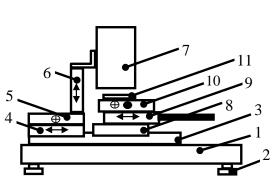

Автоматизированный профилометр с наклонно падающим сканирующим лазерным пучком

И.В. Балыкин 1,2 , А.А. Рыжевич 1,2 , Т.А. Железнякова 2 , А.Г. Смирнов 1,2 1 Институт физики им. Б.И. Степанова НАН Беларуси, Минск 2 Белорусский государственный университет, Минск E-mail: tol@dragon.bas-net.by

В [1] было предложено профилометрическое устройство с наклонным падением сканирующего лазерного луча. В [2] было показано, что с помощью этого устройства можно с достаточно хорошей точностью регистрировать отклонения от прямолинейной образующей плоских, цилиндрических и конических поверхностей, получая таким образом профилограммы поверхностей. Однако перемещение оптического блока или исследуемой поверхности и регистрация данных с помощью устройства в [2] производилась в ручном режиме. Поэтому нами на современной электронной базе был разработан и изготовлен автоматизированный профилометр, работающий по такому же принципу. На рис. 1 показана 3D-модель оптического блока профилометра. На основании 1 установлен под углом 45° к лицевой панели полупроводниковый лазерный модуль KLM-M650-40-5 производства ЗАО «ФТИ-Оптроник» (Россия) с коллиматором. Лазерное излучение модуля ослабляется аттенюатором 3 на нейтральных светофильтрах, после чего фокусируется цилиндрической линзой 4, закрепленной на юстировочной платформе. Для регистрации фокусного пятна на исследуемой поверхности используется USB-микроскоп 5 МИКМЕД 5.0 (Китай). Для предотвращения попадания пыли и постороннего света на элементы устройства они закрыты кожухом, состоящим из боковых стенок 6 и верхней крышки. На рис. 2 приведена фотография изготовленного нами оптического блока профилометра.



Puc. 1. 3D-модель оптического блока профилометра без двух стенок и крышки

Puc. 2. Фотография оптического блока профилометра со снятой крышкой

На рис. 3 показана конструкция оптико-механического блока устройства. На жестком основании 1 с регулировочными ножками 2, выполненном из стального швеллера шириной 120 мм, жестко закреплен оптический рельс 3. На рельсе 3 с помощью каретки 4 закреплен механический узел, состоящий из двух регулировочных платформ 5 и 6, служащих для крепления и юстировки оптического блока 7. Справа на рельсе 3 с помощью каретки 8 ортогонально друг другу закреплены управляемые трансляционные платформы 9 и 10 с актуаторами модели Z825B («Thorlabs», США), образующие 2D координатный столик, на верхней платформе которого размещается исследуемый образец 11. На рис. 4 приведена фотография собранного нами оптико-механического блока. После установки исследуемого образца на координатный стол оптический блок с помощью платформ 5 и 6 выставляется относительно образца таким образом, чтобы фокусное пятно на образце имело наименьший возможный размер, после чего автоматически регистрируется профиль поверхности исследуемого образца.

Puc. 3. Конструкция оптикомеханического блока профилометра

Puc. 4. Оптико-механический блок профилометра в сборе

Работа выполнена в рамках задания 1.1.01 (№ гос. регистрации 20160091) ГПНИ «Фотоника, опто- и микроэлектроника» на 2016-2020 г.г. Для сборки и отладки профилометрического устройства использовались результаты исследований по заданию 1.3.03 (№ гос. регистрации 20160092) этой же ГПНИ.

- 1. Пат. 9915, МПК G 01В 9/02. Устройство для определения отклонения поверхности объекта от образующей / А.А. Рыжевич, С.В. Солоневич, В.Е. Лепарский, А.Г. Смирнов; № и 20130565; Заявл. 04.07.2013; Опубл. 28.02.2014 // Афіцыйны бюлетэнь. 2014. № 1 (96). С. 199–200.
- 2. *Рыжевич А.А.*, *Солоневич С.В.*, *Лепарский В.Е.*, *Смирнов А.Г.* // Неразрушающий контроль и диагностика. 2015. № 2, спецвыпуск № 2. С. 34–66.