STRUCTURAL DISTRIBUTION ESTIMATION

M. Radavičius

Institute of Data Science and Digital Technologies, Vilnius University $Vilnius,\ LITHUANIA$

e-mail: marijus.radavicius@mii.vu.lt

Abstract

We consider count data models in case of sparse asymptotics. Then a consistent estimator of expected frequencies does not exist for any reasonable metric. Moreover, a plug-in estimator of a structural distribution is also inconsistent. Assuming that some auxiliary information on expected frequencies is available, we construct a consistent estimator of the structural distribution.

Keywords: data science, count data, sparse asymptotics, structural distribution

1 Introduction

Let us consider multinomial sampling scheme

$$Y = (y_1, \ldots, y_n), \quad Y \sim Multinomial_n(N, P), \quad P = (p_1, \ldots, p_n) \in \mathcal{P}_n,$$

in case of sparse asymptotics: $n \to \infty$ and P = P(n), $N = N(n) \to \infty$. Here \mathcal{P}_n is the unit (n-1)-simplex of probabilities P.

Define occupation statistics:

$$V_m = V_m(n) := \sum_{j=1}^n I\{y_j = m\}, \quad m = 0, 1, \dots$$

Here and in the sequel $I\{\cdot\}$ denotes an indicator function.

The statistic V_0 ($V^+ = V^+(n) := n - V_0$) is the number of *empty* (respectively, nonempty) boxes. In linguistics, V^+ (V_0) is the size of a vocabulary or the number of observed (respectively, unseen) word tokens.

Khmaladze (1988) [3] proposed specifications of sparse asymptotics by introducing sampling schemes with *large number of rare events* (LNRE). They are based on the following assumptions:

$$\lim_{n \to \infty} \frac{V_1(n)}{N(n)} > 0,\tag{1}$$

and

$$V^+(n) \to \infty, \quad \lim_{n \to \infty} \frac{V_1(n)}{V^+(n)} > 0.$$
 (2)

Definition. ([3]) A multinomial sampling scheme with *large number of rare events* is said to be in zone (d1) (in zone (d2)) iff condition (1) (respectively, (2)) is satisfied.

Note that (1) implies (2).

In the LNRE model, a consistent estimator of probabilities P does not exist for any reasonable metric [3, 5, 2]. Sometimes much less informative characteristics of a model are sufficient for inference. For instance, if the cell numbering is irrelevant for statistical inference, all useful information about the cell probabilities P is contained in their structural distribution. Structural distributions are widely used in quantitative linguistics.

Klaassen and Mnatsakanov (2000) [5] (cf. Khmaladze & Chitashvili (1989) [4] and Khmaladze (1988) [3]) defined the (empirical) structural distribution G_n as the empirical distribution of the "observations" $N \cdot P$,

$$G_n := \frac{1}{n} \sum_{j=1}^n \delta_{Np_j}. \tag{3}$$

Here and in what follows δ_a denotes the Dirac measure centered at a. The basic assumption is that G_n (weakly) converges to a probability distribution G, i.e.,

$$G_n \stackrel{\mathcal{W}}{\to} G, \quad n \to \infty.$$
 (4)

From the viewpoint of latent distribution modelling it is more natural to reserve the term structural distribution for the distribution G and to refer to G_n as the empirical structural distribution.

Khmaladze (1988) [3] has noticed that a natural (plug-in) estimator of G obtained by substituting y_j for Np_j ($j=1,\ldots,n$) in (3) generally yields an inconsistent estimator. Consistent estimators of structural distribution based on grouping or kernel smoothing are provided by Klaassen & Mnatsakanov (2000) [5], van Es & Kolios (2003) [2] and van Es et al. (2003) [1] under some smoothness conditions, see assumption (U) below.

Assumption (U) ([5, 1]). The sequence of distribution densities

$$f_n(u) := \sum_{j=1}^n n p_j I\left\{\frac{j-1}{n} < u \le \frac{j}{n}\right\}, \quad u \in (0,1],$$

uniformly converges to a continuous distribution density f.

Assumption (U) implies an approximate latent distribution model with a latent variable $Z \sim f$:

$$p_{j} = \int_{(j-1)/n}^{j/n} f(u)du + \frac{\epsilon_{j}}{n}, \ j = 1, \dots, n, \quad \max_{j} |\epsilon_{j}| \to 0.$$

In this study, we deal with a *Poisson sampling* scheme and construct a consistent estimator of structural distribution of expected cell frequencies.

2 Consistent estimator of structural distribution

We consider a sparse hierarchical Poisson (independent) sampling scheme with a sparsity rate τ :

$$[Y|\Lambda] \sim Poisson_n(\tau\Lambda), \quad \Lambda \sim Q^{(n)}, \quad \Lambda := (\lambda_1, \dots, \lambda_n),$$

where $\tau = \tau(n)$ is a positive convergent sequence, the components of $Y = (y_1, \ldots, y_n)$ are mutually independent, the conditional distribution of y_j given Λ is $Poisson(\tau \lambda_j)$, the components of Λ are also mutually independent with $\lambda_j \sim Q_j = Q_j^{(n)}$, $j = 1, \ldots, n$, and $\lambda_+ = n$, $\lambda_+ := \sum_{j=1}^n \lambda_j$.

Actually, we are interested in cases where $\tau \to 0$.

The Poisson sampling scheme is used as an approximation to that of multinomial under the LNRE condition and can be obtained from the latter via Poissonization [2, 1]. When $Q_i \equiv Q_1$ and $\tau \equiv 1$, we get a Poisson mixture model considered in [6].

Similarly as in (3), define

$$G_n := \frac{1}{n} \sum_{j=1}^n Q_j^{(n)} \tag{5}$$

and assume (4), i.e., $G_n \xrightarrow{\mathcal{W}} G$ as $n \to \infty$. The limiting distribution G is called *structural distribution for the rate* τ . In the Poisson mixture model, $G = Q_1$.

Assumptions (P):

(P1) Let $\{\Delta_{\ell}, \ell = 1, \dots, L\}$ be a partition of $\{1, \dots, n\}$ such that $n_{\ell} := |\Delta_{\ell}| \ge n_{min}$ where $\tau n_{min} \to \infty$, and, for some parametric family of distributions $F(\Theta) := \{F_{\theta}, \theta \in \Theta\}, \Theta \subset {}^{k}$,

$$\frac{1}{n_{\ell}} \sum_{j \in \Delta_{\ell}} Q_j^{(n)} \stackrel{\mathcal{W}}{\to} F_{\theta_{\ell}}, \quad \theta_{\ell} \in \Theta,$$

as $n \to \infty$ uniformly with respect to $\ell = 1, ..., L$. Moreover, for some distribution H on Θ ,

$$\frac{1}{n} \sum_{\ell=1}^{L} n_{\ell} \delta_{\theta_{\ell}} \stackrel{\mathcal{W}}{\to} H.$$

- (P2) Distributions of the family $F(\Theta)$ are uniformly continuous in weak topology with respect to $\theta \in \Theta$.
- (P3) There exist estimators $\hat{\theta}_{\ell} := \hat{\theta}(y(j), j \in \Delta_{\ell})$ of θ_{ℓ} which are consistent uniformly over $\{\ell = 1, \ldots, L\}$, i.e., for each $\varepsilon > 0$,

$$\{ \max_{\ell=1,\dots,L} |\hat{\theta}_{\ell} - \theta_{\ell}| > \varepsilon \} \to 0.$$

Proposition. Let assumptions (P) be satisfied. Then

$$\widehat{G} := \sum_{\ell=1}^{L} F_{\widehat{\theta}_{\ell}} \, \frac{n_{\ell}}{n}$$

is a consistent estimator of the structural distribution (for the sparsity rate τ)

$$G = \int_{\Theta} F_{\theta} H(\mathrm{d}\theta).$$

Examples:

(a) Latent distribution model (cf. assumption (U)):

$$\lambda_j = n \int_{(j-1)/n}^{j/n} f(u) du, \quad Q_j^{(n)} = \delta_{\lambda_j}, \quad j = 1, \dots, n,$$

f is a continuous probability density on [0,1].

(b) Poisson regression and related models. When $\lambda_j = \mu(j/n)$, j = 1, ..., n, where $\mu(u), u \in [0, 1]$, is a nonnegative continuous function that integrate to 1, we have a nonparametric Poisson regression model with the explanatory variable $x, x_j := j/n, j = 1, ..., n$. For a negative binomial regression model, one can take $Q_j \sim Gamma(\mu(j/n), \nu)$, where $Gamma(a, \nu)$ denotes Gamma distribution with the mean a and the shape parameter ν , and $\mu(u), u \in [0, 1]$, is the same as above (cf. [8]).

In [7], zero inflated negative binomial regression model and the empirical Bayes method have been applied to estimate the structural distribution of words in Lithuanian texts.

References

- [1] van Es B., Klaassen C.A.J., Mnatsakanov R.M. (2003). Estimating the structural distribution function of cell probabilities. *Austrian Journal of Statistics*, **32**, pp. 85-98.
- [2] van Es B., Kolios S. (2002). Estimating a structural distribution function by grouping. $Mathematics\ ArXiv\ PR/0203080$.
- [3] Khmaladze E.V. (1988). The statistical analysis of a large number of rare events. CWI Report MS-R8804.
- [4] Khmaladze E.V., Chitshvili R.J. (1989). The statistical analysis of a large number of rare events the related problem. *Proc. Tbilisi Mathematical Institute* **92**, pp. 196-245.
- [5] Klaassen C.A.J., Mnatsakanov R.M. (2000). Consistent estimation of the structural distribution function, *Scand. J. Statist.*, **27** (4), pp. 733-746.
- [6] Mnatsakanov R.M., Klaassen C.A.J. (2003). Estimation of the mixing distribution in the Poisson mixture models: uncensored and censored samples. In: Proceedings of Hawaii International Conference on Statistics and Related Fields, Honolulu, Hawaii, June 4-8, 2003, pp. 1-18.

Available at http://www.hicstatistics.org/2003StatsProceedings.

- [7] Piaseckienė K., Radavičius M. (2014). Empirical Bayes estimators of structural distribution of words in Lithuanian texts. *Nonlinear Analysis: Modelling and Control*, **19** (4), pp. 611-625.
- [8] Radavičius M., Samusenko P. (2012). Nonparametric testing for sparse nominal data. *Nonlinear analysis: modeling and control.* **17** (4), pp. 489-501.