EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR CENSORED INTEGRALS

D.G. ZAKHIDOV, D.KH. ISKANDAROV Andijan branch of Tashkent Agrar University Andijan, UZBEKISTAN e-mail: a_abdushukurov@rambler.ru

Abstract

The problem of finding empirical likelihood confidence intervals is considered for censored integrals.

Keywords: data science, empirical likelihood, censored integral

Let $X_1, X_2, ...$ (survival times) and $Y_1, Y_2, ...$ (censoring times) be two independent sequences of random variables (r.v.-s) on the real line with marginal distribution function (d.f.-s) F and G respectively. Under the right random censoring model, instead of observing X_i , we observe the pairs $(Z_i, \delta_i), i = 1, 2, ..., n$ where $Z_i = min(X_i, Y_i)$ and $\delta_i = I(X_i \leq Y_i)$ with $I(\cdot)$ the indicator function. Let H denote d.f. of Z_i . Then H(t) = 1 - (1 - F(t))(1 - G(t)). Let F and G are continuous. We are interested in constructing a nonparametric confidence interval for a integral functional of the form

$$\theta = \theta(F) = \int \varphi(t) dF(t)$$

where φ is some given Borel measurable function. Let F_n denote the Relative Risk Power estimator of F proposed [1] as

$$F_n(t) = 1 - [1 - H_n(t)]^{R_n(t)}, \ t \in R,$$
(1)

where $H_n(t) = \frac{1}{n} \sum_{i=1}^n I(Z_i \le t)$ be empirical estimator of H(t) and

$$R_n(t) = \sum_{i=1}^n \delta_i(Z_i \le t) \left[1 - H_n(Z_i) + \frac{1}{n} \right]^{-1} \left\{ \sum_{i=1}^n I(Z_i \le t) \left[1 - H_n(Z_i) + \frac{1}{n} \right]^{-1} \right\}^{-1}$$

is the relative-risk function estimator. Note that estimator (1) is a correct estimator of d.f. F(t) than the Product-Limit estimator of Kaplan-Meier and Exponential-Hazard estimator of Altschuler-Breslow (see[2]). Since estimator (1) have same good properties such that representation as sum of independent and identically distributed (i.i.d) r.v.-s up to point $T < T_H = \inf \{t : H(t) = 1\}$, then instead of $\theta(F)$ we consider $\theta_T(F) = \int \varphi^*(t) dF(t)$ where $\varphi^*(t) = \varphi(t)I(t \leq T)$. We prove for plug-in estimator of $\theta_T(F)$ the asymptotic representation

$$\theta_T(F_n) = \int \varphi^*(t) dF_n(t) = \frac{1}{n} \sum_{i=1}^n U_i + O_p\left(n^{-\frac{1}{2}}\right)$$
(2)

where $U_i = U_i(F, G)$ are i.i.d. r.v.-s. with $EU_i = \theta_T(F)$. Following Owen's [3] idea we propose empirical likelihood confidence interval for truncated integral functional $\theta_T(F)$.

References

- Abdushukurov A.A. (1998). Nonparametric estimation of distribution function based on relative risk function. *Commun. Statist.*: Theory and Methods. Vol. 27, No.8, pp. 1991-2012.
- [2] Abdushukurov A.A. (2009). Nonparametric estimation based on incomplete observations. In: international Enciclopedia of Statistical Sciences.(Prof. Miodrag Lovric ED.) Springer. 2009. Pt.14, pp. 962-964.
- [3] Owen A. (2001). Empirical likelihood. Chapman and Hall /CRC.