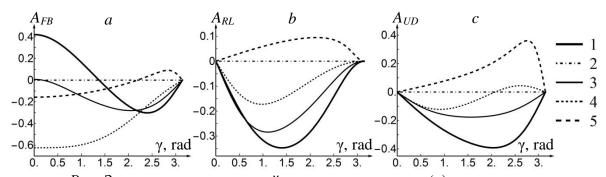
Асимметрии в задаче о генерации второй гармоники—суммарной частоты в тонком сферическом слое. Часть II


А.И. Толкачёв, В.Н. Капшай, А.А. Шамына

Гомельский государственный университет им. Ф. Скорины, Гомель E-mail: anton.talkachov@gmail.com

На первом этапе анализа генерируемого излучения второй гармоники—суммарной частоты (ВГ–СЧ) в тонком сферическом слое были исследованы поведения асимметрий вперед—назад (FB), вправо—влево (RL) и вверх—вниз (UD) при варьировании радиуса частицы. При этом параметры задачи имели следующий вид:

$$\sigma_1 = \sigma_2 = 0$$
, $\eta = 1$, $\varphi_{in}^{(1)} = \pi/2 \text{ rad}$, $\varphi_{in}^{(2)} = 0$, $\xi = 1.34/1.33$,

Исследуем зависимости указанных выше асимметрий пространственного распределения излучения ВГ–СЧ [1] от переменной γ (угла раскрытия) для диэлектрической частицы малого размера (величина $k_{\omega}a=0.1$). По умолчанию характеристики частицы и параметры падающих волн для данных зависимостей выберем в представленном выше виде. Построим графики зависимостей асимметрий от угла между волновыми векторами (рис.) отдельно для малахитового зеленого (МЗ) и каждого из четырёх типов анизотропии $\chi_{1-4}^{(2)}$, определенных в части I.

Puc. Зависимость асимметрий от угла раскрытия: (a) вперед-назад, (b) вправо-влево, (c) вверх-вниз. Типы анизотропии: (1) $\chi_1^{(2)}$, (2) $\chi_2^{(2)}$, (3) $\chi_3^{(2)}$, (4) $\chi_4^{(2)}$, (5) малахитовый зеленый

Для типа анизотропии $\chi_1^{(2)}$ при углах раскрытия $\gamma < 1.38$ rad большая часть генерируемого излучения направлена в переднюю полусферу, при $\gamma > 1.38$ rad — в заднюю (при этом минимум A_{FB} наблюдается при $\gamma \approx 2.38$ rad), что можно видеть из рис., a. В левую полусферу генерируется больше энергии (график $A_{RL}(\gamma)$ лежит ниже нуля, рис., b). Значения для асимметрии RL (рис., b) отрицательны, график $A_{RL}(\gamma)$ имеет явный минимум ($A_{RL} \approx -0.35$) при $\gamma \approx 1.40$ rad, аналогичный вид зависимости наблюдается и для A_{UD} (рис., c, минимум $A_{UD} \approx -0.39$ при $\gamma \approx 2.05$ rad).

В случае анизотропии типа $\chi_2^{(2)}$ во всем диапазоне γ асимметрия FB близка к нулю, а асимметрии RL и UD тождественно равны нулю.

Для анизотропии $\chi_3^{(2)}$ графики асимметрий A_{RL} (рис., b) и $A_{\rm UD}$ (рис., c) подобны аналогичным графикам для типа анизотропии $\chi_1^{(2)}$. Но график зависимости $A_{FB}(\gamma)$ (рис., a) имеет свои особенности. Асимметрия FB в точке $\gamma=0$ равна нулю, при этом на данном графике имеется один минимум ($A_{FB}\approx -0.28$ при $\gamma\approx 2.05$ rad).

Для кирального слоя (анизотропия $\chi_4^{(2)}$) асимметрия FB генерируемого излучения меньше минус 0.6 при $\gamma < 0.96$ rad (рис., a). При дальнейшем увеличении угла раскрытия асимметрия FB возрастает и приближается к нулю. График $A_{RL}(\gamma)$ (рис., b) имеет вид аналогичный графикам для анизотропий $\chi_{1,3}^{(2)}$ с экстремумом $A_{RL} \approx -0.17$ при $\gamma \approx 0.97$ rad. Зависимость $A_{UD}(\gamma)$ (рис., c) имеет минимум $A_{UD} \approx -0.12$ при $\gamma \approx 0.92$ rad и максимум $A_{UD} \approx 0.04$ при $\gamma \approx 2.60$ rad, в верхнюю и нижнюю полусферы генерируется почти одинаковое количество энергии при $\gamma \approx 2.10$ rad.

Для МЗ экспериментально измеренные значения независимых компонент тензора диэлектрической восприимчивости второго порядка таковы: $\chi_1^{(2)}/\chi_2^{(2)} = -0.806$, $\chi_3^{(2)}/\chi_2^{(2)} = -0.027$, $\chi_4^{(2)} = 0$. В большей части диапазона изменения аргумента поведение графиков асимметрий с увеличением угла раскрытия для МЗ (рис.) противоположно поведению аналогичных графиков для анизотропии $\chi_1^{(2)}$, так при возрастании любой из функций $A_{FB}(\gamma)$, $A_{RL}(\gamma)$ или $A_{UD}(\gamma)$ для типа $\chi_1^{(2)}$, наблюдается убывание соответствующей функции для МЗ. При этом положения экстремумов смещены. График зависимости A_{FB} от γ (рис., a) пересекает ось абсцисс в точке $\gamma \approx 2.17$ гаd и максимален при $\gamma \approx 2.81$ гаd ($A_{FB} \approx 0.09$). Зависимости $A_{RL}(\gamma)$ и $A_{UD}(\gamma)$ имеют по одному локальному максимуму $A_{RL} \approx 0.09$ и $A_{UD} \approx 0.36$ при $\gamma \approx 2.11$ гаd и $\gamma \approx 2.76$ гаd соответственно.

У рассмотренных выше графиков зависимостей асимметрий от угла раскрытия есть общие особенности. Асимметрии $A(\gamma)$ (рис.) обращаются в нуль при встречном падении волн ($\gamma = \pi$). Для сонаправленных источников ($\gamma = 0$) асимметрии RL и UD также равны нулю для всех типов анизотропии и для M3.

Работа выполнена при финансовой поддержке гранта БРФФИ (проект Ф18M–026).

1. *Толкачёв А.И., Капшай В.Н.* // Актуальные вопросы физики и техники: Матер. VII Респ. науч. конф. студ., маг. и аспир.: ГГУ, 2018. Ч. 1. С. 287–290.