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Search for superresolution in a metamaterial solid immersion lens
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Superresolution is an important feature needed for modern optical microscopy. It can be achieved by using
the transmission of evanescent waves in hyperbolic metamaterials. However, such devices suffer from material
losses. Here we investigate a recently proposed metamaterial solid immersion lens—an assembly of dielectric
nanoparticles. Using the multiple-scattering theory we reveal conversion of evanescent to propagating waves
under conditions of coherent scattering. However, efficiency of the conversion is rather low as confirmed by the
transmission of the fields of a couple of point sources. Comparing the scattering of light of a spherical cluster of
nanospheres with that of a solid sphere of the same radius we find the same far fields in both cases. Generally,
our conclusion is that material in the form of the assembly of nanoparticles behaves like an effective medium
and does not demonstrate the superresolution in the far field. We believe that the resolution of the metamaterial
solid immersion lens has the same origin as that of the conventional sold immersion lens.
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I. INTRODUCTION

A lens has a notorious limitation of resolution power
related to the damping of evanescent waves emitted by a
source. Metamaterials as artificial media with subwavelength
unit cells offer promising approaches for transmission of
evanescent waves. An ideal superlens as a negative-refractive-
index slab is able to create a perfect image [1]. A hyperlens
made of the material with an indefinite permittivity tensor
(so-called hyperbolic metamaterial [2,3]) was shown to beat
the diffraction limit [4]. A dielectric-type hyperbolic meta-
material can be used for fabrication of bright-field hyper-
lenses [5,6], while the metallic-type one can be exploited for
dark-field microscopy [7,8]. Metamaterial flat lenses [9,10]
and metasurfaces [11–13] have been proposed for subwave-
length imaging as well. However, realistic superlenses and hy-
perlenses suffer from the inevitable material losses degrading
their performance due to the metallic inclusions. All-dielectric
metamaterials are actively considered nowadays. Being able
to support optical magnetism [14], they can substitute con-
ventional metamaterials in various applications, including
invisibility cloaking [15,16] and skin-depth engineering [17].
Peculiar scattering properties of individual high-refractive-
index nanoparticles based on the excitation of electric and
magnetic multipole moments can be exploited for tuning the
linear and nonlinear response from the metamaterials and
metasurfaces [18–20].

Another tool to improve the imaging resolution is to apply
a solid immersion lens (SIL) [21], a thick lens on the micro-
[22] and nanoscale [23] having both a higher magnification
and numerical aperture due to filling of the object space with
a high-refractive-index solid material. The resolving power of
a conventional oil immersion microscope [24] (a planar slab
of oil with no magnification) is δ = λ/2NA, where λ is the
wavelength, NA = n sin θ is the numerical aperture, n is the
oil refractive index, and θ is the maximal incident angle of

the waves coming to an objective. When all waves are
accepted by the objective (θ = 90◦), the resolving power
takes its maximum value δ = λ/2n. Enhancement of the
resolving power is explained by the transmission of both
propagating (|kt | � k0) and evanescent (k0 � |kt | � nk0)
waves incident from air [25], where kt is the tangential
wave-vector component with respect to the slab and
k0 = 2π/λ is the wave number in vacuum. A SIL is also
characterized by a magnification factor M. Having two
input objects remote from each other at a distance of d , one
observes the distance Md between the objects at the output.
This can be achieved by using a spherical shape of the SIL,
e.g., a truncated spherical lens. Then in the reciprocal space
the output transverse component of the wave vector decreases
as kt/M enlarging the range of propagating waves defined by
the following condition: longitudinal components of the wave
vector (k2

0n2 − k2
t /M2)1/2 should be real-valued. The admitted

transverse components are then −nMk0 � kt � nMk0, and
the numerical aperture is NA = nM. Hence, the shortest
resolved distance is δ = λ/2nM. In general, the magnification
factor of the SIL depends on its shape, e.g., a hemispherical
SIL increases the numerical aperture by M = n.

Recently, a novel type of the SIL was proposed—a meta-
material solid immersion lens (mSIL) [26,27]. It is a cluster
of dielectric nanospheres in the shape of a micron-sized
truncated sphere fabricated by using the nano-solid-fluid as-
sembly technique. The authors reported on the superresolu-
tion properties of the mSILs and explained them by using
the conversion of evanescent waves into propagating waves.
Such a conversion is accompanied with a guiding-like ef-
fect for nondiffractive wave propagation through a cluster of
nanospheres revealed numerically. Here we revisit the afore-
mentioned explanation by using the electric dipole (Rayleigh)
approximation. We consider a finite assembly of nanospheres
and examine it for the evanescent-wave and point-source field
propagation.
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FIG. 1. Sketches of the (a) assembly of (Nx + 1) × (Ny + 1) ×
(Nz + 1) nanospheres and (b) field propagation through the slab. In
panel (a), different colors of the particles correspond to different
coordinates z = 2

√
2/3R j3. In panel (b), the incidence of the plane

wave (PW), evanescent wave (EW), and field of the point source (PS)
are schematically shown.

The article consists of six sections including the intro-
duction and conclusion. In Sec. II, we discuss a calculation
technique for electromagnetic wave propagation in a finite
cluster of dipolar nanospheres. The technique is employed
for analysis of the conversion of evanescent to propagating
waves in Sec. III and propagation of point-source radiation in
Sec. IV. In Sec. V, we calculate light scattering of a point-
source field by the solid sphere and cluster of nanospheres of
the same radius making conclusion on their similarity in the
far field.

II. WAVE PROPAGATION IN A CLUSTER OF
NANOSPHERES

Wave propagation in mSILs can be described with the help
of the multiple-scattering theory [28–30]. Here we will briefly
discuss it for a certain case of electrically small closely packed
nanoparticles. A stationary electromagnetic beam having elec-
tric field Einc(r) and wavelength λ is incident on a densely
packed assembly of equivalent nanospheres (radius R and re-
fractive index n) in air. We deal with an AB close packing de-
fined as every second layer of nanospheres is the same, that is
the sequence of layers can be written ABABAB...[Fig. 1(a)].
We write the positions of the nanosphere centers by using the
radius vector (see Appendix A for details)

r j1, j2, j3 = j1b1 + [Mod(3 j1 − 2 j3, 6) − 6 j2]b2 + j3b3, (1)

where b1 = Rex, b2 = R√
3
ey, b3 = 2

√
2R√
3

ez, while Mod(3 j1 −
2 j3, 6) means the remainder of the division by six. If the
indices along the Cartesian axes [see Fig. 1(a)] span the values
−Nx/2 � j1 � Nx/2, −Ny/2 � j2 � Ny/2, and 0 � j3 � Nz,
then the total number of spheres in the cluster equals (Nx +
1)(Ny + 1)(Nz + 1).

Supposing that the radii of the nanospheres are much
smaller than the radiation wavelength λ � R, the nanospheres
can be accurately modeled as electric dipoles with moments
equal to p = αE. Here α is the sphere polarizability and E
is the external electric field at the center of the sphere. The
external field is a superposition of the incident field and that

radiated by other dipoles in the assembly:

p j1, j2, j3 = α

[
Einc

(
r j1, j2, j3

)

+
∑

j′1, j′2, j′3

ĜE
(
r j′1, j′2, j′3 − r j1, j2, j3

)
p j′1, j′2, j′3

]
, (2)

where the electric Green’s function is

ĜE (r)= k2
0

r3
eik0r

[
r2 − r ⊗ r + i

k0r

(
1 + i

k0r

)
(r2 − 3r ⊗ r)

]
(3)

for r �= 0 and ĜE (0) = 0. It is used for writing electric fields
ĜE p of electric dipoles. Here a ⊗ b is an outer (tensor)
product of vectors a and b.

We introduce two methods of calculations. If Eq. (2) is
solved without further assumptions, it is a direct calculation
(see Appendix B). In general, this approach is demanding
for numerical resources. That is why we simplify it by re-
ducing the number of dimensions to two or even one. Two-
dimensional (2D) calculations are approximately valid, when
the incident field depends on two coordinates as Einc(x, z),
while the number of nanospheres in the y direction is great.
Validity of one-dimensional (1D) calculations is justified
for the fields Einc(z) and as great as possible a number of
nanospheres in the plane (x, y). Another method exploits
the lattice-sum approximation for finite structures (see Ap-
pendix C). As well as 1D direct calculations, it is valid for
a large number of nanoparticles in the plane (x, y). The details
of calculation techniques and their comparison can be found
in Appendix D.

Throughout the paper we employ a number of default
values for calculations taken from Ref. [26]: the nanosphere’s
radius R = 7.5 nm and refractive index n = 2.55 (anatase
TiO2), the wavelength of the incident wave λ = 470 nm, and
the effective refractive index of the assembly neff = 2. The
assembly of nanospheres is assumed to be free standing in
air. Since R � λ (k0R = 2πR/λ ≈ 0.1), the nanospheres can
be treated as electric dipoles, and the theory outlined above
is applicable. The electric-dipole moment of the nanospheres
is written as p = αE with electric polarizability α = α0/(1 −
2ik3

0α0/3), where α0 = R3(n2 − 1)/(n2 + 2) is a static elec-
tric polarizability. Neglecting the radiative-reaction correction
term 2ik3

0α0/3 within the approximation k0R � 1, we further
adopt α = α0.

III. PROPAGATION OF EVANESCENT WAVES

To judge the resolution improvement of metamaterial solid
immersion lenses we need to know the properties of an
evanescent wave transmission. The incident field of an evanes-
cent wave (transverse wave number kx > k0) reads

Einc = E0 exp
(
ikxx −

√
k2

x − k2
0z

)
ey, (4)

where E0 is the field amplitude. For the field Einc(x, z) the 2D
direct calculation technique is applicable.

According to Ref. [26] conversion of incident evanes-
cent waves into propagating ones, their guiding and further
emission is a mechanism behind the superresolution of the
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FIG. 2. 2D direct calculation of the evanescent wave propagation for kx = 10k0 and kx = 2π/R. (a) Transmission coefficient |E|/E0 of
the slab of nanospheres as a function of dimensionless coordinate k0z (x = y = 0). (b) Transmission coefficient |E|/E0 as a function of k0x at
z = 2

√
2/3RNz corresponding to the center of the last sphere in the slab (circles demonstrate positions of the nanospheres). (c) Dimensionless

electric-dipole moments |p|/αE0 of the nanospheres vs j3 (coordinate z) at j1 = j2 = 0. Geometrical parameters of the slab: Nx = 20, Ny = 80,
and Nz = 20.

mSIL. This effect can be tested for a planar slab composed
of dielectric nanospheres shown in Fig. 1(b). In Fig. 2 we
demonstrate a transmission of the evanescent waves. The
values of the transmitted evanescent fields are much less
than those of the normally incident waves shown in Fig. 8.
The transverse distribution of the transmitted electric field in
Fig. 2(b) agrees well with that demonstrated in Ref. [26]. The
intrinsic structure of the periodically arranged assembly ex-
hibits itself by means of the nonmonotonic dependence of the
transmitted fields on the wave number kx. For a homogeneous
dielectric slab one expects the decrease of the transmission,
when kx increases because of the factor exp[−(k2

x − k2
0 )1/2z].

However, a periodic structure has the distinctive feature re-
lated to coherent excitation. The latter is available, when the
wave number kx is a multiple of the reciprocal-lattice vector
2π/R (the nanospheres are spaced with distance R in the
x direction). The coherent excitation means that all electric
dipoles oscillate in phase, thus substantially increasing the
transmission. In Fig. 2 we observe that, in spite of 2π/R ≈
62.7k0 > 10k0, the coherent evanescent wave has much higher
transmission than the low-kx evanescent wave. From Fig. 2(c)
we also notice that the electric-dipole moment is oscillating
with coordinate z, which is the attribute of a propagating field
(such an oscillating behavior was also noticed in Ref. [26]).
Thus, the coherent evanescent waves are indeed converted
to propagating waves in the slab and, hence, are emitted as
propagating waves as well. It is worth noticing that, if the
excitation is in antiphase (kx = mπ/R, where m is an integer
number), the destructive interference quenches the output
field.

In the continuous-medium immersion lenses, the evanes-
cent waves are converted to propagating waves enhancing
the transmission, if the transverse wave-vector components
are in the range −neff k0 < kx < neff k0. In Fig. 2 we observe
negligible dipole moments and electric fields outside this
range, for kx = 10k0. When the incident evanescent wave
coherently excites the nanospheres, the dispersion equation

(
kx − 2πm

R

)2

+ k2
z = n2

effω
2

c2
(5)

allows a number of bands, for which kx satisfies

2πm

R
− neffω

c
< kx <

2πm

R
+ neffω

c
. (6)

Conventional propagating waves are within the band m =
0. For the adopted parameters of the system, inequality (6)
reads 62.7m − 2 < kx/k0 < 62.7m + 2. It is important that
some evanescent waves are indeed converted into propagating
waves, but not all evanescent waves, as was suggested in
Ref. [26].

According to Eq. (6) the allowed bands can be expanded
for larger refractive indexes of the nanospheres, i.e., for
larger effective refractive indexes. For the larger nanosphere
radius R the allowed bands occupy most of the recipro-
cal space; that is, the overall transmission is expected to
grow. Contrariwise, when R → 0 (the limit of a continuous
medium), only extremely-high-kx evanescent waves are al-
lowed to propagate, but their contribution is normally neg-
ligible. All allowed bands merge, when 2π

R = 2neffω/c, that
is R = λ/2neff . However, in this case the nanosphere size
parameter k0R = π/neff ∼ 1 and, therefore, we go beyond
the electric-dipole (Rayleigh) approximation: magnetic and
electric-dipole moments should be taken into account and the
above analysis ceases to be valid. Thus, we may claim that
the Rayleigh nanospheres of the radius as large as possible
should be chosen to increase efficiency of the excitation of the
electric-dipole moments by evanescent waves and, therefore,
the wave propagation to the far field.

Furthermore, we propose an explanation of the conversion
of evanescent to propagating waves. An incident evanescent
wave carries its energy in the x direction and its energy flux in
the cluster reads

�ev
x =

∫ (2κ )−1

0

cLy

8π
Re(E × H∗)xdz = cLykx(1 − e−1)

16πk0κ
, (7)

where κ = (k2
x − k2

0 )1/2 and Ly is the length of the structure
in the y direction. The energy is mainly localized within the
tube of width Ly and thickness (2κ )−1 determined by the e-
times intensity decrease. Such an evanescent wave is scattered
by the nanospheres and excites the electric-dipole moments.
They radiate and, thus, create a propagating wave in the
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FIG. 3. Propagation of the coherently exiting evanescent wave (kx = 2π/R) depending on the geometrical size of the slab (Nx + 1) ×
(Ny + 1) × (Nz + 1) (1D direct calculations). (a) Dimensionless electric field |E|/E0 vs k0z and (b) dipole moment |p|/αE0 vs position of
dipole j3 at j1 = j2 = 0. Smaller and larger rectangles correspond to the slabs of 21- and 41-nanosphere thickness, respectively.

z direction. We would like to estimate the share of energy
that is redirected to the z oriented tube Ly by (2κ )−1. The
redirected energy flux reads

�z =
∫ (2κ )−1

0

cLy

8π
Re(E × H∗)zdx. (8)

The ratio η = �z/�
ev
x characterizes the efficiency of the

conversion. In the case of the coherent excitation of dipoles
η is about 10−3, otherwise it is much less; e.g., η ∼ 10−6

for kx = 10k0. In the absence of the intrinsic structure (for
continuous media) the evanescent waves are not scattered, and
the mechanism of the conversion described above is not valid.
It should be emphasized that, even in the best case of coherent
excitation, the efficiency of conversion and transmission is
still very low. It may not be sufficient for improving the lens
resolution.

In the case of coherent excitation, the transmitted electric
field depends on the size of the slab as shown in Fig. 3(a). Here
we employ 1D direct calculations, because the coherent inci-
dent wave ensures the same field at the centers of all nanopar-
ticles in the assembly. When the number of nanospheres is
small (Nx = Ny = 20), the near field disappears quite rapidly.

However, the larger slab’s dimension enhances the transmitted
field. Similar result was reported for any evanescent wave in
Ref. [26], but here we have the enhancement only for the
waves in the band Eq. (6). When we double the thickness of
the slab (dashed curve for Nz = 40), the transmission weakly
changes; that is, the transverse size of the slab determined by
Nx and Ny is more important for propagation due to the coher-
ent excitation. The dipole moments shown in Fig. 3(b) behave
similarly for every slab’s size. This means that increasing the
transverse size we just accumulate more radiation.

The transmitted electric field changes when the nanosphere
polarizability α = R3(n2 − 1)/(n2 + 2) alters. It can be real-
ized with the help of sphere’s radius R or refractive index n.
Effect of the radius is stronger because of the R3 dependence.
Figure 4(a) indeed demonstrates a noticeable enhancement
of the output in the regime of coherent excitation, while
the influence of the refractive index is humble. For bigger
spheres (R = 15 nm), the oscillations of the dipole moment
are more pronounced and the period of the oscillations is twice
smaller compared with R = 7.5 nm. Although the larger radii
are beneficial for the transmission, one need to take care of
validity of the electric-dipole approximation.

FIG. 4. Propagation of the coherently exiting evanescent wave (kx = 2π/R) depending on the parameters of the nanospheres (1D direct
calculations). (a) Dimensionless electric field |E|/E0 vs k0z and (b) dipole moment |p|/αE0 vs position of dipole j3 at j1 = j2 = 0. Smaller and
larger rectangles correspond to the slabs composed of 7.5-nm- and 15-nm-radius nanospheres. The dimensions of the slab are Nx = Ny = 80
and Nz = 20.
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FIG. 5. 2D map of the dipole moment |p| distribution in the slab, when the point source is placed at z0 = −1 nm and x = y = 0. The size
of the slab is Nx = 40, Ny = 80, and Nz = 20.

IV. SCATTERING OF POINT SOURCE RADIATION

Now we will consider features of the point-source-field
propagation in the slab of nanospheres noticed in Ref. [26].
To perform 2D calculations we need an in-plane point source
that can be presented as a thread of infinite length along the
y axis. The thread emits a 2D electric field EPS (u1, u2) =
Ĝ2D(u1, u2)ps, where u = (x, 0, z) is the 2D radius vector,
ps = ey is the dipole moment of the thread, and

Ĝ2D(u1 − u2) = iπH (1)′
1 (k0|u1 − u2|)

×
(

1 − (u1 − u2) ⊗ (u1 − u2)

(u1 − u2)2

)
(9)

is the electric Green’s function. In Eq. (9), H (1)′
1 is the deriva-

tive of the Hankel function of the first kind.

When the source is placed close to the slab of nanospheres
[see Fig. 1(b)], it induces electric-dipole moments, as shown
in Fig. 5. The nanospheres close to the source are strongly
coupled to its radiation and one can observe the high peak
in Fig. 5 near z = 0. However, this peak promptly disappears
approaching another slab boundary. Distribution of the dipole
moments over j3 at j1 = 0 is fairly similar to the oscillating
distribution, e.g., in Fig. 3(b).

According to Ref. [26], two point sources at subwave-
length distance d can be distinguished behind the slab of
nanoparticles. To elucidate this assertion we perform simi-
lar calculations for the superposition of fields of two point
sources Einc = EPS (u − u+) + EPS (u − u−), where u± =
(±d/2, 0, z0). Distribution of electric-dipole moments in
Fig. 6(a) clearly demonstrates the propagating character of
the field inside the composite slab. However, the transverse

FIG. 6. Radiation propagation through the slab of nanospheres for two point sources at the distance d = 6R. Distribution of (a) the dipole
moment |p| vs j3 for j1 = j2 = 0 and (b) electric field |E| vs k0x at z = 2

√
2/3RNz. Normalization in plots guarantees the values in the range

from 0 to 1. Point sources marked by the arrows are placed at x = ±d/2 and z0 = −1 nm. Size of the slab: Nx = Ny = Nz = 20 for lattice sum
and Nx = Nz = 20, Ny = 80 for 2D direct calculations.
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FIG. 7. Comparison of the field distributions |E(r, θ, ϕ)| scattered by the solid sphere of radius R0 = 100 nm and spherical cluster of
nanospheres of the same radius. (a) Angular distributions of the dimensionless scattered field ε(1.1R0, θ, 0) = |E(1.1R0, θ, 0)|/k3

0 p0. (b)
Longitudinal distributions of the field ε(z, 0, 0). Position of the point source p = p0ex is z = −2.1R0. Effective refractive index of the solid
sphere neff = 2 and wavelength λ = 470 nm.

x distribution of the transmitted electric field in Fig. 6(b)
does not provide any evidence of two sources positioned
at k0x ≈ ±0.3. In the near field we inspect the last row
of the nanospheres in Fig. 6(b). In the far field we see a
nonstructured output field (not shown). The far field has a
Gaussian-like profile due to the finiteness of the structure
in direct calculations. Thus, the fields of the point sources
are intermixed by the cluster of nanospheres and we do not
observe the subwavelength features. We think that hardly a
very wide structure (large Nx and Ny) as in Ref. [26] would
improve the resolution, because the localization of the point
sources makes the remote parts of the slab much less involved;
see the transverse spread of the dipole moments in Fig. 5.

V. SOLID SPHERE VS ASSEMBLY OF NANOSPHERES

Albeit a far-field superresolution has not been confirmed
for planar slabs of nanoparticles, the question of how the
spherical shape affects the resolution is still open. To shed
light on this situation we now look for any differences in
the far-field scattering of two objects: a composite sphere
of radius R0 composed of nanospheres and a solid particle
of the same radius R0 and effective refractive index neff

obtained after homogenization of the nanospheres assembly.
Wave propagation in the densely packed assembly can be cal-
culated by using the direct three-dimensional (3D) technique
as described in Sec. II. Coordinates of nanosphere centers are
limited by the radius R0 according to (see Appendix E for
details)

x2 + y2 + z2 � R2
0. (10)

As an example, we compare two objects: a solid sphere
of radius R0 = 100 nm and assembly of 672 nanospheres
bounded by the same radius. We consider the same nanoparti-
cles as before (R = 7.5 nm, n = 2.55). The refractive index of
the solid sphere is the effective refractive index of the closely
packed cluster neff = 2. The incident field is generated by the
point source with dipole moment p = p0ex at z = −2.1R0,
the coordinates of the center of the sphere or assembly being
x = y = z = 0. According to Fig. 7(a) the scattering pattern
in the near field differs for the assembly of nanospheres
and solid sphere. The difference is most pronounced for the

forward (θ = 0◦) and backward (θ = 180◦) scattering. How-
ever, when the near fields die out, the far fields well agree
with each other, as can be noticed in Fig. 7(b). We could get
a better coincidence of the fields scattered by two spheres if
the nanospheres were smaller. Anyway, we do not observe
the influence of sphere’s discrete structure on the far field.
Therefore, the nanospheres in the mSIL are not expected to
lead to the additional superresolution in the far field as it is
claimed in Ref. [26]. The far-field behavior of the assembly
of the nanospheres can be well explained by the high effective
refractive index of the microsphere.

VI. CONCLUSION

We have studied the mechanism of superresolution behind
the concept of the metamaterial solid immersion lenses intro-
duced in Refs. [26,27]. We exploit multiple-scattering theory,
taking into account only electric-dipole moments of individual
scatterers (dielectric nanospheres). In contrast to the results
in Ref. [26], we have revealed a conversion of evanescent to
propagating waves only in special conditions of the coherent
excitation of the dipole moments in the cluster. Thus, some
initial evanescent waves can indeed contribute to the far-field
pattern, but efficiency of conversion is not high. To examine
whether the conversion of evanescent to propagating waves
is enough for improving the resolution, we calculated trans-
mission of the radiation of two point sources separated by a
subwavelength distance. We found a rapid diffraction of the
radiation in the cluster that forbids observation of individual
images of the point sources. It should be stressed that this
result contradicts the guiding-like propagation and subwave-
length imaging presented in Ref. [26]. Far-field scattering by
a spherically shaped cluster of nanospheres is fairly similar
to the scattering by a solid sphere of the same radius and
effective refractive index. Therefore, we conclude that the
internal nanostructure of the mSIL cannot explain its superre-
solving properties. We rather inclined to justify the improved
resolution with the properties of conventional solid immersion
lenses, for which the refractive index and magnification due
to the spherical shape go hand in hand in order to increase the
numerical aperture.
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APPENDIX A: LATTICE DESCRIPTION

Positions of nanospheres in the AB lattice shown in
Fig. 1(a) can be presented by using the radius-vector

ri1,i2,i3 =
3∑

k=1

ikak, (A1)

where a1 = 2Rex, a2 = Rex + √
3Rey, and a3 = Rex +

R√
3
ey + 2

√
2R√
3

ez are the primitive lattice vectors. Integer
numbers ik run over the spheres in the directions pointed out
by the lattice vectors.

Position of a nanosphere in the assembly could be specified
in another way. After substituting lattice vectors ak the radius
vector takes the form

ri1,i2,i3 = (2i1 + i2 + i3)Rex + (3i2 + i3)
R√
3

ey + 2
√

2R√
3

i3ez.

(A2)

Then the x and z components of the radius vector can be de-
scribed by independent integer indices j1 = 2i1 + i2 + i3 and
j3 = i3, respectively. The position of the nanosphere along
the y axis depends on its x and z coordinates (indices j1 and
j3) as 3i2 + i3 = 3 j1 − 2 j3 − 6 j2, where j2 = i1. Denoting
b1 = Rex, b2 = R√

3
ey, and b3 = 2

√
2R√
3

ez, we arrive at

r j1, j2, j3 = j1b1 + (3 j1 − 2 j3 − 6 j2)b2 + j3b3. (A3)

The integer numbers j1, j2, and j3 define positions of the
nanospheres in the lattice. For fixed j1 and j3 we have a
number of spheres in the y direction separated by the distance
6|b2| = 2

√
3R one from the other. Adding a multiple of six

is equivalent to changing the index j2 by 1. Furthermore, we
present the radius vector as

r j1, j2, j3 = j1b1 + [Mod(3 j1 − 2 j3, 6) − 6 j2]b2 + j3b3,

(A4)

where Mod(3 j1 − 2 j3, 6) means the remainder of the division
by six. Radius vector (A4) is better suited for the description
of planar slabs composed of nanospheres.

APPENDIX B: DIRECT CALCULATION

Equation (2) can be solved directly without further assump-
tions to find the individual dipole moments p j1, j2, j3 of the
nanospheres in the nodes of the lattice. Introducing tensor

Aj1, j2, j3, j′1, j′2, j′3 = δ j1, j′1δ j2, j′2δ j3, j′3 − αĜE
(
r j′1, j′2, j′3 − r j1, j2, j3

)
,

(B1)

one can rewrite Eq. (2) in the following form:∑
j′1, j′2, j′3

Aj1, j2, j3, j′1, j′2, j′3 p j′1, j′2, j′3 = αEinc
(
r j1, j2, j3

)
. (B2)

For convenience in numerical calculations, instead of three
indices j1, j2, and j3 we introduce a single index of dimension
3(Nx + 1)(Ny + 1)(Nz + 1). Then Eq. (B2) can be represented
in terms of multidimensional vectors �P, �E and matrix A as

A�P = α�E . (B3)

The dipole moments of all nanospheres in the assembly are
formally obtained by inversion of the square matrix A:

�P = αA−1�E . (B4)

It should be stressed that this is an accurate technique for find-
ing the response of a finite structure. The method described
above is called the multiple-scattering technique [28–30]. The
higher-order multipoles might be taken into account as well.

In general, the dimension of matrix A is large and, there-
fore, computations are challenging. To mitigate the computa-
tions we can assume that the incident field is two-dimensional
(2D); that is, it depends only on two coordinates as Einc(x, z).
Examples of such fields are widely exploited and include
obliquely incident and evanescent fields as well as fields of
2D point sources (a string along the y axis). Then we assume
that the electric-dipole moments of the spheres characterized
by a couple of indices j1 and j3 are the same. Obviously, the
thicker is the cluster in the y direction, the better works the
approximation. In this case, the electric-dipole moment reads

p j1, j3 = α
∑
j′1, j′3

A−1
j1, j3, j′1, j′3

Einc
(
r j′1,0, j′3

)
, (B5)

where

Aj1, j3, j′1, j′3 = δ j1, j′1δ j3, j′3 −
∑

j′2

αĜE
(
r j′1, j′2, j′3 − r j1,0, j3

)
. (B6)

The lower dimension 3(Nx + 1)(Nz + 1) of the vectors and
matrices allows us to reduce the time consumption of the
calculations. However, as long as we have a finite number of
nanospheres in the y direction, the assumption of the same
dipole moments for the fixed ( j1, j3) is an approximation.

In the case of a normally incident plane wave, the field is of
the form Einc(z), and the dipole moments of the nanospheres
in the plane z = const. can be assumed to be the same. For
a finite structure it is again an approximation. The electric-
dipole moments distributed along the z direction read

p j3 = α
∑

j′3

A−1
j3, j′3

Einc
(
r0,0, j′3

)
, (B7)

where the 3(Nz + 1)-dimensional matrix is introduced as

Aj3, j′3 = δ j3, j′3 −
∑
j′1, j′2

αĜE
(
r j′1, j′2, j′3 − r0,0, j3

)
. (B8)

In this one-dimensional (1D) case, the calculations are the
fastest in expense of the very limited choice of the incident
fields. It is worth mentioning that although an obliquely
incident plane wave makes the problem two dimensional, the
1D model is still able to predict correct results in the special
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conditions of coherent excitation of the nanospheres. The
coherent excitation means that all nanospheres in the plane
z = const. are excited in phase as in the 1D case.

The transmitted electric field is equal to the superposi-
tion of the incident field and fields of the induced electric
dipoles as

Etr (r) = Einc(r) +
∑

j1, j2, j3

ĜE
(
r − r j1, j2, j3

)
p j1, j2, j3 . (B9)

When this equation is applied in the reduced 2D and 1D cases,
the dipole moments have to be p j1, j3 and p j3 , respectively.

APPENDIX C: LATTICE-SUM CALCULATIONS

Another simplifying approach for evaluation of scattered
fields in periodic systems is with employment of lattice sums.
It is based upon the idea that, due to the Floquet–Bloch
theorem in periodic structures, it is possible to calculate the
fields (electric-dipole moments) at any nanoparticle center
using the field (dipole moment) at the center of one se-
lected nanoparticle. Obviously, it is an accurate assumption
for infinite structures and approximate for finite due to the
edge effects. In the case of a thin film of nanoparticles,
this assumption holds true for the nanospheres in the (x, y)
plane, but is violated along the z axis. When a translation-
symmetric incident wave (oblique plane wave) propagates
in the (x, z) plane, we can write the electric fields and
dipole moments at the centers of nanospheres as, respec-
tively, Einc(r j1, j2, j3 ) = Einc(r0,0, j3 ) exp[ikx(x j1, j2, j3 − x0,0, j3 )]
and p j1, j2, j3 = p0,0, j3 exp[ikx(x j1, j2, j3 − x0,0, j3 )]. Then Eq. (2)
for j1 = j2 = 0 takes the form∑

j′3

Aj3, j′3 p0,0, j′3 = αEinc
(
r0,0, j3

)
, (C1)

where

Aj3, j′3 = δ j3, j′3 − α
∑
j′1, j′2

ĜE
(
r j′1, j′2, j′3 − r0,0, j3

)
e

ikx (x j′1 , j′2 , j′3
−x0,0, j′3

)
.

(C2)

Although Eq. (C1) has solutions as in the 1D case (B7), it
is applicable for 2D obliquely incident plane waves now. In
contrast to the 1D theory, the dipole moments are not equal,
but rather governed by the Floquet–Bloch theorem. Finding
(Nz + 1) values of p0,0, j3 , we obtain transmitted fields for the
incident plane wave as

Etr (r) = Einc(0)eikxx+i
√

k2
0−k2

x z +
∑

j1, j2, j3

ĜE
(
r − r j1, j2, j3

)
× p0,0, j3 eikx (x j1 , j2 , j3 −x0,0, j3 ). (C3)

In the case of arbitrary incident 2D field Einc(x, z), this
theory should be applied for each Fourier component of the
field, bringing us to

Etr (r) = Einc(x, z) +
∑

j1, j2, j3

ĜE
(
r − r j1, j2, j3

)
× p0,0, j3

(
x j1, j2, j3 − x0,0, j3

)
, (C4)

where a spatial distribution of the dipole moment is deter-
mined by the Fourier transform as

p0,0, j3 (x) =
∫

p0,0, j3 (kx ) exp (ikxx)dkx. (C5)

APPENDIX D: COMPARISON OF DIRECT AND
LATTICE-SUM TECHNIQUES

An incident field appropriate for description of both prop-
agating and evanescent waves reads

Einc = E0 exp
(
ikxx + i

√
k2

0 − k2
x z

)
ey, (D1)

where E0 is the field amplitude. If kx < k0 (kx > k0), then
the wave is propagating (evanescent). A normally incident
plane wave has kx = 0. In the approximation R � λ, the
nanospheres can be treated as electric dipoles with polariz-
ability α = R3(n2 − 1)/(n2 + 2).

The incident electric field Eq. (D1) corresponds to the wave
in the plane (x, z). Hence, it is justified to use the 2D model
for direct calculations. The field outside the slab decreases as
the distance from the slab grows; see Fig. 8(a), converging
to the transmission coefficient of a homogenized layer of
refractive index neff = 2 [see the dashed horizontal line in
Fig. 8(a)]. Such a far-field tail for the slab of nanoparticles
has the same nature as that for the single electric dipole. The
lattice-sum technique results in the similar curve, although
the far-field limit is slightly overestimated. Ny is taken as
80 for the direct calculations to ensure the validity of the
2D model (Ny should be as large as possible to avoid edge
effects).

The transverse distribution of the transmitted field shows
the peaks between the nanospheres, the peak value being
the maximal near the center of the structure [Fig. 8(b)].
This distribution right behind the assembly of nanospheres
is created by the near fields. Moving away from the clus-
ter of nanospheres, the near fields (peaks) fade away keep-
ing only the far-field transmission as for the continuous
slab. In the lattice-sum calculations, we assume the pe-
riodicity, missing the edge effects; see the red line in
Fig. 8(b).

Distribution of the nanosphere dipole moments for j1 =
j2 = 0 behaves similarly within the framework of both cal-
culation methods, as demonstrated in Fig. 8(c). Oscillations
observed in Fig. 8(c) are a fingerprint of a propagating wave
in the cluster of nanospheres. These oscillations have a wave-
length about 150 nm and can be understood as standing waves
in the slab of nanospheres. Transmission of an obliquely
incident plane wave is determined by the more complicated
interference picture; however, the oscillatory dependence of
the dipole moments is preserved.

For the normally incident plane waves we could apply
the 1D direct calculations. In this case, we do not take into
account the edge effects of the finite structure in the sense that
all nanospheres for the certain j3 possess the same electric-
dipole moment. The value of the output field depends on the
size of the nanosphere assembly. The larger numbers Nx and
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FIG. 8. Comparison of the 2D direct and lattice-sum calculations. (a) Electric field |E|/E0 of the wavelength λ = 470 nm transmitted by
the slab of nanospheres (radius R = 7.5 nm and refractive index n = 2.55) as a function of k0z (x = y = 0 or j1 = j2 = 0). (b) Transmission
coefficient |E|/E0 as a function of coordinate x at z = 2

√
2/3RNz corresponding to the center of the last sphere in the slab (circles demonstrate

positions of the nanospheres). (c) Dimensionless electric-dipole moments |p|/αE0 of the nanospheres vs j3 (coordinate z) at j1 = j2 = 0.
Geometrical parameters of the slab: Nx = 20, Ny = 80, and Nz = 20 for direct calculations and Nx = Ny = Nz = 20 for lattice-sum calculations.

Ny bring us closer to the fulfillment of the conditions of equal
dipole moments in the plane.

APPENDIX E: LIMITATIONS ON INDICES j1, j2, AND j3

FOR A CLOSELY PACKED SPHERE

Here we calculate the light scattering on the cluster of
nanospheres having the shape of a sphere of radius R0. Let
us write the limitations on the integer numbers j1, j2, and j3
defined in Eq. (A4) caused by the spherical shape. Number
j3 specifies the coordinate −R0 � z � R0 for different cuts
of the sphere. The discrete cuts are separated by the distance
2
√

2/3R; therefore,

−
[ √

3R0

2
√

2R

]
� j3 �

[ √
3R0

2
√

2R

]
, (E1)

where [x] is the integer part of x.

Within the cut determined by j3 (for the fixed z =
2
√

2/3R j3), one writes x2 + y2 � R2
0 − z2 = R2

0 − 8R2 j2
3/3.

The cuts along the x axis occur at the equal distances R, hence,

−
⎡
⎣

√
R2

0 − 8R2 j2
3/3

R

⎤
⎦ � j1 �

⎡
⎣

√
R2

0 − 8R2 j2
3/3

R

⎤
⎦. (E2)

Finally, we derive the bounds for integer number j2 in the
y direction depending on j1 and j3 as

a− � j2 � a+, (E3)

where

a± =
⎡
⎣− j1

2
+ j3

3
±

√
3R2

0 − 8R2 j2
3 − 3R2 j2

1

6R

⎤
⎦. (E4)

Such a cluster of nanospheres can be characterized by
using the direct calculation technique based on the multiple-
scattering theory.
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