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Abstract

Bee tra�c is the number of bees moving in a given area in front of a speci�c
hive over a given period of time. Video-based bee tra�c analysis has the potential
to automate the assessment of bee tra�c levels, which, in turn, may lead to the
automation of honeybee colony health assessment. In this paper, we evaluate
several convolutional networks to classify regions of detected motion as BEE or
NO-BEE in videos captured by BeePi, an electronic beehive monitoring system.
We compare the performance of several convolutional neural networks with the
performance of support vector machines and random forests on the same image
dataset.
Keywords: convolutional network, support vector machine, random forest, bee
tra�c, data science

1 Introduction

Many beekeepers watch bee tra�c to ascertain the state of their honey bee colonies,
because bee tra�c carries information on colony behavior. Bee tra�c patterns change
in response to stressors such as failing queens, predatory mites, and airborne toxicants.
While experienced beekeepers can tell changes in bee tra�c levels in stressed colonies,
they may not always be able to determine the exact causes of the changes without
hive inspections. Unfortunately, hive inspections disrupt the life cycle of bee colonies
and put additional stress on the bees. Since beekeepers cannot monitor their hives
continuously due to obvious problems with logistics and fatigue, a consensus is emerging
among researchers and practitioners that video-based analysis of bee tra�c levels can
become an integral component of electronic beehive monitoring and help extract critical
information on colony behavior and phenology without invasive beehive inspections and
considerable transportation costs.
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Figure 1: A sample of images from BEE1; the �rst 3 rows include images classi�ed as
BEE; the last 2 rows consist of images classi�ed as NO-BEE.

In this investigation, we focused on training and evaluating three types of classifers �
convolutional networks (ConvNets) [1], random forests [2], and support-vector machines
(SVM) [3] � to categorize motion regions detected by the video-processing algorithm
of BeePi, a multi-sensor electronic beehive monitoring system we designed and built in
2014 [4], and have been iteratively modifying since then [5].

Once mounted on top of a Langstroth beehive, a BeePi monitor captures a 30-
second 360x240 video every 15 minutes from 8:00 to 21:00 at a frame rate of 25 frames
per second. Each captured video is processed for motion detection. We experimented
with three motion detection algorithms available in OpenCV 3.0.0 (www.opencv.org):
KNN, MOG, and MOG2. Although all three algorithms performed on par, we found
that MOG worked slightly better than either KNN or MOG2, because it was less
sensitive to shadows.

The output of the motion detection module is a set of 32x32 image regions centered
around detected motion points. Fig. 1 gives a sample of detected motion regions. Each
detected motion region is classi�ed by a trained classi�er (e.g., a convolutional neural
network, a random forest, or an SVM) into two classes � BEE or NO-BEE. Thus, for
each video, the video processing algorithm returns an estimate of the number of bees
that moved in a given region in front the beehive over a 30-second period.

2 Image Data

The image dataset for this investigation was obtained from the videos captured by four
BeePi monitors placed on four Langstroth hives with Italian honeybee colonies. Two
monitors were deployed in an apiary in Logan, UT, USA and the other two � in an
apiary in North Logan, UT, USA from April 2017 to September 2017.

We randomly selected 40 videos from June and July 2017. The image dataset
was then obtained by using the MOG algorithm to automatically extract 54,392 32x32
motion regions from the videos (see Fig. 1). We obtained the ground truth classi�cation
by manually labeling the 54,392 32x32 images with two categories - BEE (if it contained
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at least one bee) or NO-BEE (if it contained no bees or only a small part of a bee). The
image dataset from the apiary in Logan, UT was used for model training and testing.
The image dataset from the apiary in North Logan, UT was used for model validation.

We executed the ANOVA and MANOVA analyses on the labeled image dataset
to determine whether its training (class 0), testing (class 1), and validation (class 2)
images are statistically signi�cantly di�erent. We used the following image features
as independent variables in our analysis � contrast, energy, and homogeneity. The
dependent variables were class 0, class 1, and class 2. The MANOVA analysis with 1
degree of freedom gave the Pillai coe�cient of 0.018588, the F value of 107.47, and
Pr(> F ) < 2.2e−16. The ANOVA analysis on contrast gave the mean squared value of
2.3607, the F value of 148.2, and Pr(> F ) < 2e− 16. The ANOVA analysis on energy
gave the mean squared value of 6.237, the F value of 313.2, and Pr(> F ) < 2e − 16.
The ANOVA analysis on homogeneity gave the mean squared value of 0.18043, the F
value of 152.2, and Pr(> F ) < 2e − 16. Since in all cases the P value is < 0.0005,
the three training, testing, and validation datasets are signi�cantly di�erent in terms
of contrast, energy, and homogeneity.

3 Experiments

We performed an exhaustive search for an optimal ConvNet by starting with 1 hidden
layer and 1 max pooling layer and varying the �lter size, the number of hidden layers,
and the number of nodes in each hidden layer. An addition of a hidden layer was
always followed with an addition of a max pooling layer with a kernel size of 2. All
hidden layers used the ReLU activation function and the adam optimizer. The learning
rate was set to 0.001; the loss function was the categorical cross entropy. All models
were trained for 50 epochs with a batch size of 50. Table 1 gives a summary of the
ConvNet architectures constructed with exhaustive search. Increasing the number of
hidden layers above 6 did not improve the results of the best performing 5-hidden layer
model.

Table 1: Best ConvNet models discovered through exhaustive search.
Num. HLs Test Loss Test Accuracy Valid Accuracy

1 0.09 97.93% 50.34%
2 0.03 99.31% 74.58%
3 0.03 99.34% 78.29%
4 0.02 99.46% 81.63%
5 0.03 99.32% 86.57%
6 0.03 99.51% 83.29%

We also designed several ConvNets by hand. The best performing manual ConvNet
had 8 layers: input, output, and 6 hidden layers. The �rst 7 layers use ReLU as their
activation function. The last layer uses sofmax and categorical cross entropy. The �rst
two hidden layers use batch normalization. The last 5 layers use a dropout with a keep
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probability of 0.5. Table 2 gives the confusion matrix of this ConvNet on the validation
dataset.

Table 2: Confusion matrix of best hand-crafted ConvNet.
No-Bee Bee Accuracy

No-Bee 1677 15 99.11%
Bee 1 1809 99.99%
Total Accuracy 99.54%

To obtain some standard machine learning benchmarks, we trained and tested SVMs
and random forests on the same image dataset. All SVMs used the linear kernel with
the max-iter parameter varying from 10 to 1000. The best performing SVM on the
validation dataset had a max-iter of 1000 and an accuracy of 51.13%. The confusion
matrix for this SVM is given in Table 3.

Table 3: Confusion matrix of linear SVM on validation dataset for max-iter 1000.
No-Bee Bee Total Accuracy

No-Bee 822 896 1718 47.84%
Bee 828 982 1810 54.25%
Total Accuracy 51.13%

We trained and valided random forests with 10, 50, 80, and 100 trees. The best
performing random forest on the validation dataset had 50 trees and achieved an ac-
curacy of 93.67%. In summary, random forests performed much better than the SVMs
and all the ConvNet models obtained through exhaustive search but were 6% below
the hand-crafted ConvNet.

Table 4: Confusion matrix of random forest with 50 trees on validation dataset.
No-Bee Bee Total Accuracy

No-Bee 1664 54 1718 96.85%
Bee 169 1641 1810 90.66%
Total Accuracy 93.67%
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