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Abstract

The small sample size problem is often encountered in data analysis, espe-
cially for medical applications. It leads to unstable predictions when including or
excluding several observations could change prediction significantly. Prediction
stability visualization and measure were proposed and applied to estimation of
acute pancreatitis severity. A simulation experiments were carried out to study
the stability of ridge-regression, SVM, random forest trained with various subsets.
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1 Introduction

Analysts in medicine face two contradictory problems due to the prohibition on dis-
closure and dissemination of personal data. Usually medical analysts deal with either
large amounts of poorly matched data (health facilities have a different set of equip-
ment with various accuracy, also medical institutions can depersonalize data in different
ways) or small amounts of data (from one medical institution).

When training predictive models on a small data set is required, the analyst deals
with the following challenges:

e Overfitting. With only a few data, the risk to overfit model is higher.

e Outliers. If you have millions of data, a couple of outliers will not be a problem.
But with only a few, they will definitely skew your results.

The work is devoted to the research of the influence of the training set on the pre-
diction results. As example, acute pancreatitis severity classification task is considered.

2 Classification task

Acute pancreatitis severity is classified as mild, moderate or severe. Mild acute pancre-
atitis, the most common form, has no organ failure, local or systemic complications and
usually resolves in the first week. Moderately severe acute pancreatitis is defined by the
presence of transient organ failure, local complications or exacerbation of co-morbid
disease. Severe acute pancreatitis is defined by persistent organ failure [1].

The study was based on a retrospective analysis of 130 cases of acute pancreatitis:
47 cases from “Krasnoyarsk Regional Clinical Hospital” and 83 cases from RSBHI
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“Regional Interdistrict Clinical Hospital no. 20 named after 1.S. Berzon” in the period
from 2015 to 2017.

The task is to estimate of acute pancreatitis severity by using patient clinical ex-
amination data D = {(Z;,v:),7 = 1,...,130}, where 7 = {z!,..., 2?7} is set of features
(Clinical Blood Analysis, Biochemical Blood Analysis, Ultrasound of pancreas, the
results of the examination of the patient) measured in 130 patients, y is acute pan-
creatitis severity determined by medical expert based on patient clinical examination
data defined by integer (1 - mild, 2 - moderate, 3 - severe).

The existing multi-class classification task can be transformed to binary classifi-
cation task. One-vs.-rest strategy involves training a single classifier per class, with
the samples of that class as positive samples and all other samples as negatives. One-
vs.-rest strategy requires the base classifiers to produce a real-valued class probability;
class labels alone can lead to ambiguities, where multiple classes are predicted for a
single observation.

Thus, there are two problems of binary classification:

e 1lvsR: mild acute pancreatitis vs moderate and severe acute pancreatitis.

e 3vsR: severe acute pancreatitis vs mild and moderate acute pancreatitis.

The task 2vsR is excluded, since the moderate class is intermediate that requires
the construction of a more complex separating surface, which is not desirable in small
sample size conditions. For the study, three algorithms were chosen that allow the
construction of simple separating surfaces: Ridge Regression, SVM and Random Forest.

3 Algorithm description

For i-th observation from the initial training set we estimate prediction stability of
classification method using the following algorithm:

1. A set of T training subsets is created such that each subset contains m different
observations and do not contains ¢-th observation:

Sl' = {Si,h ...,Sin},Sin = ((Ejt,k7yjt,k)7k = 1, e, jt,k 75 Z),t = 1, ,T (1)
The m/n ratio can range from 0.5 to (n —2)/(n — 1):

o If m/n is equal to (n —2)/(n — 1), we deal with some analogue of the
leave-one-out cross-validation. Each pair of subsets is distinguished by one
observation. This variant allows to show how one observation can change
classifier prediction and identify specific observations that are similar to
outliers.

e If m/n is smaller than (n — 2)/(n — 1), the impact of sample size can be
estimated. Changes in the classifier predictions trained on subsets with sig-
nificant differences show how much information is contained in observations.
The smaller the changes, the less information the observations contain. And
the greater the changes, the greater the need to increase the training set.
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It is also possible to vary the parameter T (number of subsets):

e If m/nis equal to (n—2)/(n—1) training subsets contain (n-2) observations
and only (n-2) different subsets can be formed. And accordingly, for small
initial training set (number of observations n allows to build n? classifiers
in limited time) it is possible to form a complete set of subsets.

e If ratio m/n is smaller then the number of possible variants becomes much
larger (even for sufficiently small training set size). It means that the number
T should be limited to some reasonable value, and 7' training samples for
i-th observation should be chosen randomly. At the same time, we note
that because the decision rule is tested for stability to a training set of
observations, there is no need to ensure the preservation of the different
classes objects proportion in the training subsets and the initial training
set.

2. T models M;,© = 1,2, ..., T are built using the training subsets S; to obtain matrix
of T predictions P, = {p; ..t = 1,..,T,z = 1,..., Z}, where Z is the number of
classes.

3. A convex hull of a set P; of points is constructed according to the predictions of
the classifiers M;.

If the problem of binary classification is solved, then there is a segment H; containing
all predictions of classifiers for the i-th observation. The beginning of the segment is
the minimum prediction, the end of the segment is the maximum prediction H; =
la;, b;] = [min P;, max P)].

If the problem of multiclass classification is solved, then there is such a convex hull
H; containing all predictions of classifiers (rows of the matrix P;). In mathematics, the
convex hull of a set P, of points in the Euclidean space is the smallest convex set that
contains P;. Computing the convex hull means constructing an unambiguous, efficient
representation of the required convex shape.

Chan’s algorithm [2] is an optimal output-sensitive algorithm to compute the con-
vex hull of a set P; of T points in two- and three-dimensional space. The algorithm
takes O(T'logh) time, where h is the number of vertices of the output (the convex
hull). In the planar case, Chan’s algorithm combines Graham scan algorithm with
time complexity O(T'logT') with Jarvis march algorithm with time complexity O(Th),
in order to obtain an optimal O(T logh) time.

The convex hull allows to display on a two-dimensional graph (for three classes) all
possible classifier predictions based on different training subsets. Figure 1 illustrates
the stability of various classifiers predictions (Ridge Regression, Support Vector Ma-
chine, Random Forest) for new observation. For this observation a set of ' = 500
training subsets (n = 130, m = 117) was generated to fit classifiers. All three machine
learning algorithms do not classify the patient as a severe acute pancreatitis, but there
is ambiguity regarding classification as mild acute pancreatitis. Random forest esti-
mates probability of mild class in the range [0.4,0.7], it is significantly less than the
predictions of the two other algorithms.
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Ridge Regression SVM Random Forest

Figure 1: The stability of predictions for new observation: points are predictions of
classifiers trained on different subsets of the training data, polygon is the convex hull
constructed by these points

4 Experimental results

The proposed visualization algorithm allows to view the spread of predictions for multi-
ple observations on a single graph. Figure 2 shows the stability of classifiers predictions
for set of observations. In general random forest turns out to be a less stable algorithm,
in other words, the convex hull area is larger for most observations. At the same time
there is more compact area of observations with severe acute pancreatitis than in case
of Ridge Regression and SVM. The wide scatter of the some predictions for the Ridge
Regression and Random Forest indicates the presence of outliers. Note that the pre-
dictions scatter for patients with severe acute pancreatitis is higher than in others
cases.
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Figure 2: The stability of predictions for set of observations. The severity estimated by
doctors are marked by the following colors: mild acute pancreatitis (green), moderate
acute pancreatitis (yellow), severe acute pancreatitis (red)
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5 Conclusion

Prediction stability visualization and measure were proposed and applied to estimation
of acute pancreatitis severity. Visualization allows to evaluate the spread of predictions
for multiple observations on a single graph and compare various machine learning
algorithms. This study can be useful to estimate the current dataset quality and to
justify the need dataset increasing.

Also the study shows the need for a combination of several algorithms for the
final forecast because different methods have their advantages and disadvantages for
different observations from various classes.
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