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Abstract

We study the fractional Vasicek model, described by the stochastic di�erential
equation dXt = (α−βXt) dt+γ dB

H
t , where B

H is a fractional Brownian motion.
We assume that the parameters x0 ∈ R, γ > 0 and H ∈ (0, 1) are known and
consider a problem of estimating α and β. Least squares, maximum likelihood
and alternative estimators are constructed, and their asymptotic properties are
established.
Keywords: data science, fractional Vasicek model, stochastic di�erential equa-
tion

1 Introduction

The standard Vasicek model was proposed and studied by O. Vasicek [6] in 1977 for the
purpose of interest rate modeling. It is described by the following stochastic di�erential
equation

dXt = (α− βXt) dt+ γ dWt, (1)

where α, β, γ ∈ R+, and W is a standard Wiener process. From the �nancial point of
view, β corresponds to the speed of recovery, the ratio α/β is the long-term average
interest rate, and γ represents the stochastic volatility. Now the Vasicek model is
widely used not only in �nance, but also in various scienti�c areas such as economics,
biology, physics, chemistry, medicine and environmental studies.

In our research we deal with the fractional Vasicek model of the form

dXt = (α− βXt) dt+ γ dBH
t , (2)

where the Wiener process W is replaced with BH , a fractional Brownian motion with
Hurst index H ∈ (0, 1). This generalization of the model (1) enables one to model
processes with long-range dependence. Such processes appear in �nance, hydrology,
telecommunication, turbulence and image processing.

2 Model description

Let (Ω,F,P) be a complete probability space. Let BH = {BH
t , t ≥ 0} be a fractional

Brownian motion on this probability space, that is, a centered Gaussian process with
covariance function

EBH
t B

H
s =

1

2

(
s2H + t2H − |t− s|2H

)
.
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We consider the continuous (and even H�older up to order H) modi�cation of BH
t that

exists due to the Kolmogorov theorem.
We study the fractional Vasicek model, described by the stochastic di�erential equa-

tion

Xt = x0 +

t∫
0

(α− βXs) ds+ γBH
t , t ≥ 0. (3)

We assume that the parameters x0 ∈ R, γ > 0 and H ∈ (0, 1) are known. Such
assumption can be made due to existence of many methods to estimate parameters
γ and H (for example, see [1] and [3, Remark 2.1]). The main goal is to estimate
parameters α ∈ R and β > 0 by continuous observations of a trajectory of X on the
interval [0, T ].

Following [2], for 0 < s < t ≤ T , de�ne

κH = 2HΓ (3/2−H) Γ (H + 1/2) , λH =
2HΓ(3− 2H)Γ(H + 1/2)

Γ(3/2−H)
,

kH(t, s) = κ−1
H s1/2−H(t− s)1/2−H , wHt = λ−1

H t2−2H .

De�ne also next stochastic processes

MH
t =

∫ t

0

kH(t, s) dBH
s , PH(t) =

1

γ

d

dwHt

∫ t

0

kH(t, s)Xs ds,

St =
1

γ

∫ t

0

kH(t, s) dXs, QH(t) =
1

γ

d

dwHt

∫ t

0

kH(t, s)(α− βXs) ds =
α

γ
− βPH(t).

3 Main results

Let us introduce the least squares estimators of the unknown parameters:

α̂
(1)
T =

(XT −X0)
∫ T

0
X2
t dt−

∫ T
0
Xt dXt

∫ T
0
Xt dt

T
∫ T

0
X2
t dt−

(∫ T
0
Xt dt

)2 , (4)

β̂
(1)
T =

(XT −X0)
∫ T

0
Xt dt− T

∫ T
0
Xt dXt

T
∫ T

0
X2
t dt−

(∫ T
0
Xt dt

)2 . (5)

Theorem 1 ( [5, Theorem 2.1]). Let H ∈ [1
2
, 1). Then the estimators α̂

(1)
T and β̂

(1)
T are

strongly consistent.

Since the discretization and simulation of α̂
(1)
T and β̂

(1)
T when H 6= 1/2 is quite

di�cult, we introduce alternative estimators:

β̂
(2)
T =

(
1

γ2HΓ (2H)T 2

(
T

∫ T

0

X2
t dt−

(∫ T

0

Xt dt

)2
))− 1

2H

, (6)

α̂
(2)
T =

β̂
(2)
T

T

∫ T

0

Xt dt. (7)
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Theorem 2 ( [5, Theorem 2.2]). Let H ∈ (0, 1). Then the estimators α̂
(2)
T and β̂

(2)
T are

strongly consistent.

In applications usually the observations cannot be continuous. The estimators α̂
(2)
T

and β̂
(2)
T can be discretized as follows.

Let h > 0. Assume that a trajectory of X is observed at times tk = kh, k =
0, 1, . . . , n. De�ne

β̂(3)
n =

 1

γ2HΓ (2H)n2

n n−1∑
k=0

X2
kh −

(
n−1∑
k=0

Xkh

)2
− 1

2H

, (8)

α̂(3)
n =

β̂
(3)
n

n

n−1∑
k=0

Xkh. (9)

Theorem 3 ( [5, Theorem 2.3]). Let H ∈ (0, 1). Then the estimators α̂
(3)
n and β̂

(3)
n are

strongly consistent.

Applying the analog of the Girsanov formula for a fractional Brownian motion
(see [2, Theorem 3]), we obtain next likelihood ratio:

ΛH(T ) = exp

{∫ T

0

QH(t) dSt −
1

2

∫ T

0

(QH(t))2 dwHt

}
= exp

{
α

γ
ST − β

∫ T

0

PH(t) dSt −
α2

2γ2
wHT

+
αβ

γ

∫ T

0

PH(t) dwHt −
β2

2

∫ T

0

(PH(t))2 dwHt

}
.

(10)

Now we can construct maximum likelihood estimators.

Theorem 4 ( [4, Theorem 3.1]). Let H > 1/2 and β is known. The MLE for α is

α̂
(4)
T =

ST + β
∫ T

0
PH(t) dwHt

wHT
γ. (11)

It is unbiased, strongly consistent and normal:

T 1−H
(
α̂

(4)
T − α

)
d
=N

(
0, λHγ

2
)
.

Theorem 5 ( [4, Theorem 3.2]). Let H > 1/2 and α is known. The MLE for β is

β̂
(5)
T =

α
γ

∫ T
0
PH(t) dwHt −

∫ T
0
PH(t) dSt∫ T

0
(PH(t))2 dwHt

. (12)

It is strongly consistent and asymptotically normal:

√
T
(
β̂

(5)
T − β

)
d−→N (0, 2β).
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Theorem 6 ( [4, Theorem 3.4]). Let H > 1/2. The MLEs for α and β equal

α̂
(6)
T =

∫ T
0
PH(t) dSt

∫ T
0
PH(t) dwHt − ST

∫ T
0

(PH(t))2 dwHt(∫ T
0
PH(t) dwHt

)2

− wHT
∫ T

0
(PH(t))2 dwHt

γ,

β̂
(6)
T =

wHT
∫ T

0
PH(t) dSt − ST

∫ T
0
PH(t) dwHt(∫ T

0
PH(t) dwHt

)2

− wHT
∫ T

0
(PH(t))2 dwHt

.

(13)

They are consistent and asymptotically normal:

T 1−H
(
α̂

(6)
T − α

)
d−→N (0, λHγ

2),
√
T
(
β̂

(6)
T − β

)
d−→N (0, 2β).

Theorem 7 ( [3, Theorem 4.2]). Let H > 1/2. The vector maximum likelihood esti-

mator
(
α̂

(6)
T , β̂

(6)
T

)
for vector parameter (α, β) is asymptotically normal:T 1−H
(
α̂

(6)
T − α

)
√
T
(
β̂

(6)
T − β

)  d−→ N
([

0
0

]
,

[
λHγ

2 0
0 2β

])
, T →∞, (14)

hence estimators α̂
(6)
T and β̂

(6)
T are asymptotically independent.
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