
 

833

 

ISSN 1064–5624, Doklady Mathematics, 2008, Vol. 78, No. 3, pp. 833–838. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © V.V. Benyash-Krivets, V.P. Platonov, 2008, published in Doklady Akademii Nauk, 2008, Vol. 423, No. 2, pp. 155–160.

 

The purpose of this paper is two-fold: to present
some results on continued fractions in function fields
and show how continued fractions can be applied to
find fundamental 

 

S

 

-units in hyperelliptic fields.

Let 

 

k

 

 be an arbitrary field, and let 

 

k

 

(

 

x

 

)

 

 be the field of
rational functions of one variable over 

 

k

 

. For an irreduc-
ible polynomial 

 

ν ∈ 

 

k

 

[

 

x

 

]

 

, 

 

|

 

·

 

|

 

 =

 

 

 

|

 

·

 

|

 

ν

 

 denotes the corre-
sponding valuation, 

 

O

 

ν

 

 = {

 

z

 

 ∈ 

 

k

 

(

 

x

 

)

 

| |

 

z

 

|

 

 

 

≥

 

 0}

 

 denotes the
corresponding valuation ring, and 

 

p

 

ν

 

 = {

 

z

 

 ∈

 

 k

 

(

 

x

 

)

 

|

 

 

 

|

 

z

 

|

 

 > 0}

 

is the ideal of the valuation 

 

|

 

·

 

|

 

. The residue field 

 

O

 

ν

 

/

 

p

 

ν

 

coincides with 

 

k

 

[

 

x

 

]/(

 

ν

 

)

 

 and is a finite extension of 

 

k

 

. Let

 

k

 

(

 

x

 

)

 

ν

 

 be the completion of the field 

 

k

 

(

 

x

 

)

 

 in the valua-
tion 

 

|

 

·

 

|

 

. We denote the extension of 

 

|

 

·

 

|

 

 to 

 

k

 

(

 

x

 

)

 

 by the same
symbol 

 

|

 

·

 

|

 

. Let 

 

Σ

 

 be the system of coset representatives
for the ideal (

 

ν

 

) in 

 

k

 

[

 

x

 

]

 

 consisting of all polynomials of
degree less than deg

 

ν

 

. Then, each element 

 

z

 

 ∈

 

 k

 

(

 

x

 

)

 

ν

 

 has
a unique representation in the form of a formal power

series 

 

z

 

 =

 

 

 

ν

 

i

 

, where 

 

s

 

 ∈ 

 

Z

 

 and 

 

a

 

i

 

 ∈ Σ

 

. If deg

 

ν

 

 = 1,

then the field 

 

k

 

(

 

x

 

)

 

ν

 

 can be identified with the field 

 

k

 

((

 

ν

 

))

 

of formal power series.

Continued fractions in function fields in the case of
the valuation 

 

|

 

·

 

|

 

∞

 

 were introduced by Artin [1]. We con-
sider the general case of an arbitrary valuation 

 

|

 

·

 

|

 

 = 

 

|

 

·

 

|

 

ν

 

.
Let 

 

β ∈ 

 

k

 

(

 

x

 

)

 

ν

 

. We represent 

 

β

 

 as a formal power series

 

β

 

 = 

 

ν

 

i

 

, where 

 

d

 

i

 

 ∈ Σ

 

, and set 

 

[

 

β

 

] = 

 

ν

 

i

 

 if 

 

s

 

 

 

≤

 

 0

 

or [

 

β

 

] = 0 if 

 

s

 

 > 0. Let 

 

a

 

0

 

 = [

 

β

 

]

 

. If 

 

β

 

 – 

 

a

 

0

 

 

 

≠

 

 0

 

, then we set

 

β

 

1

 

 = 

 

 ∈ k(x)ν and a1 = [β1]. Then, by induction,

we define elements ai and βi; namely, if βi – 1 – ai – 1 ≠ 0,

ai

i s=

∞

∑

di

i s=

∞

∑ di

i s=

0

∑

1
β a0–
--------------

then we set βi =  ∈ k(x)ν and ai = [βi]. It is

easy to show that the process terminates if and only if
β ∈ k(x). We use the standard shorthand notation β =
[a0, a1, a2, …] for continued fractions. By construction,
βn = [an, an + 1, …].

Let us define elements pi, qi ∈ k(x) by induction. We
set p–2 = 0, p–1 = 1, q–2 = 1, q–1 = 0, and

(1)

for n ≥ 0. We have  = [a0, a1, a2, …, an] for n ≥ 0. It

can be shown in a standard way that, for n ≥ –1,

(2)

(3)

(4)

The fraction  is called the nth convergent of β. By

construction, |an| = |βn| < 0 for n ≥ 1. From (1) the fol-
lowing relation easily follows by induction:

(5)

and (3) implies

(6)

or, equivalently,

(7)

Thus,  = β. Let us introduce the notion of best

approximation to β. If  ∈ k(x), where a, b ∈ k[x] are

coprime polynomials, then we decompose a and b into

1
βi 1– ai 1––
--------------------------

pn an pn 1– pn 2– , qn+ anqn 1– qn 2–+= =

pn

qn

-----

qn pn 1– pnqn 1–– 1–( )n,=

qnβ pn–
1–( )n

qnβn 1+ qn 1–+
---------------------------------,=

β
pnβn 1+ pn 1–+
qnβn 1+ qn 1–+
----------------------------------.=

pn

qn

-----

qn an qn 1–+ a j ,
j 1=

n

∑= =

qnβ pn– qn 1+– an 1+– qn–= = qn–>

β
pn

qn

-----– 2 qn .–>

pn

qn

-----
n ∞→
lim

a
b
---
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powers of ν as a = a0 + a1ν + … + asνs and b = b0 +
b1ν + … + btνt, where ai, bi ∈ Σ, as ≠ 0, and bt ≠ 0.
Dividing a and b by νr, where r = max{s, t}, we repre-

sent the fraction  in the form

(8)

where ci, di ∈ Σ; c–p ≠ 0; d–q ≠ 0; and c0 and d0 are not
both zero. In what follows, we assume that all elements
of k(x) are written in the form (8).

Definition. An irreducible fraction  ∈ k(x) is a best

approximation to β if, for any other irreducible fraction

 ≠  such that |b| ≥ |q|,  >  (or, equiva-

lently, |qβ – p| > |bβ – a|).

Proposition 1. A fraction  is a best approximation

to β if and only if  > –2|q| (or |qβ – p| > –|q|).

Proof. Let us write the elements p, q, β, and qβ as
formal power series in ν:

where ai, bi, ci, di ∈ Σ, a–r ≠ 0, and b–s ≠ 0. Let n = degν.
Then,

where aij, bij, cij, dij ∈ k. Moreover, dij = Lij(b00, …, b–s, n – 1),
where Lij is a linear form in n(s + 1) variables with coef-
ficients from the field k. Suppose that |qβ – p| = l ≤
−|q| = s. It follows from the definition of best approxi-
mation that l > 0. Thus, we have |p| = |q| + |β|, i.e., r =

s – m. Since qβ – p = di – ai)νi + νi, we have

(9)

(10)

It follows from (10) that

(11)

a
b
---

a
b
---

c p– ν p– … c0+ +

d q– ν q– … d0+ +
--------------------------------------,=

p
q
---

a
b
--- p

q
--- β p

q
---– β a

b
---–

p
q
---

β p
q
---–

p aiν
i, q

i r–=

0

∑ biν
i, β

i s–=

0

∑ ciν
i,

i m=

∞

∑= = =

qβ diν
i,

i m s–=

∞

∑=

ai aijx
j, bi

j 0=

n 1–

∑ bijx
j, ci

j 0=

n 1–

∑ cijx
j,

j 0=

n 1–

∑= = =

di dijx
j,

j 0=

n 1–

∑=

(
i r–=

0

∑ di

i 1=

∞

∑
ai di, i r– … 0,, ,= =

d1 d2 … di 1– 0.= = = =

dij Lij b00 … b s– n 1–,, ,( ) 0, i 1 2 … l 1,–, , ,= = =

j 0 1 … n 1.–, , ,=

Thus, the set (b00, …, b–s, n – 1) is a solution of the system
of linear homogeneous equations

(12)

where Y = (y00, …, y–s, n – 1)t and C is a matrix with coef-
ficients from the field k containing n(s + 1) columns and
n(l – 1) rows. By assumption, l ≤ s; therefore, rankC ≤
n(l – 1), and in solving (12), we obtain m free variables
z1, z2, …, zm, where

The remaining variables yij are expressed in terms of the
free ones as

(13)

for some linear form Hij. Since b−s ≠ 0, it follows that
(12) has a solution (b00, …, b–s, n – 1) in which not all of
the b–s, 0, …, b–s, n – 1 are zero. This means that not all
linear forms Hij identically vanish.

Consider the system of linear homogeneous equa-
tions

(14)

which involves m ≥ 2n unknowns and n equations. Sys-

tem (14) has a nonzero solution ( , , …, ).

According to (13), we have  = Hij( , , …, ),

which yields the polynomials  = xj, where i =

–s, –s + 1, …, 0. By construction, we have  = 0. As

a result, we obtain q1 =  νi. Using (9), we find

p1. By construction, we have |q1| > |q| and |q1β – p1| ≥

l = |qβ – p|. Clearly,  ≠ , which contradicts 

being a best approximation. This completes the proof of
Proposition 1.

Proposition 2. If fractions  and  are best

approximations to β and |b| = |d|, then there exists a
constant h ∈ k* such that a = hc and b = hd.

Proof. If  ≠  in k(x), then, by the definition of

best approximation, we have two opposite inequalities

 >  and  < , which contra-

dict each other. Therefore,  =  in k(x). The irreduc-

ibility of these fractions implies the required assertion.

CY 0,=

m n s 1+( ) rankC– n s l– 2+( ) 2n.≥ ≥=

yij Hij z1 z2 … zm, , ,( )=

H s– 0, z1 z2 … zm, , ,( )
… =  H s– n 1–, z1 z2 … zm, , ,( ) 0,=

z1
0 z2

0 zm
0

yij
0 z1

0 z2
0 zm

0

bi
0 yij

0

j 0=

n 1–

∑
b–s

0

bi
0

i s– 1+=

0

∑

p
q
---

p1

q1
----- p

q
---

a
b
--- c

d
---

a
b
--- c

d
---

β a
b
---– β c

d
---– β a

b
---– β c

d
---–

a
b
--- c

d
---
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Proposition 3. If degν = 1, then the nth convergent

 of β is a best approximation to β.

Proof. The elements pn and qn have the form

where ci, di ∈ k. Therefore,  is of the form (8). Now,

Proposition 1 and relation (6) immediately imply that

 is a best approximation to β.

The following theorem shows that the converse is
also true.

Theorem 1. Let degν = 1. If a fraction  is a best

approximation to β, then there exists a convergent 

of β and a constant c ∈ k* such that a = cpn and b = cqn.
Proof. First, let us prove that |b| = |qn| for some con-

vergent . Assume the opposite. Since |q0| = |1| = 0,

|qn| < |qn – 1| (by of (5)), and |b| ≤ 0, it follows that there

exists an n for which |qn + 1| < |b| < |qn|. Since  is a

best approximation to β and |b| > |qn + 1|, it follows that

 > . Thus, we have

Therefore,  ≤  = –|b| – |qn + 1|. Using (6),

we obtain |bβ – a| ≤ –|qn + 1| = |qnβ – pn|. Since |qn| > |b|,

this contradicts  being a best approximation to β.

Thus, for some n, we have |qn| = |b|. Applying Proposi-
tion 2, we obtain the required assertion.

In the case of degν > 1, the convergent  may not

be a best approximation to β.
Example. Suppose that k = F3, ν = x2 + 1 ∈ k[x], and

d = x3 + 2x2 + x + 1 = (x + 2)ν + 2 ∈ k[x] is an irreducible
polynomial. Since 2 is a square in the residue field

k(x)/(ν), it follows that  ∈ k(x)ν, and the element 
can be expanded as

pn

qn

-----

pn c s– ν s– … c0, qn+ + d r– ν r– … d0,+ += =

pn

qn

-----

pn

qn

-----

a
b
---

pn

qn

-----

pn

qn

-----

pn 1+

qn 1+
-----------

pn 1+

qn 1+
----------- β– β a

b
---–

1
bqn 1+
--------------

pn 1+

qn 1+
----------- a

b
---–≥

pn 1+

qn 1+
----------- β– β a

b
---–+ β a

b
---– .= =

β a
b
---– 1

bqn 1+
--------------

a
b
---

pn

qn

-----

d d

d x x 2+( )ν x 1+( )ν2 xν3 xν4+ + + +=

+ 2xν5 2x 1+( )+ ν6 ….+

Expanding  in a continued fraction, we obtain

and the convergents of  have the form

Let us show that  is not a best approximation to . By

virtue of (7), we have  –  = –|a3| – 2|q2| = 5. On the

other hand, to write the convergent  in the form (8), we

must divide the numerator and the denominator by

ν:  =  = . We

obtain  –  =  –  = 5 < –2| | = 6. By

Proposition 1,  is not a best approximation to .

It can be shown in a standard way that if a continued
fraction [a0, a1, …] for β is periodic, then β is a qua-
dratic irrationality. In the case of an infinite field k and
the valuation |·|∞, the converse is not always true (see
[2]). The following proposition is valid.

Proposition 4. Suppose that k = Fq is the field with
q elements and degν = 1. Let us identify the completion
k(x)ν with the formal power series field k((ν)). If β ∈
k((v)) is a quadratic irrationality, then the continued
fraction for β is periodic.

Proof. Let β ∈ k((ν)) be a root of the quadratic poly-
nomial H(X) = rX2 + sX + t, where r, s, t ∈ k[ν], and
let β = [a0, a1, …] be a decomposition of β into a con-
tinued fraction. We set D = s2 – 4rt ∈ k[ν}\k and H(X, Y) =
rX2 + sXY + tY2. It follows from (3) that

(15)

where An = (–1)n + 1H(pn, qn) and Bn = (–1)n(rpn – 1pn +
spn – 1qn + tqn – 1qn). Clearly, for sufficiently large n, we

have  > |β – |, where  is the second root of

H(X). Thus,  =  – β + β –  = |β – |. Since

d

a0 x, a1 x 1+( )ν 1– 1, a2+ ν 1– x 1,+ += = =

a3 2x 1+( )ν 1– …,,=

d

p1

q1
-----

x 1–( )ν 1– x 2+ +

x 1+( )ν 1– 1+
------------------------------------------,=

p2

q2
-----

x 1–( )ν 2– xν 1– x 2 ν+ + + +

x 1+( )ν 2– 2x 1+( )ν 1– x+ +
---------------------------------------------------------------------.=

p2

q2
----- d

d
p2

q2
-----

p2

q2
-----

p2

q2
-----

p̃2

q̃2
----- x 1–( )ν 3– xν 2– x 2+( )ν 1– 1+ + +

x 1+( )ν 3– 2x 1+( )ν 2– xν 1–+ +
---------------------------------------------------------------------------------

d
p̃2

q̃2
----- d

p2

q2
----- q̃2

p2

q2
----- d

βn 1+

Bn rβ+
An

------------------,=

pn

qn

----- β– β β

pn

qn

----- β–
pn

qn

----- β β
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β –  = , it follows that |β – | = |D| – |r|. This

implies |pn – qn| = |qn| + |D| – |r|. Since H(X, Y) =

r(X – βY)(X – Y), we finally obtain

(16)

Let us find a lower bound for |Bn|. It follows from
(15) that Bn = Anβn + 1 – rβ. The equality β(rβ + s) = –t
implies |rβ| ≥ 0. Taking into account (16), we obtain

|Anβn + 1| = |Anan + 1| = |D| ≥ 0. Therefore, |Bn| ≥

min{|Anβn + 1|, |rβ|} ≥ 0.

Thus, An and Bn are polynomials from k[x]. Their
degrees do not exceed max(degr, degs, degt). Since the
field k is finite, there are only finitely many such poly-
nomials. This means that, for some i and j, we have
Ai = Ai + j and Bi = Bi + j, whence βi = βi + j, and the con-
tinued fraction for β is periodic.

Note that the above argument does not apply if
degν > 1. In this case, although An and Bn are still poly-
nomials from k[x], we cannot assert that their degrees
are bounded above by max(degr, degs, degt). For β =

 from the example considered above, we have r = 1,

s = 0, t = d, A2 =  – d  = 2x(x2 + 1)(x2 + x + 2), and
degA2 > degd.

In what follows, we show how to use continued frac-
tions for finding fundamental S-units in hyperelliptic
fields in the case of degν = 1 and finite field k. Hereaf-
ter, we assume that k = Fq is the finite field of character-
istic p > 2, d(x) = c0x2n + 1 + c1x2n + … + c2n + 1 is a
square-free polynomial, and c0 ≠ 0. Suppose that K =

k(x)( ), ν = x – b, and  is the image of x in the res-
idue field Oν/pν. We assume that d( ) = β2 for some
0 ≠ β ∈ Oν/pν (this means that the point (β, ) is an
Oν/pν-point of the hyperelliptic curve y2 = d(x)). The
valuation |·|ν has two nonequivalent extensions to the
field K. We denote these valuations by |·|ν' and |·|ν''. The
non-Archimedean valuation |·|∞ admits a unique exten-
sion to K, and we denote it by the same symbol |·|∞. Let
S = {|·|∞, |·|ν'}, and let OS be the ring of S-integer ele-
ments in K, i.e., of elements z ∈ K such that |z|ν ≥ 0 for
all valuations |·|ν of the field K not belonging to S. The
set US of invertible elements of the ring OS is called the
group of S-units of the field K. By virtue of the gener-
alized Dirichlet theorem on units (see [3, Chapter IV,
Theorem 9]), the group US is the direct product of the
group k* and the free Abelian group G of rank 1. The
generator of the group G is called the fundamental
S-unit.

β 2 D
r

------------ β 1
2
---

β 1
2
---

β

An  = r pn βqn–( ) pn βqn–( ) = 
1
2
--- D an 1+– 0.>

1
2
---

d

p2
2 q2

2

d x
x

x

In [5], an effective algorithm for calculating funda-
mental S-units was suggested. In the classical case of

the quadratic extension L = Q( ) of the field Q, the
fundamental unit of the field L can be found by expand-

ing  or  into a continued fraction (see [4]).

Our purpose is to show that, in the case of a hyperellip-
tic field K and the valuation |·|ν determined by a linear
polynomial ν, the fundamental S-unit can also be found
by the method of continued fractions. It was proved in
[5] that calculating the fundamental S-unit requires
finding the minimum positive integer m for which the
valuation equation

(17)

where a ∈ k*, has a solution in polynomials f, g ∈ k[ν],

where g ≠ 0. Then either f + g  or f – g  is the fun-
damental S-unit. By the minimality of m, (f, g) = 1 and
ν does not divide f and g. The following theorem (see
also [6]) gives an algorithm for finding the fundamental
S-unit by using continued fractions.

Theorem 2. Let m be the minimum positive integer
for which Eq. (17) has a solution in polynomials f, g ∈
k[ν], where g ≠ 0.

(1) If m = 2t + 1 is odd, then  =  for some con-

vergent  of .

(2) If m = 2t is even, then there exists a divisor h of
the polynomial d with the following properties:

(i) 1 ≤ degh ≤ ;

(ii) the equation

(18)

where b ∈ k*, has a solution in polynomials f1, g1 ∈

k[ν], and  =  for some convergent  of . Con-

versely, if f1, g1 ∈ k[ν] are a solution of (18), then the

polynomials f and g defined by f = h  +  and

g = f1g1 are a solution of Eq. (17).

Proof. (1) Let us write (17) in the form ( f – g )( f +

g ) = aν2t + 1. Comparing the degrees of polynomials
on the left- and right-hand sides of (17), we obtain

deg f ≤ t and degg =  < t. By virtue of

Proposition 1 from [5], we can assume that | f + g | = 0

d

d
d 1–
2

----------------

f 2 g2d– aνm,=

d d

f˙

g
---

pn

qn

-----

pn

qn

----- d

degd 1–
2

---------------------

d
h
---g1

2 h f 1
2– bνt,=

f 1

g1
-----

pn

qn

-----
pn

qn

----- d
h

-------

1
2
--- -⎝

⎛ f 1
2 d

g
---g1

2

⎠
⎞

d

d

2t 1 degd–+
2

--------------------------------

d
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and | f − g | = 2t + 1. Suppose that f = b0 + b1ν + … +
brνr and g = c0 + c1ν + … + csνs, where r, s ≤ t; bi, ci ∈ k;
br ≠ 0; and cs ≠ 0. Let h = max{r, s}. Consider the ele-

ment  − , where  =  = b0ν–h + … + brνr – h and

 =  = c0ν–h + … +  csνs – h. Since  has the form (8)

and |  – | = 2t + 1 – t = t + 1 > –| | = t, it follows

from Proposition 1 that the fraction  =  is a best

approximation to . By Theorem 1, we have  = 

for some convergent  of .

(2) Since a in (17) must be a square, we can divide
both sides by a and assume without loss of generality
that f, g is a solution of the valuation equation f 2 – g2d =
ν2. This implies

(19)

Let d = d1d2…dr be the irreducible decomposition of d.
Then, each polynomial di divides precisely one of the
factors f – νt or f + νt (otherwise, di = cνt, c ∈ k* and,
therefore, ν divides d, which is false).

Let h1 be the product of those di which divide f – νt,
and let h2 be the product of those di which divide f + νt.
Then, h1h2 = d and (h1, h2) = 1. Suppose for definiteness

that degh1 < degh2, i.e., degh1 ≤ . Let us write

(20)

where u1, u2 ∈ k[ν]. It follows from (20) that

(21)

Substituting (20) into (19), we obtain u1u2 = g2. Note
that (u1, u2) = 1 (otherwise, f and g cannot be coprime).

Thus, u1 =  and u2 = , whence

(22)

It follows from (21) and (22) that

(23)

Thus, Eq. (17) has a solution in polynomials f, g ∈
k[ν] if and only if Eq. (23) has a solution in polynomials

d

f g d f
f

νh
-----

g
g

νh
----- f

g
---

f g d g

f
g
--- f

g
---

d
f
g
---

pn

qn

-----

pn

qn

----- d

f νt–( ) f νt+( ) g2d .=

degd 1–
2

---------------------

f νt– h1u1, f νt+ h2u2,= =

f
1
2
--- h1u1 h2u2+( ), νt 1

2
--- h2u2 h1u1–( ).= =

f 1
2 g1

2

f
1
2
--- h1 f 1

2 h2g1
2+( ), g f 1g1.= =

2νt d
h1
-----g1

2 h1 f 1
2.–=

f1, g1 ∈ k[ν] for some divisor h1 of d with degh1 ≤

. Consider Eq. (23) in more detail. Let us write

it in the form

(24)

Since |h1| = 0 and | | = 0, it follows from Proposition 1

in [5] that we can assume that g1 + f1  = 0 and

g1 – f1  = t. Comparing the degrees on the left- and

right-hand sides of (23), we obtain degg1 ≤ degf1 < .

Suppose that deg f1 = s and

where r ≤ s < ; bi, ci ∈ k; bs ≠ 0; and cr ≠ 0. Consider

the element  – , where  =  and  = .

Since  has the form (8) and  –  = t – s > s =

| |, it follows from Proposition 1 that the fraction  =

 is a best approximation to . By Theorem 1,  =

 for some convergent  of . Moreover, f and g

are related to f1 and g1 by (22), as required.

The following proposition refines Theorem 2 in the
case of an irreducible polynomial d.

Proposition 5. Suppose that the polynomial d is
irreducible and degν ≥ 1. Then, the minimum positive
integer m for which the valuation equation (17) has a
solution in polynomials f, g ∈ k[x], where g ≠ 0, is odd.
Thus, in calculating the fundamental S-unit in the case
of degν = 1, assertion (1) of Theorem 2 holds.

Proof. Suppose that m = 2t. Let us write Eq. (17) in
the form (19). Since d is irreducible, it follows that it
divides one of the factors on the left-hand side of (19).
Suppose that, e.g., f – νt = df1. Then, f = νt + df1. Substi-
tuting this expression into (19), we obtain

(25)

detd 1–
2

-------------------

h1
d

h1
-------g1 f 1–⎝ ⎠

⎛ ⎞ d
h1
-------g1 f 1+⎝ ⎠

⎛ ⎞ 2νt.=

d

d
h1
------- -

d
h1
------- -

t
2
---

f 1 b0 b1ν … bsν
s,+ + +=

g1 c0 c1ν … crν
r,+ + +=

t
2
---

d
h1
-------g1 f 1 f 1

f 1

νs
----- g1

g1

νs
-----

f 1

g1
----- d

h1
-------g1 f 1

g1
f 1

g1
-----

f 1

g1
----- d

h1
-------

f 1

g1
-----

pn

qn

-----
pn

qn

----- d
h1
-------

f 1 2νt d f 1+( ) g2,=
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which implies that f1 divides g2. Therefore, the polyno-
mials g and f1 can be represented in the forms g = f2hg2

and f1 = h for some f2, g2, h ∈ k[x]. Substituting g and
f1 into (25), we obtain

(26)

It follows from (26) that h divides νt and, therefore, h =
bνr for some b ∈ k*. As a result, we conclude that the

valuation equation  – d = 2b–1νt – r has a solution
in polynomials f2, g2 ∈ k[x] and t – r < 2t, which contra-
dicts the minimality of m. This completes the proof of
Proposition 5.

Note that Theorem 2 is invalid in the case of degν > 1.
Consider again the above example. Using the method
for calculating fundamental S-units developed in [5],
we see that the minimum positive integer m for which
the valuation equation (17) has a solution in polynomi-
als f, g ∈ k[ν] equals 5, and

Moreover, f 2 – g2d = ν5. The polynomial d in the exam-
ple under consideration is irreducible. It is easy to show

that  ≠  and  ≠ . Hence,  cannot coincide

with any convergent  of  for n > 2, because the

degree of the denominator is always higher than 1. Tak-
ing into account Proposition 5, we see that Theorem 2
in invalid in the case under consideration. Thus, in the
general situation, the method for calculating S-units

suggested in [5] is more effective than that of continued
fractions.

Theorem 2 suggests an algorithm for calculating
the fundamental S-unit in the case of degν = 1. Let d1,

d2, …, dr be all divisors of d of degree ≤ . We

successively calculate the convergents of , , …,

, and for each convergent  verify equality (18).

As soon as a convergent  satisfying (18) is found, we

obtain a solution f, g of the valuation equation (17) by

formulas (22). Then either f + g  or f – g  is the
fundamental S-unit.
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