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Abstract

Some new upper bounds for noncentral chi-square cdf are derived from the
basic symmetries of the multidimensional standard Gaussian distribution. The
proposed new bounds have analytically simple form compared to analogues avail-
able in the literature, and may be useful both in theory and in applications: for
proving inequalities related to noncentral chi-square cdf, and for bounding powers
of Pearson's chi-squared tests.
Keywords: data science, noncentral chi-square distribution, upper bound

1 Introduction

Let d ∈ N, µ = (µi)
d
i=1 ∈ Rd, λ = ‖µ‖2 =

∑d
i=1 µ

2
i . Then the cumulative distribution

function (cdf) of the noncentral chi-square distribution with d degrees of freedom and
noncentrality parameter λ is de�ned as follows:

f(x, d, λ) ::= P
{
‖ξ − µ‖2 ≤ x

}
, x ≥ 0. (1)

Here ξ ∈ Rd is a standard normally distributed random d-vector. For the central
chi-square cdf (λ = 0) we use brief notation f(x, d) ::= f(x, d, 0).

The function (1) plays an important role in mathematical statistics. In particular,
consider the classical problem of statistical hypothesis testing of null-hypothesis H0 :
L{yt} = p = (pi)

K
i=1 against point alternative hypothesis H1 : L{yt} = q = (qi)

K
i=1,

where {yt}Tt=1 are T observed i.i.d. random variables. If the signi�cance level α ∈ (0, 1)

is �xed, and H1 is contiguous to H0, i.e. T
∑K

i=1
(pi−qi)2

pi
→ λ > 0 as T →∞, then the

probability β of type II error of the standard Pearson's chi-squared test converges to
the value (1) with d = K − 1 and x = F−1

χ2
d

(1 − α). Hence the upper bounds for (1)

provide the lower bounds for asymptotic power of chi-squared test under contiguous
alternatives.

The function (1) is well studied analytically, being closely related to the generalized
Marcum functions [1, 2] and modi�ed Bessel function of the �rst kind [3]. Various
upper and lower bounds for (1) are also available in the literature [1, 4]. These bounds,
however, are analytically as complex as (1) itself, being based on complex transcen-
dental functions like modi�ed Bessel function [1] or the moments of truncated normal
distribution [4]. We present here some new upper bounds for (1). These bounds are of a
relatively simple analytical form and may be useful both in theory (proving inequalities
related to (1)) and in applications (bounding powers of chi-squared tests).
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2 Upper bounds for noncentral chi-square cdf

Since the value (1) is a standard Gaussian measure of a ball Bµ,
√
x of radius

√
x with

center µ, our idea is to construct upper bounds of the form

f(x, d, λ) ≤ P {ξ ∈ A} , Bµ,
√
x ⊂ A ⊂ Rd. (2)

Let Π1,Π2 ⊂ Rd be orthogonally complemented subspaces. Minkowski sums Ai =
Bµ,
√
x + Πi are cylindric sets containing Bµ,

√
x. Due to properties of standard normal

distribution, the events ξ ∈ Ai are independent and P {ξ ∈ Ai} = f(x, di, λi), where
di = dim Πi and λi is a squared norm of an orthogonal projection of µ onto Πi. The
set A = A1 ∩ A2 in (2) leads to the following upper bound.

Lemma 1. Let d = d1 + d2, λ = λ1 + λ2, λi ≥ 0, di ∈ N, i = 1, 2. Then the following
inequality holds:

f(x, d, λ) ≤ f(x, d1, λ1)f(x, d2, λ2). (3)

Since f(x, 1, λ) = Φ
∣∣∣√λ+

√
x√

λ−√x , where Φ(·) is the standard Gaussian cdf, we get from

(3):

f(x, d, λ) ≤ f(x, d− 1) · Φ
∣∣∣√λ+

√
x√

λ−√x . (4)

Repeated application of (3) also gives the following bounds:

f(x, d, λ) ≤
(

Φ

∣∣∣∣√λ/d+
√
x√

λ/d−√x

)d
, (5)

f(x, d, λ) ≤
(

Φ
∣∣∣√x−√x)d−1

Φ
∣∣∣√λ+

√
x√

λ−√x . (6)

Another way to construct covering set A in (2) is based on unitary invariance
of standard normal distribution. Namely, let us assume d ≥ 2, x ≤ λ, and de�ne
A1 = {w ∈ Rd : |‖w‖ −

√
λ| ≤ √x}, A2 = {c · w : c ≥ 0, w ∈ Bµ,

√
x}. According to

mentioned unitary invariance, the events ξ ∈ Ai are independent as well. It is easy

to see that P {ξ ∈ A1} = f(·, d)
∣∣∣(√λ+

√
x)2

(
√
λ−√x)2

, while A2 is a cone and P {ξ ∈ A2} equals
normalized Lebesgue measure of a spherical ball A2 ∩ Sd−1 of radius arcsin(

√
x/λ) (in

spherical metric). Hence we get:

Lemma 2. The following inequality holds for d ≥ 2, x ≤ λ:

f(x, d, λ) ≤ f(·, d)
∣∣∣(√λ+

√
x)2

(
√
λ−√x)2

· Γ(d
2
)

Γ(d−1
2

)
√
π

∫ arcsin(
√
x/λ)

0

(sin ρ)d−2dρ. (7)

Using the inequalities P {ξ ∈ A2} ≤ 1
2
, Γ(z + 1

2
)/Γ(z) ≤ √z, z > 0, and∫ ρ∗

0

(sin ρ)d−2dρ ≤
∫ ρ∗

0

(sin ρ)d−2d sin ρ

cos ρ∗
=

(sin ρ∗)d−1

(d− 1) cos ρ∗
,
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we obtain a weakened version of (7) having more explicit form:

f(x, d, λ) ≤ f(·, d)
∣∣∣(√λ+

√
x)2

(
√
λ−√x)2

·min

{
1

2
,

√
(x/λ)d−1

2π(d− 1)(1− x/λ)

}
, d ≥ 2, x ≤ λ. (8)

For even d the bound (7) has completely explicit form since central chi-square pdf
is integrable.

Corollary 1. The following inequalities hold for x ≤ λ:

f(x, 2, λ) ≤ 2

π
e−

1
2

(λ+x) sinh
(√

λx
)

arcsin
(√

x/λ
)
, (9)

f(x, 4, λ) ≤ 2

π
e−

1
2

(λ+x)

((
1 +

λ+ x

2

)
sinh

(√
λx
)
−
√
λx cosh

(√
λx
))

×
(

arcsin
(√

x/λ
)
− λ−1

√
x(λ− x)

)
. (10)

Combining (3) with (9), we get the following bounds for even d = 2k and x ≤ λ/k:

f(x, 2k, λ) ≤ e−
1
2

(λ+kx)

(
2

π
sinh

(√
λx/k

)
arcsin

(√
kx/λ

))k
, (11)

f(x, 2k, λ) ≤ 2

π
e−

1
2

(λ+kx) sinhk−1(x) sinh
(√

λ∗x
)

arcsin
(√

x/λ∗
)
, (12)

where λ∗ = λ− (k − 1)x. The bounds similar to (11), (12) can be obtained from (10)
for d = 4k.

3 Computer experiments

The four plots on the Figure 1 illustrate the upper bounds for (1) proposed in the
paper. On the plots A, B and D we see that the corresponding upper bounds are
strictly ordered for the chosen d and λ. This observation allows us to formulate the
following.

Conjecture 1. The upper bounds for (1) are ordered as follows:

1. �(6)≤(5)� for any x ≥ 0, d ∈ N, λ ≥ 0;

2. �(11)≤(12)� for any 0 ≤ x ≤ λ/k, d = 2k (even), λ ≥ 0;

3. �(10)≤(6)≤(11)� for any 0 ≤ x ≤ λ/2, d = 4, λ ≥ 0.

The inequality �(4)≤(6)� is not included in Conjecture 1, because it obviously fol-
lows from (5). The plot C allows to conjecture that for d ≥ 2 the upper bound (8) is
better than (4) for small x ≤ x∗ up to some x∗ ≤ λ, and vice versa for x∗ ≤ x ≤ λ.
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Figure 1: Noncentral chi-square cdf (1) (lower black lines) and its upper bounds (upper
broken lines)
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