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Abstract

We consider count data models in case of sparse asymptotics. Then a consis-
tent estimator of expected frequencies does not exist for any reasonable metric.
Moreover, a plug-in estimator of a structural distribution is also inconsistent.
Assuming that some auxiliary information on expected frequencies is available,
we construct a consistent estimator of the structural distribution.
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1 Introduction

Let us consider multinomial sampling scheme

Y = (y1, . . . , yn), Y ∼Multinomialn(N,P ), P = (p1, . . . , pn) ∈ Pn,

in case of sparse asymptotics: n → ∞ and P = P (n), N = N(n) → ∞. Here Pn is
the unit (n− 1)-simplex of probabilities P .

De�ne occupation statistics :

Vm = Vm(n) :=
n∑
j=1

I{yj = m}, m = 0, 1, . . . .

Here and in the sequel I{·} denotes an indicator function.
The statistic V0 (V + = V +(n) := n − V0) is the number of empty (respectively,

nonempty) boxes. In linguistics, V + (V0) is the size of a vocabulary or the number of
observed (respectively, unseen) word tokens.

Khmaladze (1988) [3] proposed speci�cations of sparse asymptotics by introducing
sampling schemes with large number of rare events (LNRE). They are based on the
following assumptions:

lim
n→∞

V1(n)

N(n)
> 0, (1)

and

V +(n)→∞, lim
n→∞

V1(n)

V +(n)
> 0. (2)

De�nition. ( [3]) A multinomial sampling scheme with large number of rare events
is said to be in zone (d1) (in zone (d2)) i� condition (1) (respectively, (2)) is satis�ed.

Note that (1) implies (2).
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In the LNRE model, a consistent estimator of probabilities P does not exist for
any reasonable metric [3, 5, 2]. Sometimes much less informative characteristics of a
model are su�cient for inference. For instance, if the cell numbering is irrelevant for
statistical inference, all useful information about the cell probabilities P is contained
in their structural distribution. Structural distributions are widely used in quantitative
linguistics.

Klaassen and Mnatsakanov (2000) [5] (cf. Khmaladze & Chitashvili (1989) [4]
and Khmaladze (1988) [3]) de�ned the (empirical) structural distribution Gn as the
empirical distribution of the "observations" N · P ,

Gn :=
1

n

n∑
j=1

δNpj . (3)

Here and in what follows δa denotes the Dirac measure centered at a. The basic
assumption is that Gn (weakly) converges to a probability distribution G, i.e.,

Gn
W→ G, n→∞. (4)

From the viewpoint of latent distribution modelling it is more natural to reserve the
term structural distribution for the distribution G and to refer to Gn as the empirical
structural distribution.

Khmaladze (1988) [3] has noticed that a natural (plug-in) estimator of G obtained
by substituting yj for Npj (j = 1, . . . , n) in (3) generally yields an inconsistent es-
timator. Consistent estimators of structural distribution based on grouping or ker-
nel smoothing are provided by Klaassen & Mnatsakanov (2000) [5], van Es & Ko-
lios (2003) [2] and van Es et al. (2003) [1] under some smoothness conditions, see
assumption (U) below.

Assumption (U) ( [5, 1]). The sequence of distribution densities

fn(u) :=
n∑
j=1

npj I

{
j − 1

n
< u ≤ j

n

}
, u ∈ (0, 1],

uniformly converges to a continuous distribution density f .
Assumption (U) implies an approximate latent distribution model with a latent

variable Z ∼ f :

pj =

∫ j/n

(j−1)/n

f(u)du+
εj
n
, j = 1, . . . , n, max

j
|εj| → 0.

In this study, we deal with a Poisson sampling scheme and construct a consistent
estimator of structural distribution of expected cell frequencies.
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2 Consistent estimator of structural distribution

We consider a sparse hierarchical Poisson (independent) sampling scheme with a spar-
sity rate τ :

[Y |Λ] ∼ Poissonn(τΛ), Λ ∼ Q(n), Λ := (λ1, . . . , λn),

where τ = τ(n) is a positive convergent sequence, the components of Y = (y1, . . . , yn)
are mutually independent, the conditional distribution of yj given Λ is Poisson(τλj),

the components of Λ are also mutually independent with λj ∼ Qj = Q
(n)
j , j = 1, . . . , n,

and λ+ = n, λ+ :=
∑n

j=1 λj.
Actually, we are interested in cases where τ → 0.
The Poisson sampling scheme is used as an approximation to that of multinomial

under the LNRE condition and can be obtained from the latter via Poissonization [2, 1].
When Qj ≡ Q1 and τ ≡ 1, we get a Poisson mixture model considered in [6].

Similarly as in (3), de�ne

Gn :=
1

n

n∑
j=1

Q
(n)
j (5)

and assume (4), i.e., Gn
W→ G as n→∞. The limiting distribution G is called structural

distribution for the rate τ . In the Poisson mixture model, G = Q1.

Assumptions (P):

(P1) Let {∆`, ` = 1, . . . , L} be a partition of {1, . . . , n} such that n` := |∆`| ≥ nmin
where τ nmin →∞, and, for some parametric family of distributions F (Θ) := {Fθ, θ ∈
Θ}, Θ ⊂ k,

1

n`

∑
j∈∆`

Q
(n)
j

W→ Fθ` , θ` ∈ Θ,

as n → ∞ uniformly with respect to ` = 1, . . . , L. Moreover, for some distribution H
on Θ,

1

n

L∑
`=1

n`δθ`
W→ H.

(P2) Distributions of the family F (Θ) are uniformly continuous in weak topology
with respect to θ ∈ Θ.

(P3) There exist estimators θ̂` := θ̂(y(j), j ∈ ∆`) of θ` which are consistent uni-
formly over {` = 1, . . . , L}, i.e., for each ε > 0,

{ max
`=1,...,L

|θ̂` − θ`| > ε} → 0.

Proposition. Let assumptions (P) be satis�ed. Then

Ĝ :=
L∑
`=1

Fθ̂`
n`
n
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is a consistent estimator of the structural distribution (for the sparsity rate τ)

G =

∫
Θ

FθH(dθ).

Examples:
(a) Latent distribution model (cf. assumption (U)):

λj = n

∫ j/n

(j−1)/n

f(u)du, Q
(n)
j = δλj , j = 1, . . . , n,

f is a continuous probability density on [0, 1].

(b) Poisson regression and related models. When λj = µ(j/n), j = 1, . . . , n,
where µ(u), u ∈ [0, 1], is a nonnegative continuous function that integrate to 1,
we have a nonparametric Poisson regression model with the explanatory variable
x, xj := j/n, j = 1, . . . , n. For a negative binomial regression model, one can take
Qj ∼ Gamma(µ(j/n), ν), where Gamma(a, ν) denotes Gamma distribution with the
mean a and the shape parameter ν, and µ(u), u ∈ [0, 1], is the same as above (cf. [8]).

In [7], zero in�ated negative binomial regression model and the empirical Bayes
method have been applied to estimate the structural distribution of words in Lithuanian
texts.
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