Акустооптическая диагностика поверхностных волн Гуляева-Блюстейна бесселевыми световыми пучками в кубических кристаллах

 Γ .В. Кулак¹, Γ .В. Крох¹, Т.В. Николаенко¹, О.В. Шакин²

¹ Мозырский государственный педагогический университет им. И.П. Шамякина, Мозырь, Беларусь ² Государственный университет аэрокосмического приборостроения, Санкт-Петербург, Россия E-mail : kulak57@mail.ru

В настоящей работе исследованы особенности брэгговской дифракция бесселевых световых пучков (БСП) на поверхностных акустических волнах (ПАВ) Гуляева-Блюстейна (ГБ), обусловленные акустоиндуцированной анизотропией кристалла и френелевским отражением от границ модулированного слоя. Плоскопараллельный слой толщиной h, диэлектрическая проницаемостью которого ε_2 , расположен между однородными прозрачными средами с диэлектрическими проницаемостями ε_1 и ε_3 (рис. 1). Начало системы координат *XYZ* расположено на верхней границе слоя, а ось *Y* перпендикулярна границе слоя.

Рис. 1. Схема диагностики волн ГБ в условиях анизотропной АО дифракции в слое

Кубические кристаллы арсенида галлия GaAs, широко используемые в акустоэлектронике и оптоэлектронике [1], относятся к классу симметрии $\overline{4}3m$. В волне ГБ присутствуют две компоненты тензора деформаций U_5 и U_6 ; им соответствуют компоненты напряженности пьезоэлектрического поля ультразвуковой волны E_3 и E_2 . Для световой волны *TE* поляризации, падающей на поверхность кристалла, существенны компоненты деформации U_6 и напряженности пьезоэлектрического поля E_2 . УЗ волна ГБ индуцирует решетку диэлектрической проницаемости периодическую в пространстве и во времени вдоль оси *Z* и пространственно-неоднородную вдоль оси *Y*:

$$\varepsilon_2(y, z, t) = \varepsilon_2 + \Delta \varepsilon_2(y) \exp[i(Kz - \Omega t)],$$

где $\Delta \varepsilon_2(y) = -\varepsilon_2^2 [p_{3\phi}U_6(y) + r_{3\phi}E_2(y)], p_{3\phi}(r_{3\phi}) - эффективная фотоупругая (электрооптическая) постоянная кристалла. Поле дифрагированных БСП представимо в виде ряда$

$$\vec{E} = \sum_{p=-\infty}^{p=+\infty} A_p(z) \vec{e}_{i,d}(\rho, \phi) \exp[i(k_{pz}z - \omega_p t - \pi p/2)],$$

где $k_{pz} = k_{0z} + pK$, $\omega_p = \omega + p\Omega$; здесь $\vec{e}_{i,d}(\rho, \phi)$ – вектор-функции поляризации дифрагированных волн для БСП произвольного порядка (*m*). Зависимости коэффициентов пропускания T_0 и T_1 дифрагированных БСП в нулевой и минус первый порядки, от амплитуды деформации *U* и толщины слоя *h* представлены на рис. 2. Из рисунка видно, что при $U = 4,5 \cdot 10^{-4}$ и увеличении толщины слоя *h* от 0,2 мм до 0,8 мм величина коэффициента пропускания T_1 увеличивается на 70 %. При малых $U \le 10^{-4}$ коэффициент пропускания T_0 при h = 0,8 мм является наименьшим.

Рис. 2. Зависимость энергетического коэффициента пропускания дифрагированной волны нулевого *T*₀ и первого *T*₁ порядка для различных толщин модулированного го слоя *h*

 $(a - T_0; \delta - T_1; 1 - h = 0,2$ мм; 2 - h = 0,4 мм; 3 - h = 0,6 мм; 4 - h = 0,8 мм; система: воздух – GaAs – AlGaAs, $\varphi_1 = 2^0$, длина волны света – $\lambda_0 = 1,15$ мкм, прядок БСП – m = 0, параметр поперечного синхронизма – $q_n = 0$)

Преимущество предложенного нами метода, по сравнению с традиционными [2], заключается в использовании как прошедших, так и отраженных дифрагированных волн с учетом их энергетических и поляризационные характеристик (азимуты поляризации). При этом, однако, приемлемыми для поляризационных измерений являются лишь прошедшие дифракционные порядки.

1. Bright V.M., Hunt W.D. // J. Appl. Phys. 1990. Vol. 67, No. 2. P. 654-662.