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Abstract

Some new upper bounds for noncentral chi-square cdf are derived from the
basic symmetries of the multidimensional standard Gaussian distribution. The
proposed new bounds have analytically simple form compared to analogues avail-
able in the literature, and may be useful both in theory and in applications: for
proving inequalities related to noncentral chi-square cdf, and for bounding powers
of Pearson’s chi-squared tests.
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1 Introduction

Let d € N, = (), € RY, A = ||u||> = 320, p2. Then the cumulative distribution
function (cdf) of the noncentral chi-square distribution with d degrees of freedom and
noncentrality parameter \ is defined as follows:

fl@,d,X) =P {|€¢ = p|” <z}, z>0. (1)

Here ¢ € R? is a standard normally distributed random d-vector. For the central
chi-square cdf (A = 0) we use brief notation f(z,d) ::= f(x,d,0).

The function (1) plays an important role in mathematical statistics. In particular,
consider the classical problem of statistical hypothesis testing of null-hypothesis Hy :
L{y:} = p = (pi)K, against point alternative hypothesis H, : L{y;} = q¢ = (¢:)&,,
where {y;}7_, are T observed i.i.d. random variables. If the significance level a € (0, 1)
is fixed, and H; is contiguous to Hy, i.e. TZfil (pi;#ﬁ — A >0as T — oo, then the
probability 8 of type II error of the standard Pearson’s chi-squared test converges to
the value (1) with d = K — 1 and z = F);Qil(l — «). Hence the upper bounds for (1)

provide the lower bounds for asymptotic power of chi-squared test under contiguous
alternatives.

The function (1) is well studied analytically, being closely related to the generalized
Marcum functions [1, 2| and modified Bessel function of the first kind [3]. Various
upper and lower bounds for (1) are also available in the literature |1, 4]. These bounds,
however, are analytically as complex as (1) itself, being based on complex transcen-
dental functions like modified Bessel function [1] or the moments of truncated normal
distribution [4]. We present here some new upper bounds for (1). These bounds are of a
relatively simple analytical form and may be useful both in theory (proving inequalities
related to (1)) and in applications (bounding powers of chi-squared tests).
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2 Upper bounds for noncentral chi-square cdf

Since the value (1) is a standard Gaussian measure of a ball B, s of radius \/z with
center u, our idea is to construct upper bounds of the form

f(z,d,\) <P{{€ A}, B, s CACR. (2)

Let II;,II, € R? be orthogonally complemented subspaces. Minkowski sums A; =
B, .z + II; are cylindric sets containing B, 5. Due to properties of standard normal
distribution, the events £ € A; are independent and P{{ € A;} = f(z,d;, \;), where
d; = dim1II; and ); is a squared norm of an orthogonal projection of p onto II;. The
set A= A; N Ay in (2) leads to the following upper bound.

Lemma 1. Let d=d; +do, A=A+ Mo, \; >0, d; €N, i =1,2. Then the following
inequality holds:

[ d, A) < f(x,dy, M) f(,da, Ag). (3)
. . VA+z ) . .
Since f(x,1,\) =& vy where ®(-) is the standard Gaussian cdf, we get from
(3):
Fla,d\) < fz,d—1) cp)”f. (4)

Repeated application of (3) also gives the following bounds:

flw,d,\) < ( ’Vm”f), (5)

VA d—T

v ) @‘fﬁf (6)

[, < (o],

Another way to construct covering set A in (2) is based on unitary invariance
of standard normal distribution. Namely, let us assume d > 2, x < A, and define
A ={weR?: |Jw|| = VA <V}, Ay ={c-w:c>0,w € B, 5} According to
mentioned unitary invariance, the events £ € A; are independent as well. It is easy

to see that P{{ € A1} = f(-,d) Egtg;, while Ay is a cone and P {{ € Ay} equals

normalized Lebesgue measure of a spherical ball A; NS?! of radius arcsin(y/x/)) (in
spherical metric). Hence we get:

Lemma 2. The following inequality holds for d > 2, x < X:

2 g arcsin( x/
Fl.d,3) < Jd) [0 d_2 oy (sinp)2dp.  (7)
2

Using the inequalities P {€ € Ay} < 3, T'(2 4 3)/T'(2) < /2, 2 > 0, and

P P dsin p (sinp
. \do o Nd—2 — *
5 dp <

/0 (sin p) p= /o (sinp) COS Py (d—1)cosp,’

)dfl
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we obtain a weakened version of (7) having more explicit form:

2 )1 (x/A)
St ) < 5|0 i 422 5

For even d the bound (7) has completely explicit form since central chi-square pdf
is integrable.

Corollary 1. The following inequalities hold for x < \:

flz,2,)) < %e‘é(’\”) sinh <\/E> arcsin (M) , 9)
Fla,4,0) < ie—%@“’) ((1 n A—;x) sinh (\/E) — Az cosh (VE))

X

VRS

arcsin <\/x/_)\> - A_l\/m> . (10)

Combining (3) with (9), we get the following bounds for even d = 2k and = < \/k:

k
flx, 2k, \) < ¢~ 3 (A ka) (% sinh( Ax/k) arcsin ( kx/A)) , (11)
f(z, 2k, \) < ge_%(/\Jfkm) sinh* ! (z) sinh (\/ )\*x> arcsin (\/x/)\*> : (12)
7T

where A\, = A — (k — 1)z. The bounds similar to (11), (12) can be obtained from (10)
for d = 4k.

3 Computer experiments

The four plots on the Figure 1 illustrate the upper bounds for (1) proposed in the
paper. On the plots A, B and D we see that the corresponding upper bounds are
strictly ordered for the chosen d and A. This observation allows us to formulate the
following.

Conjecture 1. The upper bounds for (1) are ordered as follows:
1. 46)<(5)” for any x >0, d € N, A\ > 0;

(

2. “A1)<(12)” for any 0 < x < \/k, d =2k (even), A > 0;
3. “10)<(6)<(11)” for any 0 <z < A/2,d =4, A > 0.

The inequality “(4)<(6)” is not included in Conjecture 1, because it obviously fol-
lows from (5). The plot C allows to conjecture that for d > 2 the upper bound (8) is
better than (4) for small z < x, up to some z, < )\, and vice versa for z, < x < \.
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Figure 1: Noncentral chi-square cdf (1) (lower black lines) and its upper bounds (upper
broken lines)
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