_{i} = \sum_{j=0}^{n-1} b_{ij} x^{j}, \quad c_{i} = \sum_{j=0}^{n-1} c_{ij} x^{j},$$
$$d_{i} = \sum_{j=0}^{n-1} d_{ij} x^{j},$$

where $a_{ij}, b_{ij}, c_{ij}, d_{ij} \in k$. Moreover, $d_{ij} = L_{ij}(b_{00}, \dots, b_{-s, n-1})$, where L_{ij} is a linear form in n(s + 1) variables with coefficients from the field *k*. Suppose that $|q\beta - p| = l \le$ -|q| = s. It follows from the definition of best approximation that l > 0. Thus, we have $|p| = |q| + |\beta|$, i.e., r =

$$s-m$$
. Since $q\beta - p = \sum_{i=-r}^{0} (d_i - a_i)v^i + \sum_{i=1}^{\infty} d_i v^i$, we have

$$a_i = d_i, \quad i = -r, ..., 0,$$
 (9)

$$d_1 = d_2 = \dots = d_{i-1} = 0.$$
 (10)

It follows from (10) that

$$\begin{aligned} d_{ij} &= L_{ij}(b_{00}, ..., b_{-s, n-1}) = 0, \quad i = 1, 2, ..., l-1, \\ j &= 0, 1, ..., n-1. \end{aligned} \tag{11}$$

Thus, the set $(b_{00}, \ldots, b_{-s, n-1})$ is a solution of the system of linear homogeneous equations

$$CY = 0, \tag{12}$$

where $Y = (y_{00}, ..., y_{-s, n-1})^t$ and *C* is a matrix with coefficients from the field *k* containing n(s + 1) columns and n(l-1) rows. By assumption, $l \le s$; therefore, rank $C \le n(l-1)$, and in solving (12), we obtain *m* free variables $z_1, z_2, ..., z_m$, where

$$m = n(s+1) - \operatorname{rank} C \ge n(s-l+2) \ge 2n.$$

The remaining variables y_{ij} are expressed in terms of the free ones as

$$y_{ij} = H_{ij}(z_1, z_2, ..., z_m)$$
 (13)

for some linear form H_{ij} . Since $b_{-s} \neq 0$, it follows that (12) has a solution $(b_{00}, ..., b_{-s,n-1})$ in which not all of the $b_{-s,0}, ..., b_{-s,n-1}$ are zero. This means that not all linear forms H_{ij} identically vanish.

Consider the system of linear homogeneous equations

$$H_{-s,0}(z_1, z_2, ..., z_m)$$

. = $H_{-s,n-1}(z_1, z_2, ..., z_m) = 0,$ (14)

which involves $m \ge 2n$ unknowns and n equations. System (14) has a nonzero solution $(z_1^0, z_2^0, ..., z_m^0)$. According to (13), we have $y_{ij}^0 = H_{ij}(z_1^0, z_2^0, ..., z_m^0)$, which yields the polynomials $b_i^0 = \sum_{j=0}^{n-1} y_{ij}^0 x^j$, where i = -s, -s + 1, ..., 0. By construction, we have $b_{-s}^0 = 0$. As a result, we obtain $q_1 = \sum_{i=-s+1}^{0} b_i^0 v^i$. Using (9), we find p_1 . By construction, we have $|q_1| > |q|$ and $|q_1\beta - p_1| \ge l = |q\beta - p|$. Clearly, $\frac{p}{q} \neq \frac{p_1}{q_1}$, which contradicts $\frac{p}{q}$ being a best approximation. This completes the proof of Proposition 1.

Proposition 2. If fractions $\frac{a}{b}$ and $\frac{c}{d}$ are best approximations to β and |b| = |d|, then there exists a constant $h \in k^*$ such that a = hc and b = hd.

Proof. If $\frac{a}{b} \neq \frac{c}{d}$ in k(x), then, by the definition of best approximation, we have two opposite inequalities $\left|\beta - \frac{a}{b}\right| > \left|\beta - \frac{c}{d}\right|$ and $\left|\beta - \frac{a}{b}\right| < \left|\beta - \frac{c}{d}\right|$, which contradict each other. Therefore, $\frac{a}{b} = \frac{c}{d}$ in k(x). The irreducibility of these fractions implies the required assertion.

DOKLADY MATHEMATICS Vol. 78 No. 3 2008

Proposition 3. If deg v = 1, then the nth convergent $\frac{p_n}{q_n}$ of β is a best approximation to β .

Proof. The elements p_n and q_n have the form

$$p_n = c_{-s} \mathbf{v}^{-s} + \dots + c_0, \quad q_n = d_{-r} \mathbf{v}^{-r} + \dots + d_0,$$

where $c_i, d_i \in k$. Therefore, $\frac{p_n}{q_n}$ is of the form (8). Now, Proposition 1 and relation (6) immediately imply that $\frac{p_n}{q_n}$ is a best approximation to β .

The following theorem shows that the converse is also true.

Theorem 1. Let $\deg v = 1$. If a fraction $\frac{a}{b}$ is a best approximation to β , then there exists a convergent $\frac{p_n}{q_n}$ of β and a constant $c \in k^*$ such that $a = cp_n$ and $b = cq_n$. **Proof.** First, let us prove that $|b| = |q_n|$ for some con-

vergent $\frac{p_n}{q_n}$. Assume the opposite. Since $|q_0| = |1| = 0$, $|q_n| < |q_{n-1}|$ (by of (5)), and $|b| \le 0$, it follows that there exists an *n* for which $|q_{n+1}| < |b| < |q_n|$. Since $\frac{p_{n+1}}{q_{n+1}}$ is a best approximation to β and $|b| > |q_{n+1}|$, it follows that $\left|\frac{p_{n+1}}{q_{n+1}} - \beta\right| > \left|\beta - \frac{a}{b}\right|$. Thus, we have $\left|\frac{1}{ba_{n+1}}\right| \ge \left|\frac{p_{n+1}}{q_{n+1}} - \frac{a}{b}\right| = \left|\frac{p_{n+1}}{q_{n+1}} - \beta + \beta - \frac{a}{b}\right| = \left|\beta - \frac{a}{b}\right|$.

Therefore, $\left|\beta - \frac{a}{b}\right| \le \left|\frac{1}{bq_{n+1}}\right| = -|b| - |q_{n+1}|$. Using (6), we obtain $|b\beta - a| \le -|q_{n+1}| = |q_n\beta - p_n|$. Since $|q_n| > |b|$, this contradicts $\frac{a}{b}$ being a best approximation to β . Thus, for some *n*, we have $|q_n| = |b|$. Applying Proposition 2, we obtain the required assertion.

In the case of degv > 1, the convergent $\frac{p_n}{q_n}$ may not be a best approximation to β .

Example. Suppose that $k = F_3$, $v = x^2 + 1 \in k[x]$, and $d = x^3 + 2x^2 + x + 1 = (x + 2)v + 2 \in k[x]$ is an irreducible polynomial. Since 2 is a square in the residue field k(x)/(v), it follows that $\sqrt{d} \in k(x)_v$, and the element \sqrt{d} can be expanded as

$$\sqrt{d} = x + (x+2)v + (x+1)v^{2} + xv^{3} + xv^{4}$$
$$+ 2xv^{5} + (2x+1)v^{6} + \dots$$

DOKLADY MATHEMATICS Vol. 78 No. 3 2008

Expanding \sqrt{d} in a continued fraction, we obtain

$$a_0 = x, \quad a_1 = (x+1)v^{-1} + 1, \quad a_2 = v^{-1} + x + 1,$$

 $a_3 = (2x+1)v^{-1}, \dots,$

and the convergents of \sqrt{d} have the form

$$\frac{p_1}{q_1} = \frac{(x-1)v^{-1} + x + 2}{(x+1)v^{-1} + 1},$$
$$\frac{p_2}{q_2} = \frac{(x-1)v^{-2} + xv^{-1} + x + 2 + v}{(x+1)v^{-2} + (2x+1)v^{-1} + x}.$$

Let us show that $\frac{p_2}{q_2}$ is not a best approximation to \sqrt{d} . By virtue of (7), we have $\left|\sqrt{d} - \frac{p_2}{q_2}\right| = -|a_3| - 2|q_2| = 5$. On the other hand, to write the convergent $\frac{p_2}{q_2}$ in the form (8), we must divide the numerator and the denominator by v: $\frac{p_2}{q_2} = \frac{\tilde{p}_2}{\tilde{q}_2} = \frac{(x-1)v^{-3} + xv^{-2} + (x+2)v^{-1} + 1}{(x+1)v^{-3} + (2x+1)v^{-2} + xv^{-1}}$. We obtain $\left|\sqrt{d} - \frac{\tilde{p}_2}{\tilde{q}_2}\right| = \left|\sqrt{d} - \frac{p_2}{q_2}\right| = 5 < -2|\tilde{q}_2| = 6$. By

Proposition 1, $\frac{p_2}{q_2}$ is not a best approximation to \sqrt{d} .

It can be shown in a standard way that if a continued fraction $[a_0, a_1, ...]$ for β is periodic, then β is a quadratic irrationality. In the case of an infinite field *k* and the valuation $|\cdot|_{\infty}$, the converse is not always true (see [2]). The following proposition is valid.

Proposition 4. Suppose that $k = F_q$ is the field with q elements and $\deg v = 1$. Let us identify the completion $k(x)_v$ with the formal power series field k((v)). If $\beta \in k((v))$ is a quadratic irrationality, then the continued fraction for β is periodic.

Proof. Let $\beta \in k((v))$ be a root of the quadratic polynomial $H(X) = rX^2 + sX + t$, where $r, s, t \in k[v]$, and let $\beta = [a_0, a_1, ...]$ be a decomposition of β into a continued fraction. We set $D = s^2 - 4rt \in k[v]$ and $H(X, Y) = rX^2 + sXY + tY^2$. It follows from (3) that

$$\beta_{n+1} = \frac{B_n + r\beta}{A_n},\tag{15}$$

where $A_n = (-1)^{n+1} H(p_n, q_n)$ and $B_n = (-1)^n (rp_{n-1}p_n + sp_{n-1}q_n + tq_{n-1}q_n)$. Clearly, for sufficiently large *n*, we have $\left|\frac{p_n}{q_n} - \beta\right| > |\beta - \overline{\beta}|$, where $\overline{\beta}$ is the second root of H(X). Thus, $\left|\frac{p_n}{q_n} - \overline{\beta}\right| = \left|\frac{p_n}{q_n} - \beta + \beta - \overline{\beta}\right| = |\beta - \overline{\beta}|$. Since

$$\beta - \overline{\beta} = \frac{2\sqrt{D}}{r}$$
, it follows that $|\beta - \overline{\beta}| = \frac{1}{2}|D| - |r|$. This implies $|p_n - \overline{\beta} q_n| = |q_n| + \frac{1}{2}|D| - |r|$. Since $H(X, Y) = r(X - \beta Y)(X - \overline{\beta} Y)$, we finally obtain

$$|A_n| = r(p_n - \beta q_n)(p_n - \overline{\beta} q_n) = \frac{1}{2}|D| - |a_{n+1}| > 0.$$
(16)

Let us find a lower bound for $|B_n|$. It follows from (15) that $B_n = A_n\beta_{n+1} - r\beta$. The equality $\beta(r\beta + s) = -t$ implies $|r\beta| \ge 0$. Taking into account (16), we obtain $|A_n\beta_{n+1}| = |A_na_{n+1}| = \frac{1}{2}|D| \ge 0$. Therefore, $|B_n| \ge \min\{|A_n\beta_{n+1}|, |r\beta|\} \ge 0$.

Thus, A_n and B_n are polynomials from k[x]. Their degrees do not exceed max(deg r, deg s, deg t). Since the field k is finite, there are only finitely many such polynomials. This means that, for some i and j, we have $A_i = A_{i+j}$ and $B_i = B_{i+j}$, whence $\beta_i = \beta_{i+j}$, and the continued fraction for β is periodic.

Note that the above argument does not apply if deg v > 1. In this case, although A_n and B_n are still polynomials from k[x], we cannot assert that their degrees are bounded above by max(deg *r*, deg *s*, deg *t*). For $\beta = \sqrt{d}$ from the example considered above, we have r = 1, s = 0, t = d, $A_2 = p_2^2 - dq_2^2 = 2x(x^2 + 1)(x^2 + x + 2)$, and deg $A_2 >$ deg *d*.

In what follows, we show how to use continued fractions for finding fundamental S-units in hyperelliptic fields in the case of deg v = 1 and finite field k. Hereafter, we assume that $k = F_q$ is the finite field of character-istic p > 2, $d(x) = c_0 x^{2n+1} + c_1 x^{2n} + \dots + c_{2n+1}$ is a square-free polynomial, and $c_0 \neq 0$. Suppose that K = $k(x)(\sqrt{d}), v = x - b$, and \bar{x} is the image of x in the residue field O_v/p_v . We assume that $d(\bar{x}) = \beta^2$ for some $0 \neq \beta \in O_{\nu}/p_{\nu}$ (this means that the point (β, \bar{x}) is an O_y/p_y -point of the hyperelliptic curve $y^2 = d(x)$). The valuation $|\cdot|_v$ has two nonequivalent extensions to the field K. We denote these valuations by $|\cdot|_{v'}$ and $|\cdot|_{v''}$. The non-Archimedean valuation $|\cdot|_{\infty}$ admits a unique extension to K, and we denote it by the same symbol $|\cdot|_{\infty}$. Let $S = \{|\cdot|_{\infty}, |\cdot|_{v'}\}$, and let O_S be the ring of S-integer elements in K, i.e., of elements $z \in K$ such that $|z|_{v} \ge 0$ for all valuations $|\cdot|_v$ of the field K not belonging to S. The set $U_{\rm S}$ of invertible elements of the ring $O_{\rm S}$ is called the group of S-units of the field K. By virtue of the generalized Dirichlet theorem on units (see [3, Chapter IV, Theorem 9]), the group U_s is the direct product of the group k^* and the free Abelian group G of rank 1. The generator of the group G is called the fundamental S-unit.

In [5], an effective algorithm for calculating fundamental S-units was suggested. In the classical case of the quadratic extension $L = Q(\sqrt{d})$ of the field Q, the fundamental unit of the field L can be found by expand-

ing
$$\sqrt{d}$$
 or $\frac{\sqrt{d-1}}{2}$ into a continued fraction (see [4]).

Our purpose is to show that, in the case of a hyperelliptic field *K* and the valuation $|\cdot|_v$ determined by a linear polynomial v, the fundamental *S*-unit can also be found by the method of continued fractions. It was proved in [5] that calculating the fundamental *S*-unit requires finding the minimum positive integer *m* for which the valuation equation

$$f^2 - g^2 d = a \mathbf{v}^m, \tag{17}$$

where $a \in k^*$, has a solution in polynomials $f, g \in k[v]$, where $g \neq 0$. Then either $f + g\sqrt{d}$ or $f - g\sqrt{d}$ is the fundamental *S*-unit. By the minimality of m, (f, g) = 1 and v does not divide f and g. The following theorem (see also [6]) gives an algorithm for finding the fundamental *S*-unit by using continued fractions.

Theorem 2. Let *m* be the minimum positive integer for which Eq. (17) has a solution in polynomials $f, g \in k[v]$, where $g \neq 0$.

(1) If
$$m = 2t + 1$$
 is odd, then $\frac{f}{g} = \frac{p_n}{q_n}$ for some con-

vergent $\frac{p_n}{q_n}$ of \sqrt{d} .

(2) If m = 2t is even, then there exists a divisor h of the polynomial d with the following properties:

(i)
$$1 \le \deg h \le \frac{\deg d - 1}{2}$$
;

(ii) the equation

$$\frac{d}{h}g_1^2 - hf_1^2 = bv',$$
(18)

where $b \in k^*$, has a solution in polynomials $f_1, g_1 \in k[v]$, and $\frac{f_1}{g_1} = \frac{p_n}{q_n}$ for some convergent $\frac{p_n}{q_n}$ of $\frac{\sqrt{d}}{h}$. Conversely, if $f_1, g_1 \in k[v]$ are a solution of (18), then the polynomials f and g defined by $f = \frac{1}{2} \left(h f_1^2 + \frac{d}{g} g_1^2 \right)$ and $g = f_1 g_1$ are a solution of Eq. (17).

Proof. (1) Let us write (17) in the form $(f - g\sqrt{d})(f + g\sqrt{d}) = av^{2t+1}$. Comparing the degrees of polynomials on the left- and right-hand sides of (17), we obtain $\deg f \le t$ and $\deg g = \frac{2t+1-\deg d}{2} < t$. By virtue of Proposition 1 from [5], we can assume that $|f + g\sqrt{d}| = 0$

DOKLADY MATHEMATICS Vol. 78 No. 3 2008

and $|f - g\sqrt{d}| = 2t + 1$. Suppose that $f = b_0 + b_1v + ... + b_rv^r$ and $g = c_0 + c_1v + ... + c_sv^s$, where $r, s \le t$; $b_i, c_i \in k$; $b_r \ne 0$; and $c_s \ne 0$. Let $h = \max\{r, s\}$. Consider the element $\overline{f} - \overline{g}\sqrt{d}$, where $\overline{f} = \frac{f}{v^h} = b_0v^{-h} + ... + b_rv^{r-h}$ and $\overline{g} = \frac{g}{v^h} = c_0v^{-h} + ... + c_sv^{s-h}$. Since $\frac{\overline{f}}{\overline{g}}$ has the form (8) and $|\overline{f} - \overline{g}\sqrt{d}| = 2t + 1 - t = t + 1 > -|\overline{g}| = t$, it follows from Proposition 1 that the fraction $\frac{\overline{f}}{\overline{g}} = \frac{f}{g}$ is a best approximation to \sqrt{d} . By Theorem 1, we have $\frac{f}{g} = \frac{p_n}{q_n}$ for some convergent $\frac{p_n}{q_n}$ of \sqrt{d} .

(2) Since *a* in (17) must be a square, we can divide both sides by *a* and assume without loss of generality that *f*, *g* is a solution of the valuation equation $f^2 - g^2 d = v^2$. This implies

$$(f - \mathbf{v}^{t})(f + \mathbf{v}^{t}) = g^{2}d.$$
 (19)

Let $d = d_1 d_2 \dots d_r$ be the irreducible decomposition of d. Then, each polynomial d_i divides precisely one of the factors $f - v^t$ or $f + v^t$ (otherwise, $d_i = cv^t$, $c \in k^*$ and, therefore, v divides d, which is false).

Let h_1 be the product of those d_i which divide $f - v^t$, and let h_2 be the product of those d_i which divide $f + v^t$. Then, $h_1h_2 = d$ and $(h_1, h_2) = 1$. Suppose for definiteness that deg $h_1 < \deg h_2$, i.e., deg $h_1 \le \frac{\deg d - 1}{2}$. Let us write

$$f - \mathbf{v}^{t} = h_{1}u_{1}, \quad f + \mathbf{v}^{t} = h_{2}u_{2},$$
 (20)

where $u_1, u_2 \in k[v]$. It follows from (20) that

$$f = \frac{1}{2}(h_1u_1 + h_2u_2), \quad v^t = \frac{1}{2}(h_2u_2 - h_1u_1). \quad (21)$$

Substituting (20) into (19), we obtain $u_1u_2 = g^2$. Note that $(u_1, u_2) = 1$ (otherwise, *f* and *g* cannot be coprime). Thus, $u_1 = f_1^2$ and $u_2 = g_1^2$, whence

$$f = \frac{1}{2}(h_1f_1^2 + h_2g_1^2), \quad g = f_1g_1.$$
 (22)

It follows from (21) and (22) that

$$2v' = \frac{d}{h_1}g_1^2 - h_1f_1^2.$$
 (23)

Thus, Eq. (17) has a solution in polynomials $f, g \in k[v]$ if and only if Eq. (23) has a solution in polynomials

DOKLADY MATHEMATICS Vol. 78 No. 3 2008

 $f_1, g_1 \in k[v]$ for some divisor h_1 of d with deg $h_1 \leq \frac{\det d - 1}{2}$. Consider Eq. (23) in more detail. Let us write it in the form

$$h_1\left(\frac{\sqrt{d}}{h_1}g_1 - f_1\right)\left(\frac{\sqrt{d}}{h_1}g_1 + f_1\right) = 2\nu'.$$
 (24)

Since $|h_1| = 0$ and $|\sqrt{d}| = 0$, it follows from Proposition 1 in [5] that we can assume that $\left|\frac{\sqrt{d}}{h_1}g_1 + f_1\right| = 0$ and $\left|\frac{\sqrt{d}}{h_1}g_1 - f_1\right| = t$. Comparing the degrees on the left- and

right-hand sides of (23), we obtain $\deg g_1 \le \deg f_1 < \frac{t}{2}$. Suppose that $\deg f_1 = s$ and

$$f_{1} = b_{0} + b_{1}v + \dots + b_{s}v^{s},$$

$$g_{1} = c_{0} + c_{1}v + \dots + c_{r}v^{r},$$

where $r \le s < \frac{t}{2}$; b_i , $c_i \in k$; $b_s \ne 0$; and $c_r \ne 0$. Consider the element $\frac{\sqrt{d}}{h_1}\overline{g}_1 - \overline{f}_1$, where $\overline{f}_1 = \frac{f_1}{v^s}$ and $\overline{g}_1 = \frac{g_1}{v^s}$. Since $\frac{\overline{f}_1}{\overline{g}_1}$ has the form (8) and $\left|\frac{\sqrt{d}}{h_1}\overline{g}_1 - \overline{f}_1\right| = t - s > s =$ $|\overline{g}_1|$, it follows from Proposition 1 that the fraction $\frac{\overline{f}_1}{\overline{g}_1} = \frac{f_1}{g_1}$ is a best approximation to $\frac{\sqrt{d}}{h_1}$. By Theorem 1, $\frac{f_1}{g_1} = \frac{p_n}{q_n}$ for some convergent $\frac{p_n}{q_n}$ of $\frac{\sqrt{d}}{h_1}$. Moreover, f and g are related to f_1 and g_1 by (22), as required.

The following proposition refines Theorem 2 in the case of an irreducible polynomial d.

Proposition 5. Suppose that the polynomial *d* is irreducible and deg $v \ge 1$. Then, the minimum positive integer *m* for which the valuation equation (17) has a solution in polynomials *f*, $g \in k[x]$, where $g \ne 0$, is odd. Thus, in calculating the fundamental S-unit in the case of degv = 1, assertion (1) of Theorem 2 holds.

Proof. Suppose that m = 2t. Let us write Eq. (17) in the form (19). Since *d* is irreducible, it follows that it divides one of the factors on the left-hand side of (19). Suppose that, e.g., $f - v' = df_1$. Then, $f = v' + df_1$. Substituting this expression into (19), we obtain

$$f_1(2v' + df_1) = g^2, (25)$$

which implies that f_1 divides g^2 . Therefore, the polynomials g and f_1 can be represented in the forms $g = f_2hg_2$ and $f_1 = f_2^2 h$ for some $f_2, g_2, h \in k[x]$. Substituting g and f_1 into (25), we obtain

$$2v^{t} + df_{2}^{2}h = g_{2}^{2}h.$$
 (26)

It follows from (26) that *h* divides v^t and, therefore, $h = bv^r$ for some $b \in k^*$. As a result, we conclude that the valuation equation $g_2^2 - f_2^2 d = 2b^{-1}v^{t-r}$ has a solution in polynomials $f_2, g_2 \in k[x]$ and t - r < 2t, which contradicts the minimality of *m*. This completes the proof of Proposition 5.

Note that Theorem 2 is invalid in the case of degv > 1. Consider again the above example. Using the method for calculating fundamental *S*-units developed in [5], we see that the minimum positive integer *m* for which the valuation equation (17) has a solution in polynomials $f, g \in k[v]$ equals 5, and

$$f = 1 - 2x\mathbf{v} - x\mathbf{v}^2, \quad g = x.$$

Moreover, $f^2 - g^2 d = v^5$. The polynomial *d* in the example under consideration is irreducible. It is easy to show

that $\frac{f}{g} \neq \frac{p_1}{q_1}$ and $\frac{f}{g} \neq \frac{p_2}{q_2}$. Hence, $\frac{f}{g}$ cannot coincide

with any convergent $\frac{p_n}{q_n}$ of \sqrt{d} for n > 2, because the

degree of the denominator is always higher than 1. Taking into account Proposition 5, we see that Theorem 2 in invalid in the case under consideration. Thus, in the general situation, the method for calculating *S*-units suggested in [5] is more effective than that of continued fractions.

Theorem 2 suggests an algorithm for calculating the fundamental S-unit in the case of deg v = 1. Let d_1 , d_2 , ..., d_r be all divisors of d of degree $\leq \frac{\deg d - 1}{2}$. We successively calculate the convergents of \sqrt{d} , $\frac{\sqrt{d}}{d_1}$, ..., $\frac{\sqrt{d}}{d_r}$, and for each convergent $\frac{p_n}{q_n}$ verify equality (18).

As soon as a convergent $\frac{p_n}{q_n}$ satisfying (18) is found, we obtain a solution *f*, *g* of the valuation equation (17) by formulas (22). Then either $f + g\sqrt{d}$ or $f - g\sqrt{d}$ is the fundamental *S*-unit.

REFERENCES

- 1. E. Artin, Math. Z. 19, 153–246 (1924).
- W. W. Adams and M. J. Razar, Proc. Math. Soc. London 41 (3), 481–498 (1980).
- 3. A. Weil, *Basic Number Theory* (Springer, Heidelberg, 1967; Mir, Moscow, 1972).
- 4. Z. I. Borevich and I. R. Shafarevich, *Number Theory* (Nauka, Moscow, 1964) [in Russian].
- V. V. Benyash-Krivets and V. P. Platonov, Dokl. Math. 76, 886–890 (2007) [Dokl. Akad. Nauk 417 (4), 446– 450 (2007)].
- V. V. Benyash-Krivets and V. P. Platonov, Usp. Mat. Nauk 63 (2), 159–160 (2008).