
MULTICLASS SUPPORT VECTOR MACHINES
WITH GENSVM

P.J.F. Groenen, G.J.J. van den Burg
Econometric Institute, Erasmus University Rotterdam

Rotterdam, THE NETHERLANDS
e-mail: groenen@ese.eur.nl

Abstract

Binary support vector machines (SVM) have become a standard tool for su-
pervised machine learning. Attractive features of the SVM are that its solution
only depends on badly fitting observations, it combats overfitting through reg-
ularization, can handle high dimensionality (thus many predictors), allows for
nonlinear predictions, and is robust against outliers. Much less attention has
been given to classification problems with more than two classes. In the machine
learning literature, such multiclass problems tend to be solved by repeatedly ap-
plying binary SVMs, for example, through one-versus-one (OvO) or one-versus-
all (OvA). Although such approaches are generally fast, they can lead to regions
that are inconclusive in their prediction. As an alternative, the present authors
have proposed a single machine classifier, called GenSVM (see, [1]). In this pa-
per, we present its main properties and discuss examples of its implementations
in the R and Python packages.
Keywords: data science, support vector machine, multiclass classification

1 Introduction

Multiclass classification is abundant in many areas of empirical science. In medicine,
the task could be to predict cancer stages out of blood values, in epidemiology to
predict college degree out of genetic variables, and in marketing to predict buyers from
nonbuyers out of previous shopping behavior. All these cases are examples of the
multiclass classification problem that has K (two or more) response categories, with
usually one or more predictor variables. Often, the goal is to find a linear combination
of the predictor variables that separates the predictor space into K polyhedral sets.
Then the decision rule is to assign the observation to the class of the polyhedral set it
falls in. Some multiclass classification techniques include: Fisher discriminant analysis,
multinomial regression, classification trees, and neural networks.

Here, we focus on the supervised learning technique of support vector machines
(SVMs). The binary SVM is quite popular in computer science. The advantage of the
binary SVM is that it only depends on observations that are not perfectly predicted, it
is robust against outliers, and has a provision against overfitting by using regularisa-
tion term. Multiclass classification is often performed through repeated binary SVMs,
either through one-versus-one (OvO, doing binary SVMs between all pairs of classes, or
through one-versus-all (OvA, for each class doing a binary SVMs between itself against
the remaining classes). OvO has the advantage that each binary SVM solves a small
subproblem, whereas OvA only needs to solve K problems. Both approaches can make

43

use of standard binary SVM implementations. However, there are also disadvantages
of OvO and OvA. For example, OvO needs to solve K(K − 1)/2 problems which can
become large as K grows. OvA can be expected to be slower than OvO because for
each class the binary SVM problem is as large as the full data set. More importantly,
the binary SVM is not designed for the multiclass problem. Both OvO and OvA can
have ambiguity in prediction regions.

To overcome these problems, Van den Burg and Groenen (2016) [2] proposed a
novel single machine multiclass SVM called GenSVM. It is specifically designed for the
multiclass problem, it is a direct extension of the binary SVM, it is flexible through
different weightings and hyperparameters, is fast and accurate. In this paper, we
explain the main properties of GenSVM and show an example from the R package
(see [3]) and Python package of GenSVM.

2 GenSVM

The basic idea of GenSVM is as follows. Let the n×m matrix X contain m predictor
variables from the training set. In addition, let y be an n vector with class labels
{1, 2, . . . , K} for each of the i objects. Also, let the K × (K − 1) matrix U contain
coordinates of a regular simplex in K − 1 dimensions. For example, for K = 3 classes,
the simplex is an equilateral triangle in two dimensions. Then, the goal of GenSVM is
to (non)linearly map the n objects in the p dimensional space given by X to the K− 1
dimensional space of the simplex such that each object i is in or as close as possible to
the prediction region of its class yi according to some missclassification error. Figure 1
gives an example of a multiclass classification problem with K = 3 classes and m = 2
predictor variables. The left panel shows the n objects as points labeled by their class
in the space of the predictor variables in X. The middle panel show the K − 1 = 2
dimensional simplex space with the boundaries (solid lines) of the predictor regions.
The right panel shows the nonlinear boundaries of the prediction regions in the original
space of X.

Important aspects of GenSVM are (a) how exactly the mapping is being done from
the original space of X to the simplex space S and (b) how the errors are being defined.
We will discuss linear mappings only. For an explanation on how nonlinear mappings
can be obtained through kernels, we refer to the appendix of [2]. The linear mapping
of X to the simplex space S is obtained by

S = XW + 1c>

with W the m×(K−1) matrix with unknown weights and c the (K−1)×1 translation
vector.

Once the mapping is obtained, GenSVM needs to determine how good or bad an
object is placed. Consider Figure 4 where object A is shown as a point in the simplex
space corresponding to one of the rows of S. Assume that A has yA = 2 so that ideally
A should be located in the shaded area around vertex u2.

To measure the error in classification, GenSVM uses a measure of distance to the
shaded area. In particular, consider the projection q21

A of point A onto difference vector

44

x1

x2

s1

s2

x1

x2

Input space m = 2 Simplex space K – 1 = 2 Input space with boundaries

⇒ ⇒

Figure 1: Example of objects in K = 3 classes in the original p = 2 dimensional
space of X (left panel), their mapping in the K − 1 = 2 dimensional simplex space,
the simplex, and the prediction regions (middle panel), and the resulting nonlinear
prediction regions for the classes in the original space of X (right panel). This figure
is reproduced from [2].

Figure 2: The simplex space with misclassified object A that ideally should have been
positioned in the shaded prediction region of its class 2. The projections q21

A and q23
A

show how far A is from the boundaries separating vertices u2 and u1 and vertices u2

and u3. This figure is reproduced from [2].

45

q

h(q)

−10 −5 0 5

κ = 3

κ = 5

κ = 8

Figure 3: The huberized hinge error h(q).

u2 − u1 that measures the distance of A to the boundary separating class 2 from 1.
Here, this boundary coincides with the vertical axis, thus all points with s1 = 0. Let
the values on the predictor variables for A be in the vector x>A. Then, the position of A
in the simplex space is given by s>A = x>AW+c> and its projections onto the difference
vectors separating class 2 from 1 and 3 by

q
(21)
A = s>A(u2 − u1) (< 0 when misclassified)

q
(23)
A = s>A(u2 − u3) (< 0 when misclassified).

The seriousness of the misclassification is given by the Huberized hinge error

h(q) =

1− q − (κ+ 1)/2 if q ≤ −κ
(1− q)2/(2(κ+ 1)) if q ∈ (−κ, 1]
0 if q > 1

as shown in Figure 3. Finally, a rule is needed to combine the misclassification errors.
For this, GenSVM uses the Lp norm

h
(
q

(yi,j)
i

)
=

(∑
j 6=yi

hp
(
q

(yi,j)
i

))1/p

where 1 ≤ p ≤ 2. The effect for this error function is shown in Figure 4 for p = 2 and
κ = −0.95. In this case, one can easily see that this error is a function of the Euclidean
distance of the point to the boundary. As κ grows larger, the sharp bend becomes more
smooth (quadratic). If p = 1, the L1 norm is used, implying that misclassification with
respect to multiple classes receives a higher error than misclassification with respect to
a single class only.

With these definitions, the GenSVM loss function can be defined as

LMSVM(W, c) =
1

n

n∑
i=1

ρi

(∑
j 6=yi

hp
(
q

(yij)
i

))1/p

+ λtr W′W (1)

with ρi ≥ 0 prespecified object weights and λ > 0 a given penalty strength parameter.
Note that the term tr W′W is quadratic in W and penalizes nonzero wkl. The GenSVM

46

0

8

s2
s1

Figure 4: The combined hinge error by h
(
q

(yi,j)
i

)
for p = 2 and κ = −0.95.

loss function has several nice properties. First, it is a convex function in W and c as
it is a sum of convex functions. Consequently, its minimum is global. Secondly, (1)
simplifies into standard binary SVM if K = 2 and κ = −1. Finding optimal values for
λ, p, and κ can be done through K-fold cross validation.

The GenSVM algorithm developed in [2] and implemented in [3] that optimizes
LMSVM(W, c) is based on the MM (minimization by majorization principle, see [1]).
One of the main advantages of MM is that for a given λ, p, and κ the function value
decreases until a minimum is reached. In K-fold cross validation, (1) needs to min-
imized for many combinations of λ, p, and κ. The advantage of the MM algorithm
is that warm starts can be used, for example, if two subsequent λ values are only
slightly different, then the W and c obtained can be used as start values for the run of
the next λ. Often only a very few iterations are needed thereby greatly reducing the
computational efforts.

3 The GenSVM package in R

The GenSVM package in R implements the loss function and minimization procedure
discussed above.1 The core of the package is written in C so that is tends to run fast.
The linear algebra routines used by GenSVM use the optimized BLAS and LAPACK
libraries shipped with R, and therefore automatically takes advantage of multi-core
architectures.

Below is a simple example of a nonlinear GenSVM applied to the Fisher Iris data
using the radial basis function (RBF) kernel. Because the Iris data only has K = 3
classes, the simplex space can be visualized in 2D in Figure 5.

R> library(gensvm)

R> x <- iris[, -5]

R> y <- iris[, 5]

R> # Fit a nonlinear GenSVM through the RBF kernel

R> fit <- gensvm(scale(x), y, kernel='rbf', max.iter=10000)

1The gensvm package is available on CRAN.

47

Figure 5: Simplex space of the GenSVM solution on the iris data set.

R> plot(fit)

The R package includes code for efficiently running cross validation and grid search
over the hyperparameters. This code ensures that warm starts are used throughout,
thereby increasing the efficiency of the MM algorithm. For GenSVM and SVMs in
general, optimizing the hyperparameters is an important step for obtaining high clas-
sification accuracy. GenSVM is flexible through three different hyperparameters (κ, p,
and λ) and optimizing these through grid search can be a time-consuming task for the
user. To facilitate this, the GenSVM R package contains three pre-defined parame-
ter grids in the function gensvm.grid that are designed to obtain high out-of-the-box
classification accuracy. These parameter grids were constructed from the best hyper-
parameter configurations found in the large experimental study of [2]. For instance,
the following code illustrates running a grid search with a very small hyperparameter
grid:

R> fit <- gensvm.grid(x, y, param.grid = 'tiny')

A convenient feature of this grid search function is that the resulting object can
directly be used with common R functions such as plot and predict, for which the
best performing model will be used. Moreover, the object contains a cv.results

attribute that holds a data frame with the complete results of the grid search.
Another common task in fitting SVMs is scaling the data and creating a training

and test dataset. Scaling the features is necessary to ensure that the regularization
term works equally on all features. To facilitate this, the GenSVM R package contains
the gensvm.maxabs.scale function that scales the features to the interval [−1, 1] while
preserving sparsity. Furthermore, the R package also includes a function for creating
a train and test dataset called gensvm.train.test.split. These functions can be
combined as follows:

48

−1 0 1 2

−1

0

1

GenSVM Linear

−1 0 1 2

−1

0

1

GenSVM RBF

Figure 6: Illustration of linear and nonlinear GenSVM for a subset of the handwrit-
ten digits dataset using the Python package for GenSVM. Dimensionality reduction
was applied to obtain two input dimensions for easy visualization, but this is not a
requirement for GenSVM.

R> split <- gensvm.train.test.split(x, y, random.state=123)

R> x.train <- split$x.train; y.train <- split$y.train;

R> x.test <- split$x.test; y.test <- split$y.test;

R> scaled <- gensvm.maxabs.scale(x.train, x.test)

R> fit <- gensvm(scaled$x, y.train, kernel='rbf', max.iter=1000, random.seed=123)

R> gensvm.accuracy(predict(fit, scaled$x.test), y.test)

[1] 0.921

4 The GenSVM package in Python

The Python package for GenSVM has similar functionality to the R package, but is
based on the object-oriented framework for machine learning methods used in Scikit-
Learn [4].2 This allows for straightforward interoperability with existing code that uses
methods from the Scikit-Learn package. The computational routines in the Python
package are again implemented in C (in fact, both packages share the same C library)
and are linked to Python through Cython. An example of fitting and predicting a
GenSVM model with the Python package is as follows:

from gensvm import GenSVM

clf = GenSVM(kernel='rbf', verbose=1)

clf.fit(x, y)

Note that due to the object-oriented nature of the code, parameters that determine
the kernel and affect the loss function are provided in the constructor of the GenSVM

object.

2The Python package for GenSVM is available on PyPI.

49

While previously we have illustrated the simplex space of a GenSVM solution, we
now illustrate the decision boundaries in the input space. We use a subset of the hand-
written digits dataset from the UCI repository [5] and illustrate the decision boundaries
in the original space in Figure 6. Notice that the dataset is not separable with either
a linear or nonlinear kernel. However, GenSVM with the RBF kernel achieves better
separation of the classes.

References

[1] Hunter, D.R. & Lange, K. (2004). A tutorial on MM algorithms. The American
Statistician, 58 (1):30-–37.

[2] Van den Burg, G.J.J. & Groenen, P.J.F. (2016). GenSVM: A generalized multiclass
support vector machine. Journal of Machine Learning Research, 17, 1-42.

[3] Van den Burg, G.J.J. & Groenen, P.J.F. (2018). GenSVM: A generalized mul-
ticlass support vector machine. https://cran.r-project.org/package=gensvm,
R-package.

[4] Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12 (Oct):2825–2830.

[5] Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. University
of California, Irvine. http://archive.ics.uci.edu/ml

50

