УДК 612.87

ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКИЕ КОРРЕЛЯТЫ КОРКОВОГО ЭТАПА СЕНСОРНОЙ РЕЦЕПЦИИ ЛИМОННОЙ КИСЛОТЫ

Е. Н. САВАНЕВСКАЯ 1)

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Рассматривается методологическая проблема идентификации электроэнцефалографического коррелята вкусовой чувствительности в процессе рецепции сложных стимулов при участии нескольких сенсорных систем. В качестве примера определен паттерн активности коры больших полушарий при сенсорной рецепции раствора лимонной кислоты. По итогам анализа наиболее вероятным коррелятом вкусовой чувствительности представляется очаг бета-высокочастотной активности, наблюдаемый в правой фронтальной области коры. Другие очаги корковой активности, отмечаемые во время рецепции лимонной кислоты, отражают невкусовые формы чувствительности, возникающие под действием исследуемого раздражителя.

Ключевые слова: электроэнцефалография; вкусовая чувствительность; лимонная кислота.

ELECTROENCEPHALOGRAPHICAL CORRELATES OF CORTEX STAGE OF SENSORY CITRIC ACID PERCEPTION

A. M. SAVANEUSKAYA^a

^aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

The article deals with the methodological problem faced while identifying the EEG-correlate of taste sense by perception of complex stimuli involving a wide spectrum of sensory systems. As an example we defined a brain cortex activity pattern by tasting citric acid. As a result most promising taste perception correlate was found in beta high frequency band of right frontal cortex area. Other loci of brain cortex activity observed by citric acid presentation reflect non-taste perception forms appearing as by-products of oral stimulation.

Keywords: electroencephalography; taste perception; citric acid.

Ввеление

В соответствии с аналитическим подходом к изучению функций сенсорных систем в современной исследовательской практике часто используются упрощенные стимулы, предъявляемые по отдельности [1; 2]. Однако даже в этом случае их перцепция является результатом взаимодействия нескольких воспринимающих сложный стимул рецепторов. Примером может служить рецепция вкусовых стимулов, помещенных в ротовую полость. Значительная часть работ по изучению процессов, сопровождающих возникновение вкусовых ощущений, действительно констатирует появление в сложном сигнале

Образец цитирования:

Саваневская ЕН. Электроэнцефалографические корреляты коркового этапа сенсорной рецепции лимонной кислоты. Журнал Белорусского государственного университета. Биология. 2019;3:33–39.

https://doi.org/10.33581/2521-1722-2019-3-33-39

For citation:

Savaneuskaya AM. Electroencephalographical correlates of cortex stage of sensory citric acid perception. *Journal of the Belarusian State University. Biology.* 2019;3:33–39. Russian. https://doi.org/10.33581/2521-1722-2019-3-33-39

Автор:

Елена Николаевна Саваневская – аспирантка кафедры физиологии человека и животных биологического факультета. Научный руководитель – доктор биологических наук, профессор А. Г. Чумак.

Author:

Alena M. Savaneuskaya, postgraduate student at the department of human and animal physiology, faculty of biology. esavanevskaja@gmail.com https://orcid.org/0000-0002-6703-493X электроэнцефалограммы (ЭЭГ), регистрируемом от всей поверхности скальпа, нескольких корковых локусов активации нейронных сетей, одновременно присутствующих в коре на конечном этапе сенсорной рецепции вкуса пищи [3–11]. В подобных случаях бывает трудно или невозможно идентифицировать, являются ли все регистрируемые очаги активности отражением рецепции вкуса с участием обширных областей мозга, или же диффузная активация обусловлена эффектами, параллельно вызываемыми тактильным, температурным и другими раздражителями, действующими в полости рта при попадании пищевого комка или раствора нутриента [12; 13]. Проблема носит методологический характер и требует решения даже с учетом того, что при полимодальном пищевом ощущении происходит взаимодействие сенсорных систем и, как следствие, видоизменение реакции на каждую из них [14].

Современные исследования корковой фазы сенсорной рецепции нутриентов в организме человека основаны на методах, позволяющих с высокой точностью локализовать участки возбуждения, возникающие вследствие роста импульсной активности нейронных сетей в ответ на раздражение тех или иных рецепторов. Так, при исследовании вкусовой рецепции стимулов различной интенсивности используется функциональная магнитно-резонансная томография (фМРТ) [15; 16]. Однако ни один из методов не продемонстрировал возможность определить, каким или смесью каких видов чувствительности преимущественно обусловлено возникновение того или иного очага наблюдаемой корковой активности. Имеются сведения [17] и о том, что, кроме фМРТ, в качестве надежного способа получения информации о динамике корковых процессов при сенсорной рецепции пищевых веществ может выступать компьютерная электроэнцефалография.

Цель исследования – попытка применить метод компьютерной электроэнцефалографии в режиме картирования для определения реакций коры больших полушарий мозга человека при вкусовой рецепции лимонной кислоты с учетом действия сопутствующих тактильных и температурных раздражителей.

Материалы и методы исследования

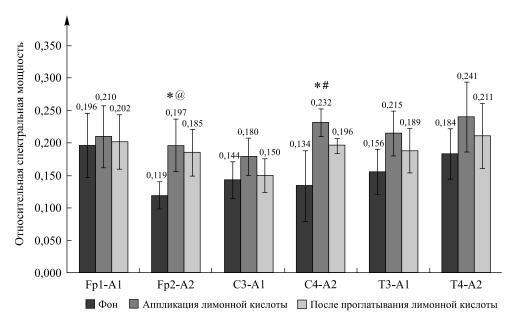
В обследовании участвовали 20 девушек в возрасте от 18 до 21 года. Все они были правшами, отрицали наличие в анамнезе неврологических, гастроэнтерологических заболеваний, а также заболеваний, препятствующих восприятию вкуса, и употребление седативных препаратов. Испытуемые воздерживались от приема пищи, кофе, алкоголя, от курения как минимум в течение 3 ч до начала эксперимента. Для установления характера активации коры больших полушарий записывалась ЭЭГ. Обследование проводилось в полутемной комнате в полной тишине. Девушки находились в положении сидя в расслабленной позе с открытыми глазами с фиксацией взора перед собой. Запись ЭЭГ осуществлялась с помощью 8-канального компьютерного электроэнцефалографа Нейрон-Спектр-4 (ООО «Нейрософт», Россия). Смоченные в физрастворе мостиковые электроды в соответствии с международной схемой 10–20 % накладывались на точки Fp1, Fp2, C3, C4, T3, T4, референтные электроды располагались на мочках ушей.

Экспериментальный протокол состоял в следующем. Регистрация ЭЭГ-сигнала начиналась после приема и удержания (1 мин) в ротовой полости испытуемыми пищевой лимонной кислоты (10 мл водного 1 % раствора цитрата комнатной температуры). Затем обследуемому предлагалось проглотить раствор с последующей регистрацией ЭЭГ в течение 5 мин. Для получения контрольных значений мозговая активность записывалась без помещения раздражителей в ротовую полость.

Для анализа использовались 30-секундные периоды ЭЭГ, выделенные на нативной записи эксперимента после ручного удаления артефактов. В указанных записях рассчитывалась относительная спектральная мощность в частотных диапазонах α (8–14 Γ ц), β_{HY} (14–20 Γ ц), Δ (0,5–4,0 Γ ц), Θ (4–8 Γ ц). Оценка достоверности различий между выборками определялась с помощью однофакторного дисперсионного анализа для зависимых наблюдений (one-way repeated-measures ANOVA) или критерия Фридмана (Friedman rank sum test), если распределение хотя бы одной из выборок не соответствовало закону Гаусса. При использовании ANOVA были соблюдены все требования, предъявляемые к выборке данным статистическим методом. Нормальность распределения проверялась по критерию Шапиро – Уилка, гомоскедастичность и сферичность – с помощью тестов Левене и Моучли соответственно. Апостериорные сравнения проводились с использованием теста Тьюки. Достоверность различий признавалась при p < 0,05. Все процедуры статистического анализа проводились в среде R. При визуализации характера электрической активности коры применялся метод частотного картирования спектральной мощности ЭЭГ.

Результаты и их обсуждение

Для того чтобы выявить локусы активации коры больших полушарий мозга на действие в ротовой полости раствора лимонной кислоты, сравнивали мощности ЭЭГ до и после приема. По итогам анализа установлено, что преобладающей формой реакции по выборке была активация нейронных сетей


коры правого полушария мозга, что не противоречит классическим [18] и современным [5] публикациям. Так, возрастание доли бета-высокочастотного компонента спектра наблюдалось в правом фронтальном отведении (рис. 1). Рост мощности бета-волн был отмечен и в правой теменной области коры (см. рис. 1). Кроме того, под правым центральным электродом зафиксировано падение спектральной мощности альфа-частот (рис. 2). То же самое происходило и с тета-частотами (рис. 3). Уменьшение доли альфа- и тета-волн в спектральном составе ЭЭГ отмечено и в правой височной зоне коры (см. рис. 2 и 3).

Кроме этого, нам удалось наблюдать и некоторые изменения левополушарной активности коры. Так, снизилась альфа-мощность ЭЭГ в правом лобном отведении (см. рис. 2).

После проглатывания раствора лимонной кислоты достоверный рост спектральной мощности в серии обнаружился лишь в бета-высокочастотном диапазоне в правой фронтальной области коры (см. рис. 1).

Правосторонняя межполушарная асимметрия зафиксирована также при сравнении паттернов ЭЭГ в процессе аппликации цитрата и после проглатывания. В частности, произошло снижение бета-мощности в правом центральном отведении (см. рис. 1). В этой области мозга снижалась тета-частотная активность. Падение тета-мощности наблюдалось и в правом темпоральном отведении (см. рис. 3). Рост спектральных значений отмечался в альфа-частотном диапазоне в правой височной области коры. Та же динамика зафиксирована в левом фронтальном отведении (см. рис. 2).

Ни на одном из этапов эксперимента не было зафиксировано изменений дельта-частотной активности во фронтальной коре (рис. 4), предлагаемой в качестве коррелята коркового этапа вкусовой рецепции [19]. В такой ситуации коррелятом финального этапа рецепции вкуса с равной вероятностью могут служить все обнаруженные очаги мозговой активности. Результаты по данной серии отличаются от сделанных нами ранее наблюдений с использованием в качестве стимулов глюкозы и поваренной соли [20; 21]. Кроме того, неясно, индуцирует ли вкусовая стимуляция всю наблюдаемую активность целиком или только некоторую ее часть. Согласно современным представлениям [14] более вероятно, что наряду с перцепцией вкуса в этой активности отражены другие виды чувствительности, в частности тактильной, индуцированной помещением лимонной кислоты на язык.

Puc. 1. Изменение относительной спектральной мощности ЭЭГ-сигнала в бета-высокочастотном диапазоне (ось ординат) при аппликации на язык лимонной кислоты, а также после ее проглатывания.

По оси абсцисс указаны точки отведения и сравнения показателя (электроды). Достоверность различий между средними по выборке показателями:

* − в контроле и при аппликации раствора лимонной кислоты,

− в контроле и после проглатывания, @ − при аппликации и после проглатывания

Fig. 1. Relative EEG spectral power changes in beta high frequency band (Y axis)

by putting citric acid on the tongue as well as after swallowing.

Here and further registration leads (electrodes) are laid off as abscissa.

Symbol * here and further emphasizes significant differences between mean values in control and by citric acid administration, # − in control and after swallowing,

@ − by acid administration and after swallowing

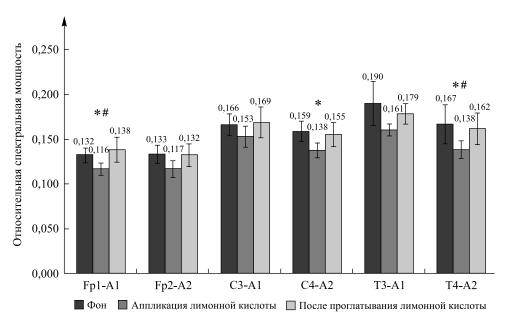


Рис. 2. Изменение относительной спектральной мощности ЭЭГ-сигнала в альфа-диапазоне (ось ординат) при аппликации на язык лимонной кислоты, а также после ее проглатывания. По оси абсцисс указаны точки отведения и сравнения показателя (электроды)

Fig. 2. Relative EEG spectral power changes in alpha band (Y axis) by putting citric acid on the tongue as well as after swallowing. Here and further registration leads (electrodes) are laid off as abscissa

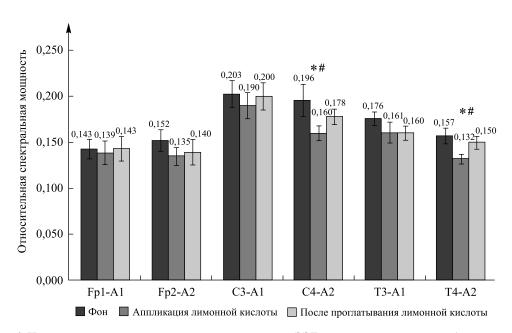


Рис. 3. Изменение относительной спектральной мощности ЭЭГ-сигнала в тета-диапазоне (ось ординат) при аппликации на язык лимонной кислоты, а также после ее проглатывания. По оси абсцисс указаны точки отведения и сравнения показателя (электроды)

Fig. 3. Relative EEG spectral power changes in theta band (Y axis) by putting citric acid on the tongue as well as after swallowing. Here and further registration leads (electrodes) are laid off as abscissa

Для устранения указанной неясности видится целесообразным сравнение очагов активности, вызванной относительно фона аппликацией раствора цитрата и его проглатыванием, которое в этой связи является способом сохранения ощущения вкуса на языке при одновременном устранении сопутствующих соматосенсорных влияний. По итогам сравнения локусы, обнаруженные при аппликации и сохранившиеся после проглатывания раствора, логично рассматривать в качестве коррелятов вкусовой чувствительности.

Общим для обоих этапов оказался только очаг бета-высокочастотной активности в правом фронтальном отведении. Можно предположить, что именно он является коррелятом вкусовой чувствительности в общем паттерне сенсорной активации коры (рис. 5). Из условий эксперимента следует, что остальные сдвиги электрической активности в коре мозга испытуемых могут быть обусловлены как невкусовыми формами чувствительности в полости рта, так и возбуждением интерорецепторов. Если указанная

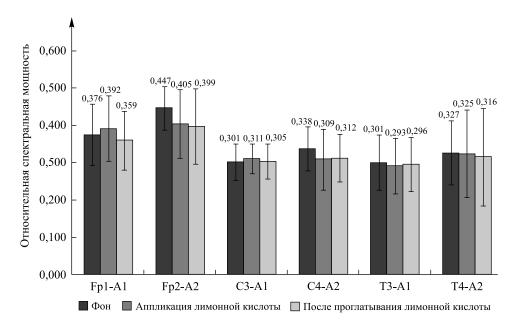
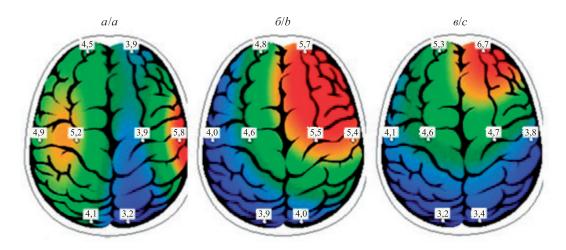



Рис. 4. Изменение относительной спектральной мощности ЭЭГ-сигнала в дельта-диапазоне (ось ординат) при аппликации на язык лимонной кислоты, а также после ее проглатывания. По оси абсцисс указаны точки отведения и сравнения показателя (электроды)

Fig. 4. Relative EEG spectral power changes in delta band (Y axis) by putting citric acid on the tongue as well as after swallowing. Here and further registration leads (electrodes) are laid off as abscissa

 $Puc.\ 5$. Локализация максимальной мощности бета-высокочастотного компонента ЭЭГ-спектра в контроле (a), в процессе нахождения раствора лимонной кислоты в полости рта (δ) и после проглатывания (s) (цифрами обозначена полная мощность, мкВ²)

Fig. 5. Localization of the EEG beta band highest spectral power in control (a), by placing citric acid solution into the oral cavity (b) and after swallowing (c) (total spectral power pointed, μV^2)

активация связана с соматосенсорными сигналами из полости рта, то после проглатывания она будет снижаться в тех точках, в которых выросла при первоначальной аппликации раствора кислоты.

Сравним локализацию активности коры при предъявлении лимонной кислоты с расположением очагов, сохранившихся относительно присутствия ее во рту после проглатывания. Зафиксировано снижение мощности ЭЭГ после проглатывания раствора цитрата в тех же отведениях и частотных диапазонах (за исключением тета-ритма), где наблюдался ее рост при предъявлении кислоты. Это позволяет определить паттерн активации коры при рецепции цитрата в ротовой полости как совокупностью коррелятов вкусовых и соматосенсорных влияний.

Заключение

В ходе исследования был установлен паттерн активации коры больших полушарий в процессе сенсорной рецепции носителя вкуса наименее изученной модальности – раствора лимонной кислоты – в полости рта [22]. Полученные результаты позволяют предположить, что наблюдаемая динамика ЭЭГ является коррелятом вкусовой рецепции, а также соматосенсорной чувствительности, индуцируемых раствором цитрата в ротовой полости. При этом проекция вкусовой рецепции на кору больших полушарий сопровождается возникновением локуса бета-активности в правой фронтальной области коры, что подтверждает и конкретизирует данные литературы [5]. Указанное справедливо лишь с учетом частичной обусловленности одних ЭЭГ-коррелятов чувствительности другими ввиду одновременной рецепции лимонной кислоты несколькими сенсорными системами [14]. Стоит отметить, что ни в одной из областей коры не обнаружено изменения доли дельта-частот в спектре ЭЭГ, выявленного в [19] при изучении мозгового этапа рецепции вкуса.

Библиографические ссылки

- 1. Beauchamp GK. Basic taste: a perceptual concept. *Journal of Agricultural and Food Chemistry*. 2019;13:1–40. DOI: 10.1021/acs.jafc.9b03542.
- 2. Sonkusare S, Breakspear M, Guo Chr. Naturalistic stimuli in neuroscience: critically acclaimed. *Trends in Cognitive Science*. 2019;23(8):699–714. DOI: 10.1016/j.tics.2019.05.004.
- 3. de Araujo IE, Simon SA. The gustatory cortex and multisensory integration. *International Journal of Obesity.* 2009;33(2): S34–S43. DOI: 10.1038/ijo.2009.70.
- 4. Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on «sensory-specific» brain regions, neural responses, and judgments. *Neuron*. 2008;57(1):11–23. DOI: 10.1016/j.neuron.2007.12.013.
- 5. Fox NA, Davidson RJ. Taste-elicited changes in facial signs of emotions and the asymmetry of brain electrical activity in human newborns. *Neuropsychologia*. 1986;24(3):417–422. DOI: 10.1016/0028-3932(86)90028-x.
- 6. Fry Vennerød FF, Nicklaus S, Lien N, Almli VL. The development of basic taste sensitivity and preferences in children. *Appetite*. 2018;127:130–137. DOI: 10.1016/j.appet.2018.04.027.
- 7. Ghazanfar AA, Schroeder CE. Is neocortex essentially multisensory? *Trends in Cognitive Sciences*. 2010;10:278–285. DOI: 10.1016/j.tics.2006.04.008.
- 8. Hartley IE, Liem DG, Keast R. Umami as an 'alimentary' taste. A new perspective on taste classification. *Nutrients*. 2019;11(1): 182–200. DOI: 10.3390/nu11010182.
- 9. Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. *Proceedings of the National Academy of Sciences of the United States of America*. 2007;104(47):18772–18777. DOI: 10.1073/pnas.0705546104.
- 10. Katz DB, Simon SA, Nicolelis MAL. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. *Journal of Neuroscience*. 2001;21:4478–4489. DOI: 10.1523/JNEUROSCI.21-12-04478.2001.
- 11. Ohla K, Toepel U, le Coutre J, Hudry J. Electrical neuroimaging reveals intensity-dependent activation of human cortical gustatory and somatosensory areas by electric taste. *Biological Psychology*. 2010;85(3):446–455. DOI: 10.1016/j.biopsycho.2010.09.007.
- 12. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Distinct representations of basic taste qualities in human gustatory cortex. *Nature Communications*. 2019;10:1048. DOI: 10.1038/s41467-019-08857-z.
- 13. Small DM, Jones-Gotman M, Zatorre RJ, Petrides P, Evans AC. Flavor processing: more than a sum in its parts. *NeuroReport*. 1997;8(18):3913–3917. DOI: 10.1097/00001756-199712220-00014.
- 14. Kaskan PM, Dean AM, Nicholas MA, Mitz AR, Murray EA. Gustatory responses in macaque monkeys revealed with fMRI: comments on taste, taste preference, and internal state. *NeuroImage*. 2019;184:932–942. DOI: 10.1016/j.neuroimage.2018.10.005.
- 15. Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. *Cerebral Cortex*. 2008;18(7):1549–1559. DOI: 10.1093/cercor/bhm185.
- 16. Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. *European Journal of Neuroscience*. 2008;27:723–729. DOI: 10.1111/j.1460-9568.2008.06033.x.
- 17. Yiannakas A, Rosenblum K. The insula and taste learning. Frontiers in Molecular Neuroscience. 2017;10:1–24. DOI: 10.3389/fnmol.2017.00335.
- 18. Kotini A, Anninos P, Gemousakakis T, Adamopoulos A, et al. The effects of sweet, bitter, salty and sour stimuli on alpha rhythm. A Meg Study. *Maedica (Buchar)*. 2016;11(3):208–213. PMCID: PMC5486162.
- 19. Wallroth R, Höhenberger R, Ohla K. Delta activity encodes taste information in the human brain. *NeuroImage*. 2018;181: 471–479. DOI: 10.1016/j.neuroimage.2018.07.034.

- 20. Саваневская ЕН, Люзина КМ, Чумак АГ. Электрическая активность мозга при активации вкусового анализатора. В: Актиуальные вопросы физиологии. Сборник материалов научно-практической конференции с международным участием, посвященной 60-летию кафедры нормальной физиологии ГрГМУ; 23 мая 2019 г.; Гродно, Беларусь. Гродно: ГрГМУ; 2019. с. 214–218.
- 21. Саваневская ЕН, Чумак АГ. Электрофизиологические корреляты активации орбито-фронтальной коры мозга в процессе сенсорной рецепции сладкого. *Новости медико-биологических наук*. 2019;19:16–22.
- 22. Wenlei Y, Rui BC, Jeremy DB, Yu-Hsiang T, Eric MM, Courtney EW, et al. The K⁺ channel K_{IR}2.1 functions in tandem with proton influx to mediate sour taste transduction. *Proceedings of the National Academy of Sciences of the United States of America*. 2016;113(2):E229–E238. DOI: 10.1073/pnas.1514282112.

References

- 1. Beauchamp GK. Basic taste: a perceptual concept. *Journal of Agricultural adn Food Chemistry*. 2019;13:1–40. DOI: 10.1021/acs.jafc.9b03542.
- 2. Sonkusare S, Breakspear M, Guo Chr. Naturalistic stimuli in neuroscience: critically acclaimed. *Trends in Cognitive Science*. 2019;23(8):699–714. DOI: 10.1016/j.tics.2019.05.004.
- 3. de Araujo IE, Simon SA. The gustatory cortex and multisensory integration. *International Journal of Obesity.* 2009;33(2): S34–S43. DOI: 10.1038/ijo.2009.70.
- 4. Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on «sensory-specific» brain regions, neural responses, and judgments. *Neuron*. 2008;57(1):11–23. DOI: 10.1016/j.neuron.2007.12.013.
- 5. Fox NA, Davidson RJ. Taste-elicited changes in facial signs of emotions and the asymmetry of brain electrical activity in human newborns. *Neuropsychologia*. 1986;24(3):417–422. DOI: 10.1016/0028-3932(86)90028-x.
- 6. Fry Vennerød FF, Nicklaus S, Lien N, Almli VL. The development of basic taste sensitivity and preferences in children. *Appetite*. 2018;127:130–137. DOI: 10.1016/j.appet.2018.04.027.
- 7. Ghazanfar AA, Schroeder CE. Is neocortex essentially multisensory? *Trends in Cognitive Sciences*. 2010;10:278–285. DOI: 10.1016/j.tics.2006.04.008.
- 8. Hartley IE, Liem DG, Keast R. Umami as an 'alimentary' taste. A new perspective on taste classification. *Nutrients*. 2019;11(1): 182–200. DOI: 10.3390/nu11010182.
- 9. Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. *Proceedings of the National Academy of Sciences of the United States of America*. 2007;104(47):18772–18777. DOI: 10.1073/pnas.0705546104.
- 10. Katz DB, Simon SA, Nicolelis MAL. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. *Journal of Neuroscience*. 2001;21:4478–4489. DOI: 10.1523/JNEUROSCI.21-12-04478.2001.
- 11. Ohla K, Toepel U, le Coutre J, Hudry J. Electrical neuroimaging reveals intensity-dependent activation of human cortical gustatory and somatosensory areas by electric taste. *Biological Psychology*. 2010;85(3):446–455. DOI: 10.1016/j.biopsycho.2010.09.007.
- 12. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Distinct representations of basic taste qualities in human gustatory cortex. *Nature Communications*. 2019;10:1048. DOI: 10.1038/s41467-019-08857-z.
- 13. Small DM, Jones-Gotman M, Zatorre RJ, Petrides P, Evans AC. Flavor processing: more than a sum in its parts. *NeuroReport*. 1997;8(18):3913–3917. DOI: 10.1097/00001756-199712220-00014.
- 14. Kaskan PM, Dean AM, Nicholas MA, Mitz AR, Murray EA. Gustatory responses in macaque monkeys revealed with fMRI: comments on taste, taste preference, and internal state. *NeuroImage*. 2019;184:932–942. DOI: 10.1016/j.neuroimage.2018.10.005.
- 15. Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. *Cerebral Cortex*. 2008;18(7):1549–1559. DOI: 10.1093/cercor/bhm185.
- 16. Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. *European Journal of Neuroscience*. 2008;27:723–729. DOI: 10.1111/j.1460-9568.2008.06033.x.
- 17. Yiannakas A, Rosenblum K. The insula and taste learning. Frontiers in Molecular Neuroscience. 2017;10:1–24. DOI: 10.3389/fnmol.2017.00335.
- 18. Kotini A, Anninos P, Gemousakakis T, Adamopoulos A, et al. The effects of sweet, bitter, salty and sour stimuli on alpha rhythm. A Meg Study. *Maedica (Buchar)*. 2016;11(3):208–213. PMCID: PMC5486162.
- 19. Wallroth R, Höhenberger R, Ohla K. Delta activity encodes taste information in the human brain. *NeuroImage*. 2018;181: 471–479. DOI: 10.1016/j.neuroimage.2018.07.034.
- 20. Savaneuskaya AM, Liuzina KM, Chumak AG. [Electrical brain activity by activation of gustatory system]. In: *Aktual'nye voprosy fiziologii. Sbornik materialov nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 60-letiyu kafedry normal'noi fiziologii GrGMU; 23 maya 2019 g.; Grodno, Belarus'* [Current questions in physiology. Proceedings of scientific-practical conference with international participation dedicated to the 60th anniversary of the department of normal physiology of GrSMU; 2019 May 23; Grodno, Belarus]. Grodno: Grodno State Medical University; 2019. p. 214–218. Russian.
- 21. Savaneuskaya AM, Chumak AG. Frontal cortex activation by tasting sweet as well as taste mixtures. *News of Biomedical Sciences*. 2019;19:16–22. Russian.
- 22. Wenlei Y, Rui BC, Jeremy DB, Yu-Hsiang T, Eric MM, Courtney EW, et al. The K^+ channel $K_{\rm IR}2.1$ functions in tandem with proton influx to mediate sour taste transduction. *Proceedings of the National Academy of Sciences of the United States of America*. 2016;113(2):E229–E238. DOI: 10.1073/pnas.1514282112.

Статья поступила в редколлегию 13.09.2019. Received by editorial board 13.09.2019.