КОСМОЛАНДШАФТНОЕ КАРТОГРАФИРОВАНИЕ АДМИНИСТРАТИВНЫХ РАЙОНОВ БЕЛАРУСИ

Ю. М. Обуховский

Белорусский государственный университет, г. Минск, Беларусь, Obukhovskij@bsu.by

Введение. Прошло более 60 лет с момента запуска первого искусственного спутника Земли. За это время космические методы получили широкое развитие при изучении природной среды и вошли в исследовательский арсенал современного ландшафтоведения. В то время, когда ландшафтоведение рассматривалось как наука о региональных ландшафтах и их соподчиненных морфологических единицах, вполне достаточно было аэрофотосъемки. Переход к картографированию крупных регионов и более масштабных исследований потребовал использование адекватных по масштабу дистанционных моделей. Таковыми, начиная с 70-х годов, стали космические снимки (КС). Появление новых моделей повлекло разработку новых методик и научных направлений – космические землеведение и ландшафтоведение, картографирование, экология, геоиконика и др.

Опыт исследователей-естествоиспытателей показал, что оптимальным результатом интерпретации КС в научно-практических целях являются тематические и комплексные карты. По словам Е.А. Востоковой, именно через карты лежит магистральный путь внедрения аэрокосмических внедрений в практику.

Основные принципы ландшафтного дешифрирования впервые изложены в работах А.В. Гавемана и В.А. Фааса. Свое дальнейшее развитие по отношению к КС, они получили в публикациях [1-6]. Ландшафтное дешифрирование, в отличие от геологического, почвенного, геоботанического, базируется на выделении по характеру аэро- или космоизображения природно-территориальных комплексов (ПТК) разного таксономического ранга.

Самостоятельный вид интерпретации КС – ландшафтное дешифрирование, направленное на изучение и картографирование пространственно-временных закономерностей ландшафтов. Основу ландшафтного дешифрирование составляет то обстоятельство, что КС отражают структуру ПТК через закономерные сочетания «физиономичных» компонентов природы. Вместе с тем, КС в некоторой степени условно воспроизводят последние с помощью определенного набора геометрических и фотометрических характеристик, т.е. являются космоландшафтом. Этот термин идентичен понятию «космоизображение ландшафтов».

Каждый ПТК обладает специфической ландшафтной структурой, которая отражает взаимосвязи внутри ПТК в строго определенном порядке, придавая комплексу индивидуальность. ПТК отображаются на КС через физиономичные компоненты: рельеф, гидросеть, растительность и антропогенные

элементы. Они создают внешний облик ПТК. Климат и гидрогеологические особенности являются «деципиентными» (трудно наблюдаемыми) компонентами. Ландшафтный рисунок космоизображения складывается из оптических, геометрических и текстурных характеристик. Если оптические характеристики изменчивы, то геометрические особенности рисунка более устойчивы и служат надежным дешифровочным признаком.

Основная часть. 1. Исследованиями, проводимыми кафедрами геодезии и картографии географического факультета БГУ, разработана методика среднемасштабного космоландшафтного картографирования. При ландшафтной интерпретации КС используется аналитический подход. Специфика дистанционных исследований обуславливает следующее:

- таксоны всех рангов определяются только по физиономичным признакам;
- местности выделяются как по расчлененности рельефа, так и по генезису, а в некоторых случаях – по возрасту;
- ведущим признаком при определении сложных урочищ является рельеф;
- в понятие «простое урочище» вкладывается конкретное, оптимальное для индикации, геоботаническое содержание.

Последовательность и содержание космоландшафтного картографирования предусматривает: а) составление предварительной карты (генетическая канва, анализ рельефа, видов земель, растительности, контура урочищ); б) получение синтезированных космических изображений с улучшенными геометирческими характеристиками и оптимальным подбором спектральных каналов; в) сопоставление составленной карты с космофотоосновой соответствующего масштаба (соответствие границ, уточнение их конфигурации, анализ фоторисунков, установление дешифровочных признаков, подбор дешифровочных эталонов).

- 2. Использование многозональной космической съемки и оптимальный подбор спектральных каналов позволили подготовить дешифровочную схему доминантных ПТК районов и дать её индикационную интерпретацию на основе разработанных для всех физико-географических провинций Беларуси индикационных схем почв, покровных отложений и грунтовых вод.
- 3. Разработана методика ландшафтно-экологической дифференциации территории. Для этого используется ландшафтно-каскадная модель, совмещающая ландшафтный, геохимический и административно-хозяйственный слои. Первый отражает структуру ПТК, второй миграцию химических элементов и веществ и способность комплексов к самоочищению, третий границы районов и видов земель [7 9].
- 4. Разработана методика балльной оценки территории по физиономичным составляющим, находящим отражение на КС (лесистости, заболоченности, распаханности дорожной сети) и с использованием ЗИС районов. Установлены территории с минимальными, низкими, средними, высокими и максимальными значениями этих показателей. Интегральная оценка выполнена

суммированием частных показателей и баллами ландшафтно-экологического ранжирования.

- 5. Для четырех административных районов составлены сопряженные серии карт, включающие:
- космоландшафтные масштаба 1:100 000 для Гродненского района, с детализацией на уровне урочищ, и 1:200 000 для Брестского, Гомельского и Пинского районов с детализацией на уровне групп урочищ;
- ландшафтно-экологические, с показом ПТК, ранжированных по особенностям миграции химических элементов и способностей к самоочищению (элювиальные, супер- и субаквальные, аквальные, трансформированные);
- компонентные оценочные по фотофизиономичным составляющим (лесистость, заболоченность, распаханность, дорожная сеть);
- интегральные оценочные, суммирующие ландшафтно-экологическое ранжирование и компонентные балльные оценки.

Карты подобной детальности для административных районов разработаны впервые.

Заключение. Научно-методическое значение выполненных исследований заключается в совершенствовании и разработки новых аспектов методики космоландшафтных исследований, дистанционного картографирования, ландшафтно-экологической оценки ПТК, космического мониторинга экосистем.

Практическая значимость полученных результатов заключается в возможности использования разработанных методик при комплексных исследованиях с применением космической информации ПТК других районов. Составлены серии карт могут быть использованы при ревизионном тематическом картографировании, изучении современных экзогенных процессов, инженерных изысканиях, природоохранной деятельности, в образовании и просветительской работе.

Получен ряд актов о внедрении результатов исследований в областях геологии, землеустройства, образовании и краеведении. По результатам работ защищена кандидатская диссертация, три дипломных и несколько курсовых работ. Материалы исследований опубликованы в 29 работах, в т.ч. 10 – в рецензируемых изданиях.

Библиографические ссылки

- 1. Альтер С. П. Ландшафтный метод дешифрирования аэроснимков. М.-Л.: Наука, 1966. 88 с.
- 2. Григорьев А. А. Космическая индикация ландшафтов Земли. Л.: ЛГУ, 1975. 165 с.
- 3. Книжников Ю. Ф., Кравцова В. И., Тутубалина О. В. Аэрокосмические методы географических исследований. М., 2004. 383 с.
- 4. Кравцова В. И. Космические методы картографирования. М., 1995. 195 с.
- 5. Садов А. В. Изучение экзогенных процессов аэроландшафтными методами. М.: Недра, 1978. 151 с.
- 6. Смирнов Л. Е. Геоэкологическое картографирование. Изв. Рус. геогр. о-ва. 1993, 125, № 2. С. 19–26.

- 7. Обуховский Ю. М., Лис Л. С., Боженова Н. М. О критериях о методике дифференциации территории при оценке их экологического состояния. Природопользование. Вып. 7, 2001. С. 48–53.
- 8. Обуховский Ю. М., Самсоненко И. П., Жидкова Т. А. Космоландшафтное картографирование и оценка экологического состояния природных комплексов Брестского района. Земля Беларуси, 2013, № 4. С. 35–41.
- 9. Обуховский Ю. М., Жидкова Т. А., Головач Л. В. Космоландшафтные карты урбанизированных районов как информационная база оптимизации природопользования. Природные ресурсы, 2012. Вып. 20. С. 45–49.

УДК 528.91

СОВРЕМЕННЫЙ ВЗГЛЯД НА НАЦИОНАЛЬНЫЙ АТЛАС РЕСПУБЛИКИ БЕЛАРУСЬ

В.Н. Пейхвассер ¹⁾, В. М. Храмов²⁾

1) Белорусский государственный университет, г. Минск, Беларусь, mck57@mail.ru ²⁾ Белорусский государственный университет, г. Минск, Беларусь, khramov.v.m@gmail.com

Предложена концепция создания Национального атласа Республики Беларуси в форме Национальной атласной информационной системы Беларуси, как составной части инфраструктуры пространственных данных государства, с целью научного, методического и информационного обеспечения в планировании и прогнозировании, научной деятельности, образовании, и культуре. Национальная атласная информационная система рассматривается как многоуровневая, мультимасштабная, самосовершенствующаяся система, обеспечивающая доступ к актуальной картографической информации и картографическим базам данных в реальном времени с требуемым уровнем детализации.

Ключевые слова: Национальный атлас; атласные информационные системы; национальные атласные информационные системы; инфраструктура пространственных данных; интерактивность; интернет-реклама.

Введение. Настоящее время характеризуется богатством и многообразием средств и возможностей современных информационных и рекламных технологий, Мы становимся свидетелями внедрения передовых технологий и цифровой трансформации общества. Открываются новые возможности для создания и использования атласов в традиционной и электронной формах [1]. Возрастает роль облачной технологии и высокоскоростного интернета. В тоже время развиваются нано-, био-, когнитивные технологии [2, 3], которые отличаются от познавательных тем, что познание происходит в новой информационной среде. Это не только люди, природа, техника, карты, атласы, но и компьютеры и сети (социальные и компьютерные). Интерфейсы компьютерных систем ближайшего будущего смогут воспринимать не только словесные, но и мысленные команды. При проектировании концепции будущей национальной атласной информационной системы необходимо учесть все эти аспекты.

Созданием в 2002 г. белорусскими учёными совместно с картографами первого, на просторах бывшего СССР фундаментального научно-справочного «Национального атласа Беларуси» [4], как и первого национального атласа