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Abstract

An internally homogeneous random �eld and the variogram are introduced,
and their properties are analyzed.
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1 Introduction

A number of publications is devoted to the analysis of internally stationary random
processes, e.g. [1] � [4]. The variogram is a major characteristic of internally stationary
random processes. The results of its properties studies and statistical properties of
its estimators are presented in [5] � [6]. Here the variogram analysis for internally
homogeneous random �elds is performed.

2 The variogram and an internally stationary random

�eld

Let X(t), t ∈ Rn, be a real valued homogeneous random �eld with the mathematical
expectation m = MX(t) = 0, t ∈ Rn, the covariance function R(t), t ∈ Rn, the
spectral density f(λ), λ ∈ Rn, and the correspondent spectral function F (λ), λ ∈ Rn.

De�nition 1. A random �eld X(t), t ∈ Rn, is called internally homogeneous, if

M{X(t+ h)−X(t)} = 0,

D{X(t+ h)−X(t)} = 2γ(h),

for all t, h ∈ Rn, function 2γ(h) is called the variogram, and γ(h) is the semivariogram.

Note that a homogeneous random �eld is also an internally homogeneous with

γ(h) = 0, 5(DX(t+ h)− 2 cov {X(t+ h), X(t)}+DX(t)) = R(0)−R(h).

Although, an internally homogeneous random �eld is not necessary to be homogeneous.
An internally homogeneous random �eld X(t), t ∈ Rn, that satis�es the condition

M{X2(t)} = D = const <∞,
is also a homogeneous random �eld.

For the real Gaussian random �eld, homogeneity and internal homogeneity are
equivalent.
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Theorem 1. If R(t), t ∈ Rn, is the covariance function of an homogeneous random
�eld, then R(t), t ∈ Rn, is non-negatively de�ned function. Vice versa, if R(t), t ∈ Rn,
is an even non-negatively de�ned function, then there exist the only one Gaussian
random �eld with zero mean and covariance function R(t), t ∈ Rn.

If R(t), t ∈ Rn, is an integrable covariance function, then the spectral function
F (λ), λ ∈ Rn, is absolutely continuous, and the spectral density

f(λ) =
1

(2π)n

∫
Rn

R(τ)e−i(λ,τ)dτ,

where (λ, τ) is the scalar product of vectors λ, τ ∈ Rn.
Note that the sums, the products and the limits of the non-negatively de�ned

functions are non-negatively de�ned; the sumes, the products and the limits of the
covariance functions are still covariance functions.

De�nition 2. The function γ(t), t ∈ Rn, is called conditionally negatively de�ned, if
for any natural m, m ≥ 1, arbitrary ti ∈ Rn, i = 1,m, and any non-zero real vector
(a1, . . . , am), such that

∑m
i=1 ai = 0, the inequality holds

m∑
i=1

m∑
j=1

aiajγ(ti − tj) ≤ 0.

Let X(t), t ∈ Rn, be real internally homogeneous random �eld with a �nite second
order moment and semivariogram γ(t), t ∈ Rn.

Theorem 2. The semivariogram γ(t), t ∈ Rn, of an internally homogeneous random
�eld X(t), t ∈ Rn, is a conditionally negatively de�ned function.

Proof. From the variogram de�nition we have

m∑
i=1

m∑
j=1

aiajγ(ti − tj) =
m∑
i=1

m∑
j=1

aiaj
1

2
D{X(ti)−X(tj)} =

=
1

2

m∑
i=1

m∑
j=1

aiaj(D{X(ti)} − 2R(ti, tj) +D{X(tj)}) =

=
1

2

(
m∑
i=1

aiD{X(ti)}
m∑
j=1

aj − 2
m∑

i,j=1

aiajR(ti, tj) +
m∑
i=1

ai

m∑
j=1

ajD{X(tj)}
)
.

As
∑m

i=1 ai = 0, then

m∑
i=1

m∑
j=1

aiajγ(ti − tj) = −
m∑

i,j=1

aiajR(ti, tj) ≤ 0.

The last inequality is valid due to Theorem 1.
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Note that

D

(
m∑
i=1

aiX(ti)

)
= −

m∑
i=1

m∑
j=1

aiajγ(ti − tj).

Theorem 3. Let γ1(t), γ2(t) be the semivariograms of internally homogeneous random
�elds X1(t), X2(t), t ∈ Rn, respectively. Then the function γ(t) = γ1(t)+γ2(t), t ∈ Rn,
is also the semivariogram of an internally homogeneous random �eld.

Proof of the theorem follows form Theorem 2.

Theorem 4. Let γ(t), t ∈ Rn, be the semivariogram of an internally homogeneous
random �eld X(t), t ∈ Rn. Then for any b > 0 the function bγ(t) is the semivariogram
of the internally homogeneous random �eld

√
bX(t), t ∈ Rn.

Proof of the theorem is based on the Theorem 2 statement.

Theorem 5. Let an arbitrary real function m(t) = m, t ∈ Rn, and an even condi-
tionally negatively de�ned real function γ(t), t ∈ Rn exist. Then there exist a prob-
ability space and a real Gaussian random �eld de�ned on it X(t), t ∈ Rn, so that
M{X(t)} = m and D{X(t+ h)−X(t)} = 2γ(h) for all h ∈ Rn.

Proof is analogous to the proof of Theorem 1 in [1] for random processes.

Corollary 1. The class of even conditionally negatively de�ned real functions coincides
with the class of real Gaussian homogeneous random �elds semivariograms.

Theorem 6. The continuous function γ(t), t ∈ Rn, is a semivariogram of an internally
homogeneous random �eld X(t), t ∈ Rn, with a �nite second order moment, if and only
if for any a > 0 the function e−a γ(t), t ∈ Rn, is non-negatively de�ned.

Proof. Necessity. From Theorem 5 there exist a probability space and a real Gaussian
random �eld X(t), t ∈ Rn, de�ned on it with M{X(t)} = 0 and D{Y (t) − Y (s)} =
2γ(t− s) for all t, s ∈ Rn. Note that the �eld X(t) is internally homogeneous.

Put Z(s) = e−i
√
a X(s) and �nd the correlation function for this �eld.

R0
Z(s, s+ t) = M

{
Z(s)Z(s+ t)

}
= M

{
ei
√
a (X(s+t)−X(s))

}
. (1)

From the characteristic function de�nition, and the �eld X(t) properties, the right-
hand side of (1) for any t ∈ Rn equals

ΨX(s+t)−X(s)(
√
a) = e−

a
2
D{X(s+t)−X(s)} = e−a γ(t), a > 0.

Hence, for any a > 0 the function e−a γ(t), t ∈ Rn, is a characteristic function. From
the Bokhner�Khinchin Theorem [7], e−a γ(t) is non-negatively de�ned.

Su�ciency. Let e−a γ(t), a > 0, t ∈ Rn, be a non-negatively de�ned function. Then
from the Bokhner�Khinchin Theorem this function is a characteristic function. Further
proof duplicates the su�ciency proof of Theorem 1 in [6].
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Corollary 2. Let γ(t), t ∈ Rn, be the semivariogram of an internally homogeneous
random �eld X(t), t ∈ Rn, satisfying the condition: M{X2(t)} < ∞ for any t ∈ Rn.
Then for any a > 0 the function e−a γ(t), t ∈ Rn is a correlation function of a random
�eld.

Theorem 7. If the semivariogram γ(t), t ∈ Rn, of the internally homogeneous random
�eld X(t), t ∈ Rn, with a �nite second order moment is a continuous function, then
the following statements are equivalent:

1. γ(t) is a conditionally negatively de�ned function;

2. e−a γ(t) is a non-negatively de�ned function for any a > 0, t ∈ Rn.

Proof follows from Theorem 6 in this paper and Theorem 1 in [6].

3 Semivariogram asymptotics

For homogeneous random �elds the covariance function R(t) goes to zero at |t| → ∞.
That is why the semivariogram γ(t)→ R(0), when |t| → ∞.

For internally homogeneous random �elds that do not have �nite second moment,
the semivariogram γ(t)→∞ at |t| → ∞, and the covariance function does not exist.

Let further γ(t), t ∈ Rn, be the semivariogram of an internally homogeneous ran-
dom �eld, that has no �nite moments of the second order. Analyze the asymptotics of
the semivariogram γ(t) at t→∞.

Theorem 8. The semivariogram γ(t), t ∈ Rn, of an internally homogeneous random
�eld X(t), t ∈ Rn, can not increase at the in�nity faster than the function At2, where
A is a positive constant, t ∈ Rn.

Proof. Using the variogram de�nition, for any n ∈ N we have:

2γ(t) = M{(X(t)−X(0))2} = M


(

n∑
i=1

[
X

(
it

n

)
−X

(
(i− 1)t

n

)])2
 =

=
n∑
i=1

n∑
j=1

M

{[
X

(
it

n

)
−X

(
(i− 1)t

n

)] [
X

(
jt

n

)
−X

(
(j − 1)t

n

)]}
.

From the Cauchy�Bunyakovsky inequality we get:

2γ(t) ≤

≤
n∑
i=1

n∑
j=1

√√√√M

{[
X

(
it

n

)
−X

(
(i− 1)t

n

)]2
}√√√√M

{[
X

(
jt

n

)
−X

(
(j − 1)t

n

)]2
}

=

= n2 · 2γ
(
t

n

)
.
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Hence,
γ(t)

t2
≤ γ(t/n)

(t/n)2

Denote by A the maximum of the function γ(t)/t2 with t ≥ 1, then γ(t) ≤ At2,
t ≥ 1. From here we get the result of the Theorem.
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