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Abstract

The analysis of the probabilistic approach to solving the problem of the distri-
bution of primes in the generalized Artin's hypothesis is given. The foundations of
a computer approach to solving problems in the �eld of pure and applied number
theory are formulated. On the basis of the generalized Artin's hypothesis, it is
shown how probabilistic methods of nonlinear dynamic systems can be obtained
with su�ciently accurate solutions.
Keywords: data science, Artin hypothesis, computer proof

1 Introduction

An important problem in the theory of numbers is the description of the law of the
distribution of primes. This problem was solved by Hadamard and Valle-Poussin,
independently of each other, in 1896 [1]. They proved that the number of primes
(π(x)) is less than or equal to x is determined by the expression:
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where c is an absolute constant. This analytically proved form of representation of
the law of distribution of prime numbers has already become universally recognized in
the mathematical world. Yet two things should be noted. First, it was obtained on
the basis of the analytic zeta-Riemann function, which, until it is proved, adequately
describes the distribution of primes in a complex space. According to the Riemann
hypothesis, all the zeros of the zeta function are on the line passing through the point
equal to 1/2. This millennium hypothesis has not yet been proved. And this fact is the
basis for criticizing all the results obtained on the basis of the zeta-Riemann function.

The second circumstance is that simultaneously with this fact the dynamics of the

change of O
(
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c
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)
[2] is investigated. In [1, 5], an estimate of the entropy of

this estimate is obtained and it is proved that it is fractal in nature. These facts
are the basis for the formation of proposals on the need to study other models for
the distribution of prime numbers. Another problem related to the distribution of
prime numbers appeared in 1927, when the well-known mathematician Artin formed
a hypothesis about the distribution of prime numbers for which the natural number
a > 1 is given is their primitive root [1, 5].
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According to the Artin conjecture [5], the set of such prime numbers has the distri-
bution law π(x, a) in the form of the expression:

π(x, a) = c(a)π(x) (2)

where π(x) is the distribution of primes, and c(a) is a constant depending on a. So far,
despite numerous studies, this hypothesis has not been resolved. At the same time,
it is not known whether this is true for any values of a. If the hypothesis is correct,
the question remains how to evaluate the constant c(a) for each particular a and what
properties of the number a a�ect its value. Answers to these questions are still lacking.
In [1, 5] a detailed analysis of all research results in the �eld of the Artin hypothesis
solution is given.

It should be noted that the proof of Artin's hypothesis is important both from
a theoretical point of view in number theory, and from an applied rhenium point,
because its positive solution is important in cryptography, coding theory, and the
theory of dynamical systems. In [6], a generalized Artin hypothesis was formed for any
a > 1, i.e. and at the same time a may not be a primitive root. According to Artin's
generalized theory, the following equality is true:

π(x, a, i) = c(a, i)π(x) (3)

where a > 1, i is the index of the subgroup of the group (Z/pZ)∗ of primes in the classi-
�cation of prime numbers generated by the numbers a, c(a, i) is a constant. According
to the classi�cation built in [6]:

P(a, i) =

{
p ∈ P| (p− 1)

carda(p)
= i

}
(4)

where carda(p) is the length of the recursion xn+1 ≡ axn(modp) at x0 = 1, P is the set
of all primes.

It is not di�cult to show that for any a > 1 the equality:

∞∑
i=1

c(a, i) = 1 (5)

This means that primes are evenly distributed in classes P(a, i) for any a. By
uniformity is meant that within each class of primes P(a, i) a logarithmic law of the
distribution of primes is preserved. The constant c(a, i) determines the measure of
puncturing prime numbers based on the value a. If i = 1 then a is the primitive root
of all primes P(a, 1). For an arbitrary natural number x, the equality:

π(x, a, i) = c(a, i, x)π(x) (6)

Moreover, if x→∞, then c(a, i, x) tends to the limit value c(a, i). If we put i = 1
then c(a, 1) will be Artin's constant for primitive roots. In this case a 6= ±1, and a 6= k2

for none k ∈ N . This is true according to Fermat's theorem [3,4]. Wherein, a is the
primitive root of the group of residues (Z/pZ)∗ for any p ∈ P such that:

P(a, 1) =

{
p ∈ P| (p− 1)

carda(p)
= 1

}
(7)
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It is important to investigate the classes of primes P(a, i) for i > 1 since in this case
the positive integer a will be the primitive root for the subgroups of the group (Z/pZ)∗

with the index de�ned by the relations:

P(a, i) =

{
p ∈ P| (p− 1)

carda(p)
= inda(p)

}
(8)

where inda(p) = i is the index of the subgroup of (Z/pZ)∗. The classes of primes
P(a, i) have not yet been studied and the distribution of primes in these classes is not
known. In [1], an assumption was made that P(a, i) at i > 1 is proportional to P(a, 1)
with a factor of 1/i2. Since i > 1 is considered, in this case it is important to know the
distribution of prime numbers for the value a = k2. This is an important generalization
of Artin's hypothesis. At the same time, the probability of:

P (p ∈ P(a, i)) =

{
p ∈ P||P(a, i)|

|P| = c(a, i)

}
(9)

membership agrees exactly with the provisions of the theory of probability, and there-
fore, estimating c(a, i) on the basis of successive statistical tests and the law of large
numbers is parity.

The determination of c(a, i) for any a, i using analytical methods is unlikely in the
near term. However, the formation and development of experimental mathematics
[1, 2] opens up another way to solve this problem by using computer simulation of
nonlinear dynamic processes for the formation of classes of prime numbers.

2 Modeling of dynamic processes of distribution of

simple numbers in the generalized artin hypothesis

The process of modeling the distribution of primes in classes P(a, 1),P(1, 2), ...,P(a, k)
was reduced to choosing a set of consecutive primes from a set of a su�ciently large
sample of these classes. The number of primes analyzed at each interval of natural
numbers was chosen to be 500,000. This choice was largely due to the fact that it was
previously established that reducing this value leads to more signi�cant �uctuations in
estimates, although convergence to the limit over the entire set of any intervals, even
if they are not placed consistently, has the same character.

The process of statistical testing of p → P primes for checking their belonging
to class P(a, i) was reduced to calculating for the selected number p the recursive
procedure x0 = 1, xn+1 = axn(modp) until the pairs axl ≡ 1(modp) were reached at
some step i. Then carda(p) = i and according to Fermat's theory and the cyclic group
theorem the number p − 1 is divisible by i and then inda(p) = (p − 1)/carda(p) = i,
and therefore p ∈ P(a, i) and if i = 1, then a is the primitive root of the cyclic group
(Z/pZ)∗, and otherwise it is the primitive root of some subgroup. At i > 1, we obtain
the primitive roots of the subgroups of the (Z/pZ)∗ residue group with the index i > 1.

The study of the distribution law of prime numbers p on their belonging to P(a, i)
had the character of consistent statistical tests on the set of natural numbers contain-
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ing the �rst 500,000 primes. At the �rst stage, primes p were chosen from the set
p1, ..., p500000. With this x = p500000.

For each n ∈ {2, ..., x}, we had to solve two problems: check n for simplicity, and
if n = p ∈ P , then p − 1 was decomposed into simple factors, i.e. systematically
solved two non-simple problems of checking numbers for simplicity and decomposition
into simple factors. An e�ective algorithm for solving them was created based on
probabilistic methods in the theory of elliptic curves.

As a result of analyzing a ∈ {2, ..., x}, P(a, 1), ...,P(a, l) sets were obtained
for some l < x and absolutely exact values of their powers were calculated, i.e.
|P(a, 1)|, ..., |P(a, l)|, and then estimates of c(a, 1) = |P(a,1)|

π(x)
, ..., c(a, l) = |P(a,l)|

π(x)
were

obtained.
At the next stage, work was also carried out for primes from the interval as

{p500001, ..., p1000000} interval and the values of the c(a, 1), ..., c(a, l) constants were cal-
culated using the same scheme. At the same time l increases. The {p1, ..., p500000} and
{p500001, ..., p1000000} sequences were combined, and the estimates of the generalized
Artin constants were again calculated and the process of their re�nement was studied
on the basis of the theory of large numbers in probability theory. This procedure con-
tinued until x = p = 179424673 and this is a ten million prime numbers. It was found
that c(a, 1), ..., c(a, k) in probability converges to some values, the exact values of which
are irrational and possibly transcendental numbers. In the process of estimating the
c(a, i) constants, two important theorems were proved:

Theorem 1. For any a ∈ {2, 3, ..., k, ..} that is not a square, i.e. a 6= k2 The number
of non-empty classes of primes tends to in�nity at x→∞.

Theorem 2. For any a ∈ {2, 3, ..., k, ..} that is not a square, i.e. a 6= k2 The number
of prime numbers in P(a, i) tends to in�nity at x→∞.

These theorems are the basis of the convergence of a sequence of statistical tests

to marginal values. Since for any x ∈ N it is obvious that
⋃
i=1

P(a, i) = π(x) and

P(a, i)
⋂P(a, j) = φ at i 6= j, it follows from this that

k∑
i=1

c(a, i) = 1 and this is

true for all values of x → ∞. The review [5] provides an estimate of c(2, 1), which is
identi�ed by c(2, 1) in our sense, but c(2, 1) di�ers from the estimate of c(2, 1) starting
from the �fth decimal place and this is a theoretical error of the survey works.

For di�erent a ∈ {2, 3, 5, 6, 7, 8, 10, 11}, the behavior of the c(a, i) constants is com-
plex group-theoretic and number-theoretic. The study of their dynamic properties is
beyond the scope of this work. It should be noted that the results of computer sim-
ulation of the processes of distribution of primes are calculated with an accuracy of
the eleventh decimal place for estimates of c(2, 1), c(3, 1), c(5, 1), c(6, 1), ... values. This
cannot be asserted for classes by the i ≥ 2 index. To achieve the same accuracy with
i ≥ 2, it is necessary to signi�cantly increase the number of prime numbers. With an
increase in the i class index P(a, i) more than three requirements and the volume of
the analyzed primes increases in accordance with the unexplored laws.
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3 Statistical analysis of the distribution of prime

numbers in classes

Probability-theoretic interpretation of the constant c(a) = π(x,a)
π(x)

at x → ∞. Consider

the probability space (Ω, F, P ) based on Ω = {ω1, ..., ωn, ...} = {p1, ..., pn, ...}. Obvi-
ously at x → ∞ the numbers are π(x) → ∞, π(x, a) → ∞, but π(x, a) = |P(a, 1, x)|,
π(x) = |P(x)|, c(a, 1, x) = |P(a,1,x)|

|P(x)| and at x → ∞ it is obvious that |P(a,1,x)
|P(x)| → c(a, 1)

is where x ∈ P , P → ∞, P(a, i, x) =
{
p|p ≤ x& (p−1)

carda(p)
= i
}

is at x → ∞
P(a, i, x)→ P(a, i). Thus c(a) = limπ(x,a)

π(x)
.

It follows from Artin's hypothesis that with c(a, 1) there is precisely the probabil-
ity of a random event P(a, 1) consisting of a choice of Ω = {p1, ..., pn, ..} of a prime
number p for which a is an original root of the cyclic group (Z/pZ)∗. To estimate this
probability, the law of large numbers and the method of successive statistical tests were
used. The essence of the method is that the �rst test group was reduced and calculated
for {p1, p2, ..., p500000} for each a ∈ {2, 3, ..., 16} evaluation of the values of c(a, i, x) at
x = p500000 for all possible values of i ∈ {1, 2, ..., k, ..}, that is, c̃1(a, 1, x), ..., c̃1(a, k, x), ...
was calculated on the next iteration, the same tests were performed for the second itera-
tion on the set {p500001, ..., p1000000}. c̃1(a, 1, x), ..., c̃k(a, 1, x), ... Estimates were obtained
at the same time c̃1(a, 1, x), ..., c̃k(a, k, x), ..., provided that the �rst and second samples
were combined and computed values and were determined by |c̃(a, i, x)− c̃(a, k, x)| ≤ ε
for all x. The main focus was on c(a, 1, x). As a result of some iterations, it was found
that for all a the estimates obtained:

P(x) = {p|p ≤ x} (10)

P(a, i, x) =

{
p|p ≤ x&

(p− 1)

carda(p)
= i

}
(11)

the order of the cyclic group of the subgroup (Z/pZ)∗. If l = p−1, then a is an original
root, and if l < p− 1 is the original form of the c(a) Artin measure, c(a, i) is a measure

of classes by P(a, i) in P . At that c(a, i) = |P(a,i)|
|P| and

∞∑
i=1

c(a, i) = 1.

This applies only to classes with indexes i = 1. For i ≥ 2 it is necessary to
increase the number of statistical tests. This is naturally due to the fact that the
classes P(a, i, x) for i ≥ 2 from numerical theorems contain less than prime numbers.
In [1] it is stated that this decrease should be of the order of 1/i2, but this is an
erroneous assertion. The degree of decline essentially depends on the properties of a
and requires a separate study. Case a ∈ {4, 9, 16} requires separate investigations,
because these numbers cannot be primitive roots of that number p, in accordance with
the Fermat theorem [3]. cannot be generating elements of groups (Z/pZ)∗. However,
they are generating elements of the subgroups of the group (Z/pZ)∗ with even indices.
All classes with odd indices are empty sets. Table 1 shows the constants for c(a, 1)
for all a except {4, 9, 16}. Analysis of the table. The table contains over a thousand
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columns. The analysis of these data is numerically theoretical and group-speci�c and
goes beyond the scope.

The simulation process of the dynamics of the formation of prime numbers was con-
structed on the following assumptions. Suppose that an ordered set of prime numbers
P = {p1, p2, ..., pk, ...} is given, whose elements are ordered in ascending order. All this
set was split into a subset of 500,000 primes. The number of 500,000 is due to the
limitations of MS Excel, as a statistical analysis tool, on a number of characteristics
of the process of generating prime numbers. Only one restriction is important. We
always select 500,000 consecutive primes of the set P . In the current version of Excel,
this number can be increased to one million. If you use a powerful computer, you can
choose a larger number instead of a million.

The implemented version of the study of dynamic processes for the formation of
primes includes the following indicators: the number of a simple number in the p in
the ordered set of P , the value of a simple number of p, the value of the recursion
length of the numbers carda(p) at the same value of a for all prime numbers P , the
index inda(p) of the index of the class, inda(p) = (p−1)

carda(p)
, the value of the residues

modulo any natural module n > 1, for all classes and any other analytic properties of
primes or factors of the decomposition of the number of p− 1 into simple factors. For

each simple multiplier pi in the p − 1 =
n∏
i=1

paii decomposition, one parameter of the

dynamic process of generating primes is presented, with separate indicators that can
be analyzed for any other indicators, the values for them are deducted by the modulus
of the natural number n > 1. The only exception is inda(p). The number of controlled
indicators analyzed in the Excel environment can be expanded.

According to the idea of experimental mathematics on the �rst iteration, we proceed
from hypothetically known data. But it is also the basis for obtaining experimental
information on the basis of which the analytical methods of the theory of numbers
yield an expanded representation of the hypothesis in the form Hi. It is possible that
at the same time the hypothesis can be corrected or even rejected as not true. From
the point of view of information technology in mathematics, the hypothesis Hi is used
to develop from the point of view of deepening the experimental mathematics of the
model of in-depth studies at the level I1.

The iterations process is continued until an analytically based solution of the gen-
erated hypothesis is obtained. Since the Artin generalized hypothesis is considered in
the paper, we present the results of the estimation of the constant c(a, i) for the case
a = 4 and i = 2. The number a = 4 is a perfect square, and therefore it cannot be
a primitive root. In terms of Artin's generalized hypothesis, this is as interesting and
important as in the case when a is an original root.

Based on the data presented in [6], we obtained estimates for c(a, i) for a = 2, ..., 10
and i = 1, 2, ...9, .... It is shown that their values are stable for class P(4, 2) ie class
with ind4(p) = 2 to within a fourth decimal place. They are presented in the table 1.

An analysis of the data in the tables shows that for these numbers Artin's hypothesis
is true on the set of primes |P| = 109.
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Table 1: The distribution of prime numbers in 1 to 9 classes in the generalized artin
conjecture
a P(a, 1) P(a, 2) P(a, 3) P(a, 4) P(a, 5) P(a, 6) P(a, 7) P(a, 8) P(a, 9)
2 0.3740 0.2805 0.0664 0.0467 0.0189 0.0498 0.0089 0.0351 0.0074
3 0.3739 0.2992 0.0666 0.0561 0.0190 0.0332 0.0089 0.0140 0.0074
4 0 0.5609 0 0.0935 0 0.0997 0 0.0701 0
5 0.3937 0.2657 0.0700 0.0664 0 0.0473 0.0094 0.0166 0.0078
6 0.3741 0.2805 0.0665 0.0748 0.0189 0.0498 0.0089 0.0140 0.0074
7 0.3741 0.2827 0.0664 0.0684 0.0188 0.0503 0.0089 0.0170 0.0074
8 0.2243 0.1683 0.1995 0.0281 0.0114 0.1496 0.0054 0.0211 0.0222
9 0 0.5983 0 0.1122 0 0.0666 0 0.0281 0
10 0.3741 0.2804 0.0665 0.0713 0.0189 0.0499 0.0089 0.0166 0.0074

4 CONCLUSIONS

The results of experimental mathematics in table 1 of the �rst iteration con�rm that
Artin's hypothesis is correct. The estimates of the constants are obtained with the
accuracy of the third decimal place. These tables con�rm Artin's generalized hypothesis

for a = 2, ..., 8 and the assumption that
∞∑
i=1

c(a, 2i) = 1. The results obtained are the

basis for constructing an analytical proof of Artin's hypothesis and its generalization.
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