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I. INTRODUCTION

The Standard Model (SM) is the most
advanced theory for describing the particles
interactions. However, it is obvious that
the SM is not the universal theory, but only
a low-energy approximation of more exten-
sive model. Nevertheless, new effects which
allow to state the existence of the ”new
physics” (physics beyond the SM) have not
been discovered. For this reason the most
theoretical investigations are realized for the
construction and study of various extended
gauge models. As a rule, these models
have a considerable simplicity and predic-
tive power. The study of such models is the
purpose of experiments on the linear accel-
erators of next generation.

The precision covariant calculation of
the processes within the SM, taking into
account radiation and polarization effects
is important task also, because the ”new
physics” search should be obtained in com-
parison of theoretical and experimental
data. Therefore, this investigation requires
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high accuracy of the experiments as well
as the theoretical calculations. Numerical
analysis must be performed with high pre-
cision.

The most promising models for the re-
search on linear colliders are the models in-
cluding anomalous triple and quartic gauge
boson interactions. From the most general
view, it is possible to construct a general-
ized Lagrangian for this kind of interaction,
limiting consideration of operators of finite
dimension. This approach is called the ef-
fective Lagrangian method, which includes
not only the above mentioned operators,
but also the new anomalous gauge coupling
(AGC) [1, 2].

This paper is devoted to the study of
the triple anomalous gauge couplings for
Z∗Zγ, γ∗Zγ and W ∗Wγ anomalous inter-
actions, which could be studied on the base
of the processes of electron-photon interac-
tions. These processes [3–6]

e−γ → e−γ, (1)

e−γ → e−Z, (2)

e−γ → νeW
−, (3)

can be investigated with the precise accu-
racy on linear accelerators of new genera-
tion, such as the International Linear Col-
lider (ILC) [7, 8].
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The study of processes with eγ beams
have a set of advantages. Collider luminos-
ity in eγ-mode is extremely high. Even at
the most possible interaction energy, cross
sections of corresponding processes have
magnitude about some picobarn. High en-
ergy photon beams can be obtained using
Compton backscattering and this process
can be separately studied. The process (3)
has an exceptional importance in the triple
AGC investigation, since it is the only one
that allows to study pure W ∗Wγ anoma-
lous gauge interaction. It should be noted
that on the base of the bremsstrahlung pro-
cesses (from 2 to 3) is also possible to carry
out the research of quartic anomalous gauge
interactions including two real photons.

II. CROSS SECTIONS

A. Kinematic

We start from consideration of general
process

e−(p,me) + γ(k, 0)→
→C−(p1,mc) +N0(k1,mn),

(4)

where C− and N0 are the final particles
(charged and neutral); p(p1) and k(k1) are

the 4-momenta of initial(final) charged and
neutral particles, correspondingly; me(mc)
and 0(mn) are their masses. Corresponding
Feynman diagrams for the general process
of tree level are presented on Fig. 1.

Figure 1: Feynman diagram for the e−γ →
C−N0 process in the Born approximation

The expression of the total cross section
for the such type of processes can be written
as follows:

σ =
1

8π(s−m2
e)

2

∫
|M|2 dQ2, (5)

where s and t are Mandelstam variables:

s = (p+ k)2, (6)

t ≡ −Q2 = (p− p1)2, (7)

and M is the process amplitude. Integra-
tion can be performed using the following
limits:

Q2
± =

(s+m2
e)(s+m2

c −m2
n)± (s−m2

e)
√
λ(s,m2

c ,m
2
n)

2s
−m2

c −m2
n. (8)

B. Radiative corrections

1. One-loop contribution

Taking into account the one-loop radia-
tive corrections, squared amplitude can be
written as follows:

|M|2 = |Mborn|2 + <|Mborn · M∗
V |, (9)

whereMborn is the Born approximation am-
plitude and MV is the amplitude including

virtual radiative corrections (RC).

One-loop corrections contain unphysical
ultraviolet (UV) and infrared (IR) diver-
gences. This divergences must be regu-
larized. Usually, the dimensional regular-
ization is chosen for this purpose, which
allows one to parameterize both types of
divergences by performing integration in
N -dimensional space [9]. UV-divergencies
can be reduced by summation with addi-
tional counter-term diagrams contribution.
Counter-terms choose in accordance with
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corresponding renormalization scheme. In
this paper on-mass shell renormalization
scheme was chosen. Finally, the amplitude
of virtual radiative corrections can be writ-
ten as follows:

MV =MOL +MCT , (10)

where MOL is the one-loop contribution
amplitude and MCT is the counter-terms
contribution amplitude.

2. Soft photon contribution

Cancellation of IR-divergences is per-
formed by taking into account the soft pho-

ton bremsstrahlung contribution. In this
case the differential cross section level can
be written as

dσsoft = δsoft · dσborn. (11)

Here factor δsoft is calculated as follows:

δsoft = − α

2π2

∫ ∆E

0

[
p2

(2pq)2
+

p2
1

(2p1q)2
− 2pp1

(2pq)(2p1q)

]
, (12)

where α is fine structure constant and ∆E
is the collider energy resolution. This en-
ergy is the minimal energy of the final
bremsstrahlung photon that can be de-
tected.

Performing integration in accordance
with the dimensional regularization scheme
for each of the terms in brackets, the factor

δsoft can be rewritten:

δsoft = − α

2π2

∫ ∆E

0

[I(p) + I(p1)− I(p, p1)] .

(13)
The functions I(q), I(qi, qj) can be pre-

sented in the form [10, 11]:

I(q) = π

[
−∆IR + log

4∆E2

µ2
+
q0

|~q| log
q0 − |~q|
q0 + |~q|

]
, (14)

I(qi, qj) = 2π
ζ2xij

ζ2m2
i −m2

j

[
1

2
log

ζ2m2
i

m2
j

(
−∆IR + log

4∆E2

µ2

)
+

(15)

+

〈
1

2
log2 u

0 − |~u|
u0 + |~u| + Li2

(
1− u0 + |~u|

v

)
+ Li2

(
1− u0 − |~u|

v

)〉u=ζqi

u=qj

]
, (16)

where µ is t’Hoft-Veltman mass parameter
and

ζ =
xij +

√
x2
ij − 4m2

im
2
j

2m2
i

,

v =
ζ2m2

i −m2
j

2(ζq0
i − q0

j )
,

xij = 2qi · qj.



4

In the case of the process (4) one can
obtain

p0 =
s+m2

e

2
√
s
, p0

1 =
s+m2

c

2
√
s
,

|~p| = s−m2
e

2
√
s
, |~p1| =

s−m2
c

2
√
s
,

xij = Q2+m2
e +m2

c .

3. Hard photon contribution

The soft photon bremsstrahlung contri-
bution depends on the collider energy reso-
lution. However, in the soft photon approxi-
mation this energy should be much less than
the interaction energy (including the masses
of particles). In the present experiments, it
is impossible to achieve such precision. To
avoid this dependence one can take into ac-
count the hard photon bremsstrahlung con-
tribution. The process (4) with additional
final real photon can be rewritten as follows:

e−(p,me) + γ(k, 0)→
→ C−(p1,mc) +N0(k1,mn) + γ(q, 0).

The expression of the total cross section
for the such type of processes has the fol-
lowing form:

σ =
(2π)−4

4(s−m2
e)

2

∫
|Mhard|2×

×dt1ds1ds2dt2

8
√−∆4

,

(17)

where s, t1, s1, s2, t2 are Mandelstam vari-
ables:

s = (p+ k)2,

t1 = (k − k1)2,

s1 = (p1 + q)2;

s2 = (p1 + k1)2;

t2 = (p− q)2.

The part corresponding to the local-
ization of IR-divergence is the main con-
tribution to the cross section of the
bremsstrahlung process. Therefore, one can
divideMhard|2 into the divergent and finite
parts:

|Mhard|2 = |MIR
hard|2 + finite part. (18)

It is very useful, because |Mhard|2 can be
factorized by squared matrix element in the
Born approximation:

|Mhard|2 = δIRhard |Mborn|2. (19)

Factor δIRhard depends on all new invariant
and can be expressed as follows:

δIRhard = − α

π2

∫ (
m2
e

(m2
e − t2)2

+
m2
c

(s1 −m2
c)

2
− Q2 +m2

e +m2
c

(m2
e − t2)(s1 −m2

c)

)
(20)

where ∆4 is the Gram determinant

∆4 =

∣∣∣∣∣∣∣∣
p2 (pk) (pp1) (pk1)

(kp) k2 (kp1) (kk1)
(p1p) (p1k) p2

1 (p1k1)
(k1p) (k1k) (k1p1) k2

1

∣∣∣∣∣∣∣∣ . (21)

All kinematic boundaries can be ob-
tained from the condition ∆4 = 0.

After the integration over s2, s1, t2 the
invariant t1 can be identified with t. Finally,
for δIRhard one can obtain [12]
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δIRhard =− α

2π

〈
log

4∆E2m2
c

(s̄1 −m2
c)

2

[
2− 1

βt
log xt

]
+ <

{
log s1 − 2 log

m2
c − t

s1 − t
−

− log2(s1 − t) + log(s̄1 −m2
c)(2 log(s1 − t)− logm2

es1)+ (22)

+ logm2
es1 log

m2
c(s1 − t)
−t − Li2

s1

m2
c

+ Li2
s1

t
+ 2Li2

s1 − t
m2
c − t

}s1=s̄1

s1=m2
c

〉

with

βt =

√
λ(t,m2

e,m
2
c)

m2
e+m2

c−t , (23)

xt = 1+βt
1−βt . (24)

Summarizing of all above mentioned, one
can write the expression for the differential
cross section, including the lowest-order ra-
diative corrections:

dσ = dσborn(1 + δIRsoft + δIRhard) + dσV , (25)

and introduce the general notation for full
relative radiative corrections

δfull = (dσ/dσborn − 1)× 100% (26)

or

δfull = (σ/σborn − 1)× 100% (27)

in case of the total cross sections.

C. Anomalous gauge couplings

Effective lagrangian of anomalous WWγ
interaction can be presented in following
form [13]:

−LWWγ/e = iκγW
†
µWνF

µν+

+
iλγ
m2
W

W †
λµW

µ
νF

νλ − gγ4W †
µWν (∂µAν + ∂νAµ) +

+gγ5ε
µνρσ

(
W †
µ

←→
∂ ρWν

)
Aσ + iκ̃γW

†
µWνF̃

µν +
iλ̃γ
m2
W

W †
λµW

µ
νF̃

νλ, (28)

where Fµ is electromagnetic field tensor, Wµ

is W -boson field, Wµν = ∂µWν − ∂νWµ,

Vµν = ∂µVν − ∂νVµ, Ṽµν = 1
2
εµνρσV

ρσ,

(A
←→
∂ µB) = A(∂µB)−B(∂µA).

Following eq. (28) one can put a vertex
function of the form
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Γαβµγ (q, q, P ) =
λγ
m2
W

(qνg
ρα − qρgαν )

(
qρg

β
σ − qσgβρ

)
(P σgµν − P νgµσ) +

+
λ̃γ

2m2
W

(qνg
ρα − qρgαν )

(
qρg

β
σ − qσgβρ

) (
Pγg

µ
τ − P τgµγ

)
εσνγτ−

−∆κγ
(
Pαgβµ − P βgαµ

)
+ κ̃γε

αβµνPν (29)

with CP -odd (λγ, δκγ) and CP -even

(κ̃γ, λ̃γ) AGC. In similar way vertex func-

tion of V ∗Zγ interaction can be presented
as

ΓαβµZγV (q1, q2, P ) =
s−m2

V

m2
Z

[
hV1
(
qµ2 g

αβ − qα2 gµβ
)

+
hV2
m2
Z

Pα
(
P · q2g

µβ − qµ2P β
)

+

+hV3 ε
µαβρq2ρ +

hV4
m2
Z

PαεµβρσPρq2σ

]
. (30)

The couplings hV1 and hV2 are P -odd, hV3 and
hV3 are P -even, all couplings are C-odd.

III. NUMERICAL ANALYSIS

To carry out numerical analysis, some
software is required. The presented results
were obtained using the following tools:

• Analytical results:
Wolfram Mathematica
system [14];

• Squared matrix elements:
FormCalc package;

• Processes kinematics:
FeynCalc package [15];

• Passarino-Veltman integration:
LoopTools library [16];

• Numerical integration:
Vegas Monte-Carlo simulator [17].

The parametrization of unphysical UV-
and IR-divergencies were performed using
dimensional regularization. Final results do
not depend on t’Hoft-Veltman mass regula-
tor µ2 and collider energy resolution ∆E.

On-mass shell regularization scheme was
choosed. Following experimental features
were used: scattered particle angle cut
∆ϑ = 20◦, ∆E is varied in the wide range
of values to confirm the independence of fi-
nal results from this parameter. Since the
search for ”new physics” implies a set of im-
pressive experimental statistics, the analysis
of the possible contribution of anomalous in-
teractions was carried out on the basis of
the total cross sections. Anomalous gauge
couplings constraints were determined tak-
ing into account the following value for stan-
dard deviation σSD:

σSD = 0.001 · σ(s0) + 1/Lint

with integrated luminosity Lint = 100 pb−1.
Anomalous interactions study was per-
formed using ND-fit. It means that only
N AGC is free and other one have there SM
values.

A. Standard Model results

The relative radiative corrections to dif-
ferential cross section for all processes with
different interaction energies are shown in



7

νeW
eZ
eγ

Diff. RC 0.5 TeV

|Q|, GeV

δd
if
f
,
%

5004003002001000

10

5

0

−5

−10

−15

νeW
eZ
eγ

Diff. RC 1.0 TeV

|Q|, GeV

δd
if
f
,
%

10009008007006005004003002001000

10

0

−10

−20

−30

Figure 2: The differential radiative corrections for a set of processes.
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Figure 3: The total cross sections including the lowest order radiative corrections a) and relative

radiative corrections b) for a set of processes.

Fig. 2. As one can see, RC to differential
cross section strongly depends on interac-
tion energy and they absolute value prin-
cipally increase with energy growth. For
the all considered processes, a characteris-
tic feature is the kinks and corresponding
local extrema in the regions of the mini-
mum and maximum values of the momen-
tum transfer module |Q|. At

√
s=1.0 TeV

typical values of relative RC to differen-
tial cross section for the Compton scattering
process and Z-boson production process are
within the range of −12 ÷ 0%, for the W -
boson production process within the range
of −35÷−13%.

The total cross sections including RC
and relative RC for all processes under con-
sideration are shown in Fig. 3. With in-
creasing of interaction energy, the absolute
values of the cross sections decreases for all

processes. In case of W -boson production
cross section has a peak with value about
64 pb at interaction energy

√
s=310 GeV.

At
√
s=1.5 TeV cross sections of all pro-

cesses don’t exceed 10 pb. RC have prin-
cipally negative values. It is reach −38%
for the W -boson production process and
interaction energy

√
s=1 TeV. This be-

havior is explained by the absence of the
bremsstrahlung contribution, which is not
related to the presence of IR-divergences in
the current calculations. Consideration of
finite hard bremsstrahlung contribution for
this process is very important. RC do not
exceed −10% for the processes of neutral
gauge bosons production at the same inter-
action energy.
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Figure 4: The total cross section of eγ → eZ process obtained using 1σSD limits for hγi and hZi
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Figure 5: 99% (solid lines) and 95% (dashed lines) C.L. constraints for the (hγ1 , h
γ
2) gauge

couplings

B. V ∗Zγ interactions

We start from the analysis of anomalous
V ∗Zγ interactions behavior. In the linear
approximation anomalous contribution to
the total cross section of Z-boson produc-
tion can be written in the following form:

σ
(1)
eZ =

∑
i,V

hVi · fVi , (31)

where fVi are form-factors of corresponding
AGC. In 1D-fit constraints can be derived
with 68% confidence level (C.L.) from the
following inequality:

σSD ≥ |hVi · fVi | (32)

Contributions of terms for every V ∗Zγ
coupling in 1D-fit are presented in Fig. 4. As

one can see, with increasing of interaction
energy the absolute value of couplings with
odd indexes increases fast starting from en-
ergy value about 1.5 TeV. This behavior
is explained by the presence of a gauge
cancellation. The extremely important re-
sult of this analysis is that contributions
of CP -odd/even couplings to the eγ → eZ
process are indistinguishable, both qualita-
tively and quantitatively. This fact suggests
that the 2D-fit analysis for the (hγ1 , h

γ
2) will

be sufficient for a complete analysis of neu-
tral AGC.

2D-fit is based on the quadratic poly-
nom. NσSD neutral AGC constrains have
been derived from the following inequality:

NσSD ≥ |σ(1)
eZ + σ

(2)
eZ |, (33)
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Figure 6: 99% (solid lines) and 95% (dashed lines) C.L. constraints for the (δκγ , λγ) gauge

couplings
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Figure 7: 99% (solid lines) and 95% (dashed lines) C.L. constraints for the
(
κ̃γ , λ̃γ

)
gauge

couplings

where
σ

(2)
eZ =

∑
i,j

hγi h
γ
j · gij. (34)

Results of 2D-fit of 2σ and 3σ levels for
different interaction energies are presented
in Fig. 5. In the case of 2D-fit, the con-
straints are much tougher. With an increas-
ing of the interaction energy, the obtained
restrictions strongly growth. Therefore, the
research of neutral AGC seems to be the
most promising at the highest possible en-
ergies.

C. W ∗Wγ interactions

2D-fit analysis of CP -odd/even charged
AGC has been performed separately and is
based on eq. 33. Restrictions on the CP -
odd couplings (δκγ, λγ) depending on dif-
ferent interaction energies can be found in

Fig. 6.

As one can see, the range of possible
AGC is a ring, which size decreases with in-
creasing

√
s. Constraints are defined in the

range near the SM values. If one compares
the regions for different energy values, it will
give further limit of the range of AGC.

Restrictions on the CP -even couplings(
κ̃γ, λ̃γ

)
depending on different interaction

energies are presented in Fig. 7. It is easy
to see that in this case, as the energy in-
creases, it is possible to significantly refine
the restrictions on the anomalous coupling
constants. This behavior indicates the po-
tential benefits of increasing the design ca-
pability of the next-generation accelerators.

The possible behavior of the anomalous
contributions to the cross sections of the
processes at AGC values at the boundary
of the 3σSD regions of 2D-fits is shown in
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Figure 8: Results for some 3σSD boundary values of different anomalous gauge couplings

AGC LEP ILC 0.31 TeV ILC 0.5 TeV ILC 1.0 TeV

hγ1 × 103 [-50, 50] — [-18.06, 19.10] [-17.70, 17.70]

hγ2 × 103 [-40, 20] — [-0.671, 0.671] [-0.658, 0.658]

hγ3 × 103 [-50, 0] — [-6.009, 6.009] [-5.887, 5.887]

hγ4 × 103 [10, 50] — [-0.151, 0.151] [-0.148, 0.148]

hZ1 × 103 [-120, 110] — [-3.222, 3.222] [-3.157, 3.157]

hZ2 × 103 [-70, 70] — [-0.120, 0.120] [-0.117, 0.117]

hZ3 × 103 [-190, 60] — [-46.13, 46.13] [-45.20, 45.20]

hZ4 × 103 [-40, 130] — [-1.160, 1.160] [-1.137, 1.137]

hγ1 × 103 [-50, 50] — [-17.82, 20.26] [-5.467, 5.663]

hγ2 × 103 [-40, 20] — [-2.072, 1.949] [-0.144, 0.140]

δκγ × 103 [-99, 66] [-6.242, 6.290] [-7.125, 7.221] [-15.85, 12.25]

λγ × 103 [-59, 17] [-12.82, 12.27] [-15.95, 13.24] [-36.41, 22.19]

κ̃γ × 103 — [-75.63, 229.0] [68.56, 138.7] [-67.75, 88.66]

λ̃γ × 103 — [-58.47, 195.7] [-41.92, 70.18] [-20.46, 22.76]

Table I: 95% C.L. anomalous gauge couplings limits and LEP experimental data [18]

Fig. 8. Obviously, in the most cases, the
search for AGC should be performed at the
maximum possible particle interaction ener-
gies. For the (δκγ, λγ) pair of couplings, the
best region for searching of deviations from
the SM will be the region near the peak of
the W -boson production.

IV. CONCLUSION

In the paper the differential and total
cross sections of the gauge bosons produc-
tion processes in electron-photon collisions
including radiative corrections were calcu-
lated. As it was shown by numerical analy-
sis, the contribution of radiative corrections
is significant and this strongly affect on the
background. The hard bremsstrahlung con-

tribution was made taking into account only
the IR-divergent part. It demonstrates the
good results for the production of neutral
gauge bosons. For the calculation of W -
boson production process the IR-finite con-
tribution is needed, because it has signif-
icant value in cross section of the process
near the W -boson production peak. Con-
sideration of the finite bremsstrahlung con-
tribution seems a logical continuation of re-
search.

Anomalous gauge boson interactions
were studied. Final results are presented in
Tab. I. As one can see the large integral lu-
minosity will be able significantly clarify the
constraints for AGC on ILC. The numeri-
cal analysis shows that the search for man-
ifestations of (δκγ, λγ) is the best near the
peak of the W-boson production. This is be-
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cause the operators corresponding to these
constants are 4D. Another AGC contribu-
tions set by 6D operators are significant on
maximal possible interaction energy. For

the eγ → eZ process the analysis can be
performed using 2D-fit only for pair of cou-
plings with different CP -symmetry.
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