*К. А. СЕЛЕВИЧ, *К. И. ХУРС, **А. И. ЛЕСНИКОВИЧ, *А. Ф. СЕЛЕВИЧ ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ КИСЛОГО

ДИФОСФАТА ИТТЕРБИЯ УbHP₂O₇

*НИИ физико-химических проблем Белорусского государственного университета

**Белорусский государственный университет, Минск, Беларусь

Кислый дифосфат иттербия YbHP₂O₇ кристаллизуется в системе Yb₂O₃–P₂O₅–H₂O в качестве стабильной фазы в интервале 150–175 °C в широком диапазоне соотношений реагентов. Параметры его орторомбической элементарной ячейки a = 11,994(1), b = 6,870(1), c = 6,846(1) Å [1]. Соединение относится к семейству изоструктурных дифосфатов редкоземельных металлов LnHP₂O₇ (Ln = Tb–Lu, Y) [2], впервые полученных авторами настоящей работы. Следует отметить, что дифосфат иттербия аналогичного состава упоминается в литературе [3], однако выполненные нами прецизионные исследования синтезированного соединения с тождественной дифрактограммой показали, что фосфор в нем содержится в виде монофосфат- и дифосфат-анионов в соотношении PO₄³⁻ : P₂O₇⁴⁻ = 1 : 1, а само соединение является смешанным по аниону фосфатом Yb₃H₅(PO₄)₂(P₂O₇)₂ [1].

Кислые олигофосфаты лантаноидов – достаточно малочисленная и мало изученная группа соединений [2, 4]. При этом особый интерес представляет их термическое поведение, т. к. наличие РОН групп открывает дополнительные возможности для химических превращений при нагревании и образования промежуточных соединений, что было показано нами ранее на примере термического разложения Yb₃H₅(PO₄)₂(P₂O₇)₂ [5].

Цель настоящей работы – изучение термического поведения кислого дифосфата иттербия YbHP₂O₇ в интервале температур 30–1000 °C.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исходный YbHP₂O₇ получали согласно [1] взаимодействием оксида иттербия Yb₂O₃ о. с. ч. с концентрированной H₃PO₄ х. ч. ($\rho = 1,7$) при 150 °C с применением метода тонкого слоя [6]. Вещество отделяли от маточного раствора-расплава водно-ацетоновой смесью (вода : ацетон = 1 : 1) на стеклянном фильтре, промывали ацетоном и сушили на воздухе. Чистоту полученного соединения контролировали с применением рентгенофазового анализа (РФА; дифрактометр HZG 4A, Германия; Си K_{α} -излучение, Ni-фильтр), химического анализа и количественной бумажной хроматографии [7].

Термическое разложение образца выполняли с применением синхронного термического анализа (СТА, термоанализатор NETZSCH STA449C Jupiter, Германия; скорость нагрева 10 К/мин, инертная атмосфера – N₂) в интервале температур 30–1000 °C. Фазовый состав промежуточных продуктов термического разложения контролировали с помощью РФА (запись дифрактограмм порошковых образцов в электронном виде проводили на дифрактометре ДРОН-3, Со K_{α} -излучение, Ni-фильтр). Индексирование порошковых дифрактограмм, записанных в интервале углов 5° $\leq 2\theta \leq 55^{\circ}$ со скоростью 1 град/мин с использованием кремниевого стандарта, выполняли, применяя программу TREOR90 [8].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кривые термогравиметрического анализа (ТГ) и дифференциальной сканирующей калориметрии (ДСК), полученные при нагревании кислого дифосфата иттербия YbHP₂O₇ в интервале температур 30–1000 °C, приведены на рис. 1.

Рис. 1. Кривые ДСК (1) и ТГ (2) YbHP₂O₇

Как следует из данных рис. 1, вещество характеризуется достаточно высокой термической устойчивостью. Оно начинает заметно терять вес только выше 350 °C, что мало характерно для кислых фосфатов, большинство которых разлагается в интервале температур 150–350 °C [9]. Терморазложение YbHP₂O₇ происходит в два этапа. На первом этапе (350–550 °C) отмечается потеря до 1,7 % массы, что соответствует 2/3

содержащейся в нем воды в составе кислых РОН групп (выраженная ступенька на кривой ТГ, которой соответствует пик на кривой ДСК с минимумом при 430 °C). Образующаяся при этом промежуточная фаза относительно термически устойчива вплоть до 750 °С (потеря массы в интервале 600-750 °C не превышает 0,2 %). По данным количественной бумажной хроматографии, образец, нагретый до 600 °C, содержит фосфор только в виде дифосфат- и тетрафосфат-анионов в мольном соотношении $P_2O_7^{4-}$: $P_4O_{13}^{6-} = 1$: 1. Этот факт с учетом исходного состава, потери массы на первой и второй стадиях термораздожения (в интервале 750-900 °С образец теряет оставшиеся 0,7 % массы) позволяет утверждать, что промежуточный продукт является смешанным по аниону кислым дифосфатом-тетрафосфатом иттербия состава Yb₃H(P₂O₇)(P₄O₁₃). По данным РФА, последний имеет кристаллическое строение (рис. 2, кривая 2). При этом следует особо отметить, что его дифрактограмма лишь незначительно отличается от дифрактограммы исходного вещества (рис. 2, кривая *1*): отмечается небольшое смещение наиболее интенсивных рефлексов и появляется несколько дополнительных слабоинтенсивных рефлексов в интервале $2\theta = 30-60$ градусов, что указывает на топотаксиальный характер дегидратации YbHP₂O₇ на первой стадии.

Рис. 2. Порошковые дифрактограммы (Со*К*_α-излучение) исходного YbHP₂O₇ (*1*) и продуктов его нагревания при 600 (2) и 825 °С (*3*)

Как следует из данных рис. 2, кристаллическая решетка исходного $YbHP_2O_7$ настолько устойчивая, что сохраняет общий мотив после термической дегидратации с образованием $Yb_3H(P_2O_7)(P_4O_{13})$ и даже при частичной дегидратации последнего, о чем свидетельствует вид порошковой дифрактограммы продукта, нагретого до 825 °С и потерявшего более 80 % воды за счет конденсации кислых РОН групп (рис. 2, кривая 3).

Отдельного рассмотрения заслуживает вторая стадия термического разложения YbHP₂O₇, существенно «сдвинутая» в высокотемпературную область (ступенька на кривой ТГ в интервале 750–900 °C, которой соответствует эндоэффект на кривой ДСК с минимумом при 885 °C). Дело в том, что конденсация POH групп при терморазложении кислых фосфатов обычно завершается до 500–550 °C [9]. Однако в случае, когда POH группы изолированы друг от друга, их конденсация, как правило, происходит выше 600 °C. Подобное явление отмечалось при исследовании смешанного по аниону кислого дифосфата-циклотетрафосфата индия $In_2H_2(P_2O_7)(P_4O_{12})$ [10, 11]. Вероятно, и в нашем случае в образующемся на первой стадии терморазложения Yb₃H(P₂O₇)(P₄O₁₃) кислые POH группы изолированы друг от друга, и их конденсация наступает только с разрушением «жесткой» кристаллической решетки, образованной катионами иттербия и фосфатными анионами.

Завершение дегидратации YbHP₂O₇ выше 900 °C сопровождается тремя перекрывающимися экзоэффектами на кривой ДСК с максимумами при 910, 923 и 927 °C. Согласно данным РФА, нагретый до 900–910 °C образец представляет собой кристаллическое вещество, фосфор в котором находится только в виде тетрафосфатного аниона, а дифрактограмма весьма близка к таковой для ранее изученных тетрафосфатов Ln₂P₄O₁₃ (Ln = Gd, Y) [12, 13]. В табл. 1 приведены дифрактометрические характеристики полученного нами Yb₂P₄O₁₃, на основании которых с использованием данных [14] вычислены его кристаллографические характеристики: орторомбическая сингония, пространственная группа *C*222₁, *a* = 17,113(1), *b* = 6,914(1), *c* = 8.476(1) Å, *Z* = 4 (критерии достоверности результатов индексирования: $M_{20} = 32$, $F_{20} = 44$, $M_{30} = 23$, $F_{30} = 35$, $M_{35} = 20$, $F_{35} = 34$).

Таблица 1

h k l	$2\Theta_{\rm BMY}$	$2\Theta_{3\kappacn}$	$d_{ m эксп}$, Å	<i>I</i> , %	h k l	$2\Theta_{\rm BMY}$	$2\Theta_{3\kappacn}$	$d_{ m эксп}$, Å	<i>I</i> , %
200	10,33	10,33	8,56	4	013	40,53	40,53	2,224	15
210	14,71	14,70	6,02	85	602	40,98	40,99	2,201	10
111	17,34	17,33	5,11	15	040	42,63	42,63	2,119	15
400	20,75	20,75	4,28	100	810	43,61	43,60	2,074	30
311	22,76	22,75	3,904	10	240	44,00	43,99	2,056	10
410	23,27	23,27	3,820	70	141	45,02	45,02	2,012	30
220	23,40	23,41	3,798	50	123	—	45,05	—	
121	25,16	25,17	3,537	100	440	47,86	47,87	1,899	10

Дифрактометрические характеристики Yb₂P₄O₁₃

002	25,75	25,75	3,457	85	042	50,46	50,48	1,807	10
212	29,78	29,78	2,998	25	731	51,10	51,10	1,786	30
511	30,99	30,98	2,883	4	033	-	51,10	-	_
600	31,34	31,34	2,852	25	812	51,33	51,33	1,779	35
610	33,12	33,11	2,703	30	541	-	52,44	_	-
402	33,30	33,29	2,688	45	523	52,46	52,47	1,743	35
131	34,67	34,67	2,585	40	004	52,93	52,93	1,729	10
412	34,99	34,98	2,562	30	1000	53,51	53,51	1,711	10
521	36,13	36,12	2,484	35	830	53,70	53,70	1,706	30
331	37,80	37,81	2,378	50	921	54,48	54,49	1,683	10
203	_	40,50	_	_	250	55,19	55,19	1,663	20
711	_	40,53	_	_	713	55,83	55,84	1,645	4

Тетрафосфат иттербия $Yb_2P_4O_{13}$ является промежуточным соединением в схеме термического разложения дифосфата $YbHP_2O_7$. Установлено, что он существует в узком интервале температур и при дальнейшем нагревании разлагается с образованием смеси кристаллических тетрагонального монофосфата $YbPO_4$ и моноклинного полифосфата $Yb(PO_3)_3$ (форма *C*), кристаллографические характеристики которых приведены в [14–16].

Учитывая вышесказанное, термическое разложение YbHP₂O₇ в интервале 30–1000 °С может быть представлено следующей схемой:

$$\begin{aligned} \text{YbHP}_2\text{O}_7 &\rightarrow (350\text{--}550 \text{ °C}, -\text{H}_2\text{O}) \rightarrow \text{Yb}_3\text{H}(\text{P}_2\text{O}_7)(\text{P}_4\text{O}_{13}) \rightarrow \\ &\rightarrow (750\text{--}900 \text{ °C}, -\text{H}_2\text{O}) \rightarrow \text{Yb}_2\text{P}_4\text{O}_{13} \rightarrow (900\text{--}950 \text{ °C}) \rightarrow \\ &\rightarrow \text{YbPO}_4 + \text{Yb}(\text{PO}_3)_3\text{--}C. \end{aligned}$$

В заключение авторы выражают благодарность к. х. н. Ляхову А. С. за запись дифрактограмм.

ЗАКЛЮЧЕНИЕ

В ходе исследования термического разложения кислого дифосфата иттербия YbHP₂O₇ в интервале температур 30-1000 °C установлено, что вещество разлагается в две стадии. На первой стадии, протекающей по топотаксиальному механизму в интервале 350-550 °C, образуется новый кислый дифосфат-тетрафосфат аниону иттербия смешанный по Yb₃H(P₂O₇)(P₄O₁₃), устойчивый до 750 °C. На второй стадии в интервале 750-900 °С происходит полная дегидратация вещества с образованием нового среднего тетрафосфата Yb₂P₄O₁₃, который при дальнейшем нагревании разлагается с образованием смеси кристаллических тетрагонального монофосфата YbPO₄ и моноклинного полифосфата Yb(PO₃)₃ (форма С). В результате анализа дифрактометрических данных порошкового образца Yb₂P₄O₁₃ вычислены его кристаллографические характеристики: орторомбическая сингония, пространственная группа $C222_1$, a = 17,113(1), b = 6,914(1), c = 8,476(1) Å

ЛИТЕРАТУРА

1. Selevich A., Khurs K., Lyakhov A., Lesnikovich A. // Phosphorus Res. Bull. 2005. Vol. 19. P. 234–239.

2. *Лесникович А. И., Воробьева С. А., Селевич А. Ф. //* Весці АН Беларусі. Сер. хім. навук. 2009. № 1. С. 12–27.

3. *Чудинова Н. Н., Балагина Г. М., Шкловер Л. П.* // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. № 11. С. 2075–2082.

4. Durif A. Crystal chemistry of condensed phosphates. New York, 1995. 408 p.

5. Селевич К. А., Хурс К. И., Лесникович А. И., Селевич А. Ф. // Свиридовские чтения: Сб. ст. Вып. 5. Минск, 2009. С. 79–86.

6. Селевич А. Ф., Лесникович А. И. // Журн. неорган. химии. 1994. Т. 39, № 8. С. 1386–1390.

7. *Продан Е. А., Шашкова И. Л., Галкова Т. Н. //* Журн. аналит. химии. 1978. Т. 33, № 12. С. 2304–2309.

8. Werner P. E., Eriksson L., Westdahl M. // J. Appl. Crystallogr. 1985. Vol. 18. P. 367–379.

9. Лепилина Р. Г., Смирнова Н. М. Термограммы неорганических фосфатных соединений: Справочник. Л.: Наука, 1984. 334 с.

10. Селевич А. Ф., Лесникович А. И. // Журн. неорган. химии. 2000. Т. 45, № 2. С. 305–313.

11. Ivashkevich L. S., Lyakhov A. S., Selevich A. F., Lesnikovich A. I. // Z. Kristallogr. 2003. Vol. 218. P. 32–36.

12. Argaval D.; Hummel F. A. // J. Electrochem. Soc. 1980. Vol. 127. P. 1550–1554.

13. Ivashkevich L. S. Lyakhov A. S., Selevich A. F. et al. // Z. Kristallogr. 2002. Vol. 217. P. 605–608.

14. *Мельников П. П., Комиссарова Л. Н., Бутузова Т. А.* // Изв. АН СССР. Неорган. материалы. 1981. Т. 17, № 11. С. 2110–2112.

15. *Чудинова Н. Н. //* Изв. АН СССР. Неорган. материалы. 1979. Т. 15, № 5. С. 833–837.

16. Milligan W. O., Millica D. F., Beall G. W., Boatner L. A. // Acta Crystallogr. 1983. Vol. C39. P. 23–24.

Поступила в редакцию 18.12.2010.