
4. Как осуществляется шифрование Телеграмм и в чем его отличие от других мессенджеров [Элек­
тронный ресурс]. - Режим доступа: https://ru.telegram-store.com/blog/shifrovanie-telegramm/. - Дата до­
ступа: 19.03.2019.

5. Алгоритм шифрования AES [Электронный ресурс]. - Режим доступа: https://www.opengsm.com/
blog/algoritm-shifrovaniya-aes/. - Дата доступа: 20.03.2019.

6. Мао, В. Современная криптография: теория и практика / В. Мао ; пер. с англ. Д. А. Клюшина. - M.,
2005. - 768 с.

7. Как устроено шифрование в интернете (алгоритм Диффи - Хеллмана, RSA, сертификаты, цифро­
вая подпись, хеширование, Tor, І2р) [Электронный ресурс]. - Режим доступа: http://halt-hammerzeit.
blogspot.com/20 ІЗ/06/rsa-ipsec-vpn.html. - Дата доступа: 20.03.2019.

I. Kartasov,
2nd students of School of Business of BSU

Scientific supervisor:
senior lecturer
E. Grinevitch

DOM EVENTS AND EVENT LISTENERS. BUBBLING AND CAPTURING

To some, there may seem to be an elusive lack o f difference between the instance o f an event
happening and a certain event listener being triggered.

When an event happens is the starting point o f the whole process o f Event Handling in JavaScript.
But it is the user interaction (in most cases) that leads to an event actually happening and it is a Script
that handles the event initiated via a user action.

So when an event happens it means that the user did something like click, focus or even probably
simply move the cursor o f their mouse. Once that happened, an event (let's for the sake o f an example
assume it to be a Click Event) was triggered by the user, the JavaScript gets a signal to run its many
event listeners. Do note, however, that there may be dozens o f event listeners surrounding one type of
event (and thus also surrounding so much as a single click or the slightest stir o f the cursor). So how
do you make sense o f all the havoc that goes off?

Well, let's assume that a user clicked a certain HTML element, let’s call this element element A (so
the user triggered a click event on element A). A single click event happened. Well, in our document
there may actually be many event listeners that listen and react to that click. But here is the thing: only
the Event Listeners o f the Parent Elements o f element A as well as element A itself will ever know that
a click event happened on element A. The children o f element A won't get any signal.

So what do we have as o f now? A click was triggered on element A and all the Event Handlers of
the ancestors o f element A will know and reach to this click. But they aren't going to react to it all at
once. In fact there is a very elaborate and sophisticated order in which each and every one o f those
Event Listeners is going to be triggered.

These circles actually represent event listeners. Some Event Listeners are going to be triggered
during the Capture phase (more on that in a moment) and others during the Bubbling Phase (same
here). Show the distinction in the picture.

But before we dive into exploring the difference between Capture and Bubbling Phases let's get
some terminology straight.

Each o f those Event Listeners on Parent Elements will have a so called Event Object that stores lots
o f data. When an Event is Triggered by the user (it happened not so long ago when they clicked
Element A, remember?) there is only one element where the Event really happened. If a click happens

450

https://ru.telegram-store.com/blog/shifrovanie-telegramm/
https://www.opengsm.com/
http://halt-hammerzeit

on an element all the Event Objects on the many Event Listeners that listen to clicks are all going to
have the same reference to that one unique element. In our case all the Event Listeners o f the ancestors
o f element A are going to have the reference to Element A as that one HTML element where the user
clicked (we can't really click at two places at the same time right?). To be precise those Event
Listeners will store away the reference to Element A each in their own Event Object. That reference to
element A is going to be called, quite straightforward really, target. I am going to show current Target
later so it makes more sense.

After that the game begins, and dozens o f different Event Listeners invoke many functions
leveraging the power o f just one click.

Well so what goes on really? As I already said there is going to be a certain order in which Event
Listeners are going to be executed, and yep those are just functions.

Do think o f this whole process as though we had a rubber ball that we throw into water, which can
turn into a bubble as soon as it reaches a certain depth.

Why that? Let me show a demo for that.
Well, you should know that we can have many Event Listeners on the same HTML element (in our

case on the same ancestor o f good old element A for example). Also there are two Types o f Event
Listeners. The first type is the Sort o f Event Listener that is triggered during the Capture Phase, the
other is triggered during the Bubbling Phase.

So what that means? Draw back to our Rubber Ball analogy. The Capture Phase is very similar to
when we throw the Ball into the water and it sinks, penetrating deeper and deeper. This way when the
user did click the element A the very first Event Listener to be triggered is going to be the Capture
Phase Type o f Event Listener that is attached to the Uppermost ancestor o f element A (this is often
such huge elements as HTML, body, document or even window). So why the uppermost ancestor
during the Capture phase?

Simple. Because it is the highest element in terms o f hierarchy and the Capture phase goes before
the Bubbling phase (that is just a rule).

Just like the ball sinks, we too are going to climb down that ladder o f ancestors to the ancestor just
below the uppermost and see if the next (the one below) ancestor has the Capture Type o f Event
Listener. If it does we are going to invoke it (Event Listener is just a function) and climb lower still or
if it doesn't we will simply have to go climb down to the ancestors below without invoking an Event
Listener. This is kind o f why we call it Capture actually.

Also do note that the Event Object o f every ancestor, when we execute the Event Listener o f that
ancestor is also going to store the reference to that ancestor in the currentTarget property. This way
currentTarget is going to be the same element (ancestor) as the one whose Event Listener is currently
being executed. All right let’s go down. Take a look at how the currentTarget and target are going to
change as we go down.

Eventually we are going to find our element A or target that the user clicked on. Then the browser
is going to see if our element A itself had any Event Listeners attached to it. If so, the browser is going
to invoke them. Do note a peculiarity about invoking Event Listeners on the same element A that the
event occurred on: the target o f all Event Objects and the currentTarget reference o f the Event Object
o f element A (if our element A happens to have an Event Listener) are going to be the same. This is
also called the Target Phase by the spec. So you could identify this phase as the one in which
currentTarget === target.

Then we say that an event bubbles. What that means? Well, the target reference in the Event
Objects is still the same and so the target remains our element A. But we are in the Bubbling Phase
already. Turning back to our rubber ball analogy, you could think o f the moment when we reached

451

element A as the point at which our rubber ball turned into a bubble and now, after sinking deep
enough, it is going to travel all the way back to the surface where we started triggering the first Event
Listeners o f the Huge uppermost ancestors. At this point all the Bubbling Phase Type o f Event
Listeners are going to be invoked much in the same fashion as we previously observed the Capture
Phase Event Listeners do their work, except with one difference: this time we are going to go from the
direct ancestor o f our element A to the uppermost ancestor o f element A, invoking all Bubble Phase
Kind o f Event Listeners on the way to the top. The currentTarget inside Event Objects o f our ancestors
is going to vary from the deepest (direct) ancestor to the uppermost ancestor o f Element A until we
arrive at the very top, at the window perhaps running the very last Event Listener (if there is one
attached to window, o f course).

Here is a somewhat interesting detail though: think back to the time when our rubber ball turned
into a bubble, yeap I am talking about the time when we reached element A at the end o f the Capture
Phase. Do think about it: element A can too have both Capture Phase type o f Event Listener on it as
well as the Bubble Phase type o f Event Listener.

So logic is pretty straightforward here: as we are leaving the capturing phase the Capture Phase
Event Listener is invoked first, then the Bubble Phase event listener is invoked on Element A.

It is confusing because the whole time while currentTarget is the same element as target we are
actually in the Target phase. But that is probably more o f a somewhat unnecessary technical detail at
this point.

Well, here is another thing: whenever anybody tells you that an event can't bubble what they are
trying to say is the following: if click events couldn't bubble our element A wouldn't be able to tell all
the Bubble Type Event Listeners o f its ancestors that they should execute and as a result they would
just sleep lambently through the whole process (missing all the fun). The Focus event is a good
example! So we can only catch it during the Capture Phase. What this means is that if we assign
a Capture Phase kind o f event Listener named John as well as a Bubble Phase kind of Event
Listener named Bob to any o f the ancestors o f element A, element A, upon getting focus, will be able
to tell John that it should start executing and John will do his job. However, because we say that Focus
event doesn't bubble (I mean it is true it actually doesn't) so because o f this event's inability to bubble,
element A will not be able to tell Bob to execute. So Bob will be a useless Event Listener for the Focus
Event because Bob is a Bubble Phase kind o f event listener.

Well that is about it for the difference between capturing and bubbling.
Seems like one click took us on a journey of a million years, didn't it?

M. А. Лисова,
студент II курса БГУИР
Научный руководитель:

кандидат экономических наук, доцент
Н. Н. Жилинская

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ:
РИСКИ И ЦЕНА УТЕЧКИ ДАННЫХ

Под риском информационной безопасности понимается возможность того, что данная угро­
за будет использовать уязвимости информационного актива (группы активов) и тем самым
нанесет вред организации. Он измеряется комбинацией вероятности нежелательного события
и его последствий (возможного ущерба). В последние годы проблема рисков информационной

452

