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Subwavelength Hyperlens Resolution With Perfect Contrast
Function

Andrey Novitsky,* Taavi Repän, Sergei V. Zhukovsky, and Andrei V. Lavrinenko

Recently it has been shown that plasmonic effects in hyperbolic
metamaterials may facilitate overcoming the diffraction limit and enhance the
contrast function of an image by filtering background radiation. Unfortunately,
the contrast function of such a dark-field hyperlens degrades in the
deep-subwavelength regime. We push forward the concept of the contrast
function revival in the subwavelength imaging by introduction of the proper
phase difference between coherent sources. To study this effect we develop a
simplified theory of the wave propagation through a hyperbolic metamaterial
and show that, in principle, two sources standing apart at any subwavelength
distance can be distinguished. We suggest two feasible designs, the first of
which employs the obliquely incident light, while the second one is based on a
properly designed metasurface. The concept can be used in high-contrast
subwavelength microscopy.

1. Introduction

The resolution of the optical imaging systems is known to be
Abbe diffraction limited with roughly a half of the wavelength.[1]

This fundamental limit was beaten using the negative-refractive-
index superlenses,[2] which transmit both propagating and
evanescent waves. The resolution was improved due to preserv-
ing of evanescent waves bearing the information about the sub-
wavelength details typically lost in conventional optical systems.
Another issue to be taken into account is the contrast function
of the image. Transmitted through the superlens, the weak sub-
wavelength imagemay be blurred by the strong background radi-
ation. In this case bright-field amplitudemicroscopy is not appro-
priate, and phase-contrast microscopy[3] and related techniques
(differential interference contrastmicroscopy,[5,15] Hoffmanmod-
ulation contrast microscopy,[6] etc.) should be used instead. The
optical path differences in phase-contrast microscopes are con-
verted to the observable changes in image brightness. The phase-
contrast techniques are widely applied for watching biological
specimens without damaging them,[7–10] however, their resolu-
tion is diffraction limited.
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Another technique to achieve the high
contrast and simultaneously break the
diffraction limit is the dark-field hyper-
lensing. A hyperlens itself is a slab of hy-
perbolic metamaterial (HMM) designed
as a planar/cylindrical/spherical struc-
ture transmitting plane waves with large
wavenumbers k.[11–14] The high-k waves
(as they are called in this case) gener-
ated outside the lens can propagate in
HMMs due to the unique hyperbolic
isofrequency surfaces characteristic to
the metamaterial.[15] HMMs may be de-
signed in the wire- or slab-fashion and
possess a number of remarkable proper-
ties and promising applications.[16–24] A
planar hyperlens as a stack of periodi-
cally arranged metal and dielectric lay-
ers is shown in Figure 1a. Transmission

of evanescent waves generated by the sources resembles that of a
superlens, but in contrast to the latter the hyperlens has more de-
grees of freedom related to two types of HMMs. A HMM of the
first type (HMM-I) transmits the whole spectrum of the waves,
that is both propagating and evanescent waves (see the dashed
curves in Figure 1b). Background radiation is scattered by an ob-
ject and they pass together demonstrating low-contrast bright-
fieldmicroscopy.[25–29] The dispersion equation of the second type
HMM (HMM-II) forbids transmission of low-k waves, thus filter-
ing out background radiation completely (solid curves in Figure
1b). Meanwhile, high-k light scattered from the source captures
subwavelength features and images with the high contrast.[30]

Dark-field hyperlenses based on the HMM-II are considered in
this article.
The meaning of the contrast function is to quantify the dis-

cernibility of two separate objects in the image plane, the images
of the sources being displayed as the peaks separated by the dip
(see two such configurations in Figure 1a). Depending on how
great is the difference between the intensities of the lower peak Ip
and dip Id compared to their aggregated intensity we may judge
of the discernibility of the sources using the contrast function

CF = Ip − Id
Ip + Id

. (1)

If CF = 1, the sources are perfectly distinguishable. When the
background radiation is negligible as in the case of the dark-
field hyperlens, the contrast function can be close to perfect one,
CF = 1. The other limiting case CF = 0 means that the individ-
ual objects cannot be observed.
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Figure 1. Hyperbolic metamaterial and its distinctive spatial-frequency
spectrum. a) Geometry of the dark-field planar hyperlens under consid-
eration: background plane wave excites two electric dipole sources which
radiation is transmitted along the red rays in HMMs. Output is a couple
signals on the right- and left-hand sides. b)Hyperbolic isofrequency curves
of HMM-I and HMM-II. HMM-II supports only high-k waves.

As demonstration of the issues discussed in the present article,
we consider a cylindrical dark-field hyperlens formed by the pe-
riodically arranged metallic and dielectric cylindrical layers (see
Figure 2a). Two sources are located in the vicinity of the inner
interface of the lens. They can be resolved by a conventional opti-
cal setup if the distance between them is greater than λ/2NA,
where λ is the wavelength and NA is the numerical aperture.
Assuming the maximum value of the numerical aperture in air
NA=1, one concludes that the sources cannot be distinguished,
when d < λ/2. As well as a planar hyperlens, the cylindrical dark-
field hyperlens in Figure 2a transmits the field in the form of
two pairs of peaks, each pair being formed by both sources. If
the peaks are distinguished, the contrast function is high. The
subwavelength imaging capability of the cylindrical hyperlens is
inspected in Figure 2b. When the sources are spaced by more
than a half-wavelength (d > 350 nm), they can be quite well dis-
tinguished, albeit for d > 500 nm the two pairs of images start to
overlap. In the near-subwavelength regime (d = 250− 350 nm),

Figure 2. Intensity |H|2 of the field of background and two dipoles transmitted through the cylindrical hyperlens. a) Sketch of the cylindrical hyperlens.
Radiation of two dipoles results in the distribution over the polar angles φ. Example of intensity collected at the outer radius of the lens R + h is
shown at the bottom. Transmitted intensity |H(φ)|2 for b) different distances d between the particles (phase difference δφ = 0) and c) different phase
differences δφ (distance d = 100 nm). Parameters as in Ref. [30]: wavelength λ = 715 nm, radius of spherical particle R p = 35 nm, permittivity of
particle εp = 2, distance from the particle to HMM u = R p , permittivities of the input εa = 1 and output εb = 32 media, inner radius R = 1000 nm,
metal εm = (0.14 + i2.26)2 and dielectric εm = 1.452 permittivities, metal hm = 15 nm and dielectric hd = 15 nm thicknesses, and number of unit
cells N = 20 (effective permittivities of HMM εo = −1.49 + 0.316i and εe = 7.04 + 0.601i , its thickness h = 600 nm). Background field is azimuthally
homogeneous (see Section S2 in Supporting Information for details).
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the objects are also perfectly resolved in the image plane. How-
ever, the deep-subwavelength features (the separation distance of
200 nm and less) appear to be not resolved. Similar behavior was
mentioned in Ref. [30] Thus, the resolution (contrast function)
naturally degrades with the decrease of distance d between the
sources/objects.
In this paper, we reveal the technique of revival of contrast

function for objects separated by subwavelength distances d
based on the imposing of extra phase difference δφ between the
sources. Let us look at the effect brought by the phase acquired
by one of the objects as shown in Figure 2a. The phase difference
tremendously changes both the magnitude of the transmitted ra-
diation and its contrast (see Figure 2c). The π -shift (δφ = 180◦)
enhances the transmission in more than 4 times. What is more
curious, the resolution of two sources is again quite good at δφ =
45◦ by sacrifice the symmetry of the pattern. Asymmetry is ap-
parently related to the phase difference. The deep-subwavelength
object (λ/7) can be distinguished in some range of phases δφ

(look at the case of δφ = 90◦). The transmitted pattern flips, if
δφ → −δφ, and two distinct peaks can be detected in another re-
gion of the cylindrical hyperlens.
This article is devoted to physics behind the revival of the con-

trast function of the dark-field hyperlens. We show that the con-
trast function can be made perfect (equal to 1) independently
from the distance between two objects. Interestingly, improve-
ment of the lens contrast has the same roots as the phase-shift
mask technique applied in lithography,[31] because the opera-
tional principle of both approaches is grounded on the destruc-
tive interference of coherent signals. Moreover, this effect could
be expected, because there is a prior knowledge (coherence and
phase shift) which “reduces the set of possible configurations and
thereby improves the resolution”.[32]

The article consists of three more sections. Section 2 delivers
the theoretical background for the improvement of the contrast
function with the help of the phase shift between two sources.
This simplified theory serves as a basis for closed-formmodeling
of realistic systems. We discuss two methods to impose a phase
difference, with the oblique incidence of plane waves and meta-
surface on top, in Section 3. Outlook of the contrast function for
multiple objects at subwavelength distances (realistic imaging)
and conclusion can be found in Section 4.

2. Calculation and Simplified Theory

In this section we elaborate a theory of the light transmission
through the type-II HMM planar slab in application to the effect
of the contrast function revival by means of the introduced phase
difference. The ultimate analytical expressions are very simple
and include four parameters that can be found either from sim-
ulations or in experiment.
We consider geometry demonstrated in Figure 1a: a type-II

HMMslab is sandwiched between two half-infinite dielectricme-
dia with dielectric permittivities εa and εb . A monochromatic
background plane wave is normally incident from medium a ex-
citing two electric dipoles at distance d one from another. The
dipoles aremimicked by identical spherical particles of radius Rp

and permittivity εp (Rp = 35 nm and εp = 2 except Figure 5). The
dipoles lie on the hyperlens, hence, the distance from particle’s

center to the interface equals u = Rp . Dipole’s polarizability is
of the form αp = R3

p(εp − εa)/(εp + 2εa), while its magnetic field
equals

Hd = k20
√

εa
r × p
r 2

(
1+ i√

εak0r

)
ei

√
εak0r , (2)

where r is the radius-vector from the dipole to the observation
point, p = αpEp is the dipole moment, and Ep is the electric field
at the center of the sphere.
We aim to describe transmission of radiation emitted by these

dipoles in a simplified closed-form manner. The planar HMM
slab consists of N periods of alternating metal and dielectric lay-
ers with permittivities and thicknesses respectively εm, hm and εd ,
hd . We rely on the effective medium theory[16] valid for subwave-
length periods hm + hd � λ, within which the HMM is charac-
terized by the uniaxial effective permittivity tensor ε̂ = (εo, εo, εe )
and slab thickness h = N(hm + hd ), where ordinary permittiv-
ity εo = εmhm+εd hd

hm+hd
and extraordinary permittivity εe = εmεd (hm+hd )

εmhd+εd hm
(see Figure 1a). HMM-II behaves as a metal in the x-y plane and
has the negative ordinary permittivity ε′

o < 0. At the same time,
it possesses the properties of a dielectric along the z axis hav-
ing the positive extraordinary permittivity ε′

e > 0. Here and be-
low ε′ and ε′′ stand for the real and imaginary parts of the per-
mittivity. The hyperbolic character of the dispersion law is clearly
seen from the dispersion equation for the extraordinary wave
k2z/εo + k2x/εe = (ω/c)2 at ε′

oε
′
e < 0, where ω is the circular fre-

quency and c is the speed of light. It is important that owing to
the negative sign of ordinary permittivity ε′

o the type-II HMMs do
not support propagation of the low-k waves.
To excite extraordinary waves in the hyperbolic metamaterial

we employ a background plane wave, which magnetic field is
y-directed asHb = Hbey . Electric field Ep in the point of location
of the dipole particles (sources) is the sum of the background
and scattered fields. The latter is the superposition of the field
reflected from the HMM slab and the field radiated by neigh-
boring dipole. Assuming the dipoles are quite distant, we ne-
glect the dipole-dipole interaction. As demonstrated in Section
S1.3 of Supporting Information, this approximation works well
for the distances between particles down to 100 nm, because
the HMM-particle interaction prevails owing to the shorter dis-
tance between them (it is equal to the radius R = 35 nm). Thus,
Ep ≈ E pex and magnetic field of the dipole Hd is y-polarized.
Then the magnetic field incident onto the interface between the
input medium and HMM equals Hinc (x, z = 0) = Hinc (x)ey and
we can reduce our consideration to the scalar theory with the in-
cident magnetic field Hinc (x) = Hb + Hd (x)+ Hd (x − d).
Further we calculate the transmitted magnetic field accurately

through the Fourier transform (decomposition over the plane
wave spectrum) as follows

Htr (x) =
∫ ∞

−∞
t(kx)Hinc (kx)eikxxdkx, (3)

where kx is the transverse wavenumber,

t(kx) = 2

(1+ γb
γa
) cos(kzh)− i ( kz

k0γaεo εe
+ γbεo k0

kz
) sin(kzh)

(4)
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Figure 3. Rationale of the restrictions imposed by the simplified theory of transmission through the HMM-II slab and retrieval of its parameters. a)
Transmission (4) through the HMM II slab occurs near kx = ±k0

√
ε′

e . b) |H| and Arg(H) of the dipole radiation (2) and its Gaussian approximation
[half-width 
x = (0.25 + 0.0035i ) μm, Arg(H) is lifted by 0.82 in the model]. c) Calculated transmitted intensity (3) vs. transverse coordinate x and the
line of unit contrast function (in the inset) are shown by solid curves and determine 4 parameters of the simplified theoretical modeling. Intensity profile
(7) and dependence δφ(d), Eq. (9), calculated using the simplified theory for the retrieved parameters a = 283.2 nm, b′ = 888.7 nm, b′′ = 421.5 nm,
and |C | = 3.75 × 10−4|Hb| are depicted with dashed curves. Parameters of calculations are borrowed from Ref. [30]: λ = 715 nm, R p = 35 nm, εp = 2,
u = R p , εa = 1, εb = 102, εo = −1.06 + 0.288i , εe = 8.09 + 1.06i , and h = 1600 nm.

is the amplitude transmission coefficient, and

Hinc (kx) = 1
2π

∫ ∞

−∞
Hinc (x′)e−ikxx′

dx′ (5)

is the incident field spectrum calculated using the inverse Fourier

transform. Impedances of the input γa = 1
εa

√
εa − k2x

k20
and out-

put γb = 1
εb

√
εb − k2x

k20
media as well as the longitudinal wavenum-

ber kz =
√
k20εo − k2xεo/εe should be inserted into the definition

of transmission coefficient (4), where k0 = ω/c is the vacuum
wavenumber. Small transmission |t(0)|2 ∼ e−2hRekz of the back-
ground normally incident plane wave with kx = 0 confirms the
conclusion made from the dispersion diagram in Figure 1b: the
background field exciting the dipoles is not transmitted. Using
Eqs.(3)–(5) and the theory provided by Section S1 of Supporting
Information we calculate transmitted fields and expose them in
Figures 3–6 as lines marked “calculation”. The algorithm for nu-
merical calculation of the transmitted field is as follows.

1. Discretize the incident field in the range of coordinates from
x1 = −X to xN = +X as Hinc (xi ), where i = 1, . . . , N and
xi = x1 + (i − 1)(xN − x1)/N. Calculate numerically Eq. (5)
using the inverse Fast Fourier Transform (FFT). The result-
ing discrete spectrum is Hinc (i ).

2. Evaluate the transmission coefficient (4) at the discrete points
i = 1, . . . , N. Wavenumbers corresponding to i are equal to
kx(i ) = (i − 1)π/X . Due to the finite value of X we need to
employ the numerical version of transmission coefficient in
the form

∑∞
j=−∞ t(kx(i )+ jπN/X). In our case, it is sufficient

to keep only two terms t(kx(i ))+ t(kx(i )− πN/X) describing
the plane waves with kx ≥ 0 and kx < 0, respectively.

3. Compute Eq. (3) using the FFT again.

We specify the parameters of calculation as in Ref. [30]: wave-
length λ = 715 nm, permittivities of the input εa = 1 and out-

put εb = 102 media, permittivities and thicknesses of respectively
metal εm = (0.14+ i2.06)2 and hm = 10 nm and dielectric (silica)
εd = 1.452 and hd = 10 nm layers, and number of unit cells N =
80 (effective permittivities of the type-II HMM εo = −1.06+
0.288i and εe = 8.09+ 1.06i , its thickness h = 1600 nm). The
value of εb is artificially large to save as much propagating waves
at the output from HMM as possible, although a smaller value
εb = 3.52 is also suitable (see Section S1.5 of Supporting informa-
tion). Albeit we demonstrate the approach for non-realistic ma-
terial parameters of the metal in this article, the realistic param-
eters could be also exploited. In Section S1.5, one may find the
similar improvement of the contrast function for silver at several
wavelengths.
Now we derive a physically insightful simplified theory having

the accuracy close to that of the rigorous calculations. In figures
we refer it as “theory”. We start with transmission of the radia-
tion of a single dipole assuming Hinc (x) = Hd (x). We impose the
following restrictions. First, the losses of the hyperbolic metama-
terial are negligible (ε′′ � ε′). Second, the thickness of the HMM
slab is as small as |kz|h � 1. Third, the transmission through
HMM-II changesmainly near±k0

√
ε′
e as shown in Figure 3a pro-

viding a pair of images due to positive and negative wavenumbers
(right and left images in Figure 1a). The zero-transmission zone
is related to the low-k waves gap in Figure 1b. We will further
consider only a half of the spectrum assuming kx = +k0

√
ε′
e + κ ,

where κ � k0
√

ε′
e . Fourth, the shape of the input dipolar signal is

modeled by the Gaussian profile as Hd (x) = A0 exp(−x2/2
x2),
where 
x is the beam half-width at the intensity level |Hd |2/e , e
is the base of the natural logarithm, and A0 is the complex ampli-
tude. Then the inverse Fourier transform yields the signal spec-
trum Hd (kx) = A0
x√

2π
exp(−k2x
x2/2). The complex-valued half-

width 
x models the phase of the dipole magnetic field as it is
shown in Figure 3b.
Having all these simplifications in mind and using small pa-

rameters κ and εa/εb � ε′
e/εb � 1, we are able to take a closed-

form integral (3) over the positive wavenumbers. Eventually, we
get the transmitted magnetic field of the dipole radiation as
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Figure 4. Contrast function against distance d and phase difference δφ for
two dipoles illuminated by the background field of plane wave. a) Compar-
ison of the results of calculation and simplified theory reveals good coin-
cidence. b) Dependence of the contrast function on the distance between
objects d and phase shift δφ obtained with the help of the simplified the-
ory. Purple (red) color corresponds to C F = 0 (C F = 1). Parameters of
calculation and retrieved parameters of the simplified theory are given in
the caption of Figure 3.

follows (the details are given in Section S3 of Supporting
Information)

Htr (x) = C exp
(

− (x − b)2

2a2

)
eik0

√
ε′
e x, (6)

where a > Re(
x) is the half-width of the transmitted field, b =
b′ + ib′′ and C are complex parameters. Real part b′ of complex
parameter b is responsible for the image displacement along the
axis x.
Since the background field is terminated by type-II HMMs,

the coherent superposition of the fields of two identical dipoles

at distance d reads

Htr (x) = Ceik0
√

ε′
e x

[
exp

(
− (x − b)2

2a2

)

+ σe−ik0
√

ε′
e d exp

(
− (x − b − d)2

2a2

)]
, (7)

where σ = |σ | exp(δφ) takes into account the difference in exci-
tation of the dipoles. Further we assume that the excitation dif-
fers only by phase shift δφ, that is |σ | = 1 (the influence of |σ | is
demonstrated by Figure S5 in Supporting Information). Quan-
tity |Htr (x)|2 proportional to the intensity now can be straightfor-
wardly calculated. Distinguishing two transmitted signals (peaks)
requires the deep dip between them. Accordingly, the intensity at
the midway xmw = b′ + d/2 between two peaks

∣∣Htr (xmw)
∣∣2 = 2|C |2 exp

(
b′′2 − (d/2)2

a2

)

×
[
1+ cos

(
k0

√
ε′
e d + b′′d

a2
− δφ

)]
(8)

can provide the ideal dip |Htr (b′ + d/2)|2 = 0, if the phase equals

(k0
√

ε′
e + b′′/a2)d − δφ = π + 2πm, (9)

where m is an integer number. For δφ = 0, this condition of de-
structive interference of two individual beams from the sources
separated by distance d holds true only for specific values of d .
Therefore, the contrast function is a periodical function of the
distance d . When d is great, the intensity at the dip |Htr (b′ +
d/2)|2 ∼ exp(−d2/4a2) is always a small value and CF is high:
two sources are distinguishable. If one is able to produce a proper
phase difference δφ between two signals at each d , the contrast
function will be always perfect (CF = 1), even in the deep sub-
wavelength regime.
Intensity |Htr (x)|2 depends on 4 real parameters: |C |, a, b′,

and b′′. They can be calculated within the restrictions discussed
above, but then they have nothing to do with realistic systems. In-
stead, we will show that these 4 parameters are sufficient to well
describe a regular (lossy and thick) hyperlens. Parameters |C |,
a, and b′ have a clear meaning and, therefore, can be straight-
forwardly retrieved from the intensity profile of the dipole radia-
tion transmitted by a lossy and thick hyperlens. Such calculated
profile is shown as a solid curve in Figure 3c. Its peak intensity,
half-width, and displacement equal respectively |Hp |2/|Hb |2 =
1.3× 10−6, a = 283.2 nm, and b′ = 888.7 nm. Albeit parameter
b′′ could be found from the phase of the transmitted signal, we
will use Eq. (9) instead. We determine b′′ estimating the slope
of the straight line δφ(d), at which CF = 1, plotted for the thick
and lossy hyperlens in the inset of Figure 3c. Value b′′ = 421.5
nm allows finding |C | = exp(−b′′2/2a2)|Hp | = 3.75× 10−4|Hb |.
Retrieved parameters introduced into Eqs. (7) and (9) result in
the similar transmission as exact one (see dashed vs. solid curve
in Figure 3c).
Although the simplified theory does not catch the asymmetry

of intensity profiles, it exhibits the correct dependence on dis-
tance d and phase difference δφ. In fact, there exists a remarkably
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Figure 5. Obliquely incident plane waves exhibit the phase shift for improving the contrast function. a) Asymmetrically transmitted waves under the
oblique incidence. b) Lines of C F = 1 defined by Eq. (10). Vertical dashed line is positioned at α = 30◦. c) Calculated contrast function vs. distance
between sources d at the angle of incidence α = 30◦. Transmitted intensities |H|2 (in a.u.) at the maximums 1–5 are depicted on the right-hand side
of the figure. Vertical dashed lines correspond to C F = 1 according to Eq. (10) following from the simplified theory. d) Calculated contrast function vs.
angle of incidence α for various values of d . Parameters of the system are mentioned in the caption of Figure 3.

nice correspondence between the peaks and dips in oscillatory
dependence CF (d) shown in Figure 4a. Positions of the peaks al-
most perfectly match. Discrepancies in the dips can be related to
the involved intensity profiles which influence more when the
contrast is low. Nevertheless, the magnitude of oscillations in
both calculations is agreed. The simplified theory provides the
way of very fast prediction of the phase shifts δφ corresponding
to the perfect contrast function CF = 1. The diagram in Figure
4b clearly demonstrates that there is the range of phase differ-
ences δφ providing high CF s for each distance d . This range is
wider for greater d . Eventually, when the sources are well sepa-
rated we arrive at the phase-independent high contrast imaging.
It should be stressed that the four parameters the theory re-

lies on can be found also from simulations or experimental data.
These parameters characterize the system “single source + hy-
perlens” and do not require the distance between sources. Find-
ing four effective parameters recalls the procedure of the retrieval
ofmaterial parameters well adopted in the field ofmetamaterials.
We believe that the theory should not depend much on the inci-
dent radiation, but it is rather determined by the transmission
properties of the HMM-II. Generally speaking, the theory can be
extended to the type-I hyperbolic and elliptic slabs (see Sections
S4 and S5 in Supporting Information).

3. Practical Designs to Introduce the Phase
Difference

The easy way to get the required local phase difference is the
oblique incidence of a plane wave (see Figure 5a). Unlike the
normal incidence, the transmitted pattern is asymmetric now.
Further we will refer to the left- and right-hand side patterns.
Assuming angle of incidence α we write the phase difference
δφ = 2π

√
εad sinα/λ. It depends on d , therefore, the close

sources cannot acquire large phase shifts. Introducing this
phase shift into the condition of the unity contrast function Eq.
(9), one writes

d(α) = π + 2πm

(
√

ε′
e − √

εa sinα)2π/λ + b′′/a2
. (10)

Exploiting the same parameters of the type-II hyperbolic
metamaterial as before, water (εa = 1.332) as the input and
germanium (εb = 42) as the output medium, and silicon
(εp = 3.52) beads of radius R = 35 nm as scatterers, in Figure
5b we plot the dependencies d(α) according to Eq. (10). The
contrast function takes value 1 either for the right-hand (red
curves) or left-hand (black curves) transmitted rays. Because of
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Figure 6. Intensity transmitted through the dark-field hyperlens to observe
three equivalent dipoles in a row illuminated by a normally incident wave
and possessing phases φ1, φ2, and φ3. The distance between the dipoles 1
and 2 and 2 and 3 equals 200 nm. Parameters of the system are provided
in Section 2. Parameters of the hyperlens are the same as in the caption
of Figure 3.

the periodicity the dependence d(α) reminds the band diagram.
Notice that the objects separated by some distances d cannot
be perfectly resolved at any angle α (see the grey-colored gaps
in Figure 5b). A gap for small d exhibits the limitation of the
particular technique to create the sufficient phase difference. For
great distances d the contrast function CF = 1 can be achieved
for several values of α. At α = 30◦ one can observe 5 values of
d , where CF = 1. These values are shown in Figure 5c with the
vertical dashed lines. They almost coincide with the maximums
following from the calculation (we choose the greatest contrast
function no matter, if it is from the left- or right-hand side).
Several profiles 1–5 of the transmitted signal demonstrate that
the close to unity contrast function is indeed realized either from
the left- or right-hand side. If one wants to employ the single
side, angle of incidence α should flip the sign, i.e. one should
change the direction of illumination. When the objects are close
to each other, the transmitted high-contrast signal is weak due
to the destructive interference (profile 1). Well separated objects
may be resolved using both right- and left-hand side rays. Figure
5d demonstrates that for distance d = 50 nm, which is in the
gap in Figure 5b, the objects cannot be resolved at all, but for the
gap around d = 200 nm the contrast function 0.5-0.6 is feasible.
The objects at distance d = 100 nm can be well resolved without
a phase difference even with normally incident plane waves.
To characterize the contrast function we use spherical scatter-

ing objects. However, all conlusions can be extended for cylindri-
cal scattering objects as well. As it can be observed in Figure S2 in
Supporting Information, the perfect contrast function maintains
for distances d = 100 nm, d = 300 nm, and d = 500 nm as pre-

dicted by Figure 5b. Thus, the form of a scatterer does not really
matter.
To overcome the limitations of the proposed scheme with

inclined plane wave illumination, one may think of introduc-
ing required δφ by a properly designed metasurface. This idea
is inspired by the recent progress in metasurface-based phase
manipulation.[33–37] In the classical design[38,39] the 2π phase shift
is produced by a unit cell with the properlymade V-shapedmetal-
lic antennas, the phase difference between the nearest neighbor
antennas being equal to 45◦. If one intends to resolve two beads
separated by distance d , each of them should be illuminated by
light from its own antenna. Then the dimensions of individual
antennas will define the maximum distance d . Scaling down
the dimensions from 10 μm wavelength and 2 μm antenna’s
dimension[38] to respectively 715 nm and 150 nm in the current
research, it could be possible to resolve nanoobjects separated by
the distance d ∼ 150 nm. Since the metal-containing metasur-
faces have rather poor performance in transmission, it could be
better to exploit an all-dielectric metasurface like in Ref. [40]
Another design of a metasurface applicable for our purposes

has been recently proposed in Ref. [41] It consists of a periodic
lattice of subwavelength Fabry-Pérot resonators formed by the
perfectly reflecting (distributed Bragg reflector) and transmitting
mirrors. The elements of the metasurface (pixels) can be con-
trolled individually creating the same signal amplitude and re-
quired phase. As indicated in Ref. [41] the device keeps its func-
tionality even for a single pixel. If we put such a metasurface
on top of the scatterers, it would be feasible to have an arbitrary
phase difference δφ limited by the size of the pixel only.

4. Discussion and Conclusion

More than two scatterers can be resolved using the phase-shift
technique, too. However, in this case the closed form calcula-
tions of the contrast function are not straightforward. The con-
trast function itself should be redefined, e.g., as a multibranch
function, with each of the branches regarded any two radiating
dipoles. To find the phases that should be imposed on the dipoles
one needs to perform optimization and make all contrast func-
tions as large as possible simultaneously. Figure 6 shows the pos-
sibility in principle to resolve three dipoles in a row. Without an
extra phase shift the images of the sources are indistinguishable.
But the phase differences between adjacent dipoles make them
visible, though the contrast functions are not perfect. Thus, the
phase mask on top of a sample can help in visualizing deep sub-
wavelength features of a scatterer. In some sense it recalls coher-
ent phase-contrast microscopy[9] intended to determine the map
of sample thicknesses using information about the phases. It
uses indirect visualization owing to the correspondence between
the thickness and the acquired phase. Here, however, we employ
the inverse procedure to directly observe the sample using the
phase mask.
Our analysis is not fixed with the certain parameters of hyper-

lens and scattering objects. Any type-II hyperbolic metamaterial
slab could be exploited as a dark-field hyperlens (see Section
S1.5 of Supporting Information). To improve the performance
of the lens, it should be optimized with respect to the losses. The
subwavelength features of the sample serve as the scattering
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objects. In subwavelength regime they can be treated as electrical
dipoles. We consider the spherical objects here only to specify
the polarizability, because it is well known for a sphere.
There are two important issues that should be mentioned, but

cannot be discussed in details in this article. The first issue is the
choice of the phase mask (the way to introduce the phase differ-
ence). To be applicable for any subwavelength object, the phase
mask should take the advantages of the tunablemetasurface, e.g.,
proposed in Ref. [41] Dynamically changing the phase shifts pro-
vided by the metasurface pixels we would arrive at the optimal
mask with respect to the phase contrast. The second problem that
may arise for the imaging of a realistic subwavelength object is
that each point of the dipole will be mapped into a circle (the rays
diverge in all directions) and, therefore, the focusing system is
needed after the dark-field hyperlens. The focusing system can
be made as an additional multilayer that converges rays being at
the same time type-II HMM (similar idea has been recently ex-
ploited in Ref. [42]).
To conclude, we have elaborated the technique to perfectly vi-

sualize subwavelength features of a scattering object after the
dark-field hyperlens imaging. It is based on introduction of a
phase difference between the scatterers, which improves a con-
trast function up to unity. The effect stems from destructive inter-
ference of the output signals of individual scatterers enhancing
the dip between two imaged scatterers. To optimize the contrast
function we have developed a simplified theory and validated
its functioning for planar and cylindrical hyperlenses. We have
demonstrated how the phase difference can be achieved using
obliquely incident light. An alternative approach is to illuminate
the objects through the phase-shiftingmetasurfaces. Such a tech-
nique can help to distinguish a couple of subwavelength features
in a massive transparent object. Since the technique can be ex-
tended to the case of multiple scatterers, we look forward seeing
further application of this kind of dark-field phase microscopy
soon.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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