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Abstract

Models of count time series with denumerable states space with conditional
probability distributios generated by Bernoulli trial scheme ( Poisson (model
M1), Geometric (model M2), Negative binomial (model M3), Borel-Tanner
(model M4) ) conditionally nonlinear autoregressive time series are developed.
Consistent estimators for parameters of proposed models based on Markov prop-
erties are constructed. Algorithms for statistical forecasting of count time series
are developed. Results of computer experiments are given.
Keywords: data science, count data, nonlinear autoregression, frequencies-
based estimator

1 Mathematical models of count time series with

denumerable state space and their probability

properties

Count time series are widely used in different applications: genetics, economics, in-
formation protection [1-4]. The case of finite states space is considered in [3]. In this
paper we develop our results from [3] to the case of denumerable states space.

Let in probability space (Ω,F , P ) a time series xt ∈ A = {0, 1, . . . } be defined. We
call it the conditionally nonlinear autoregressive time series if the conditional proba-
bility distribution of the random value xt under its prehistory {xt−1, xt−2, . . .} depends
only on s-prehistory X t−1

t−s = (xt−1, xt−2, . . . , xt−s)′ ∈ As for some depth s ∈ N :

P{xt = j|xt−1 = jt−1, xt−2 = jt−2, . . .} = P{xt = j|X t−1
t−s = Js1} = Q(j; Js1), (1)

where j ∈ A, Js1 ∈ As, Q(·; Js1) is some discrete probability distribution on A for each
Js1 ∈ As. We will assume that this function is parameterized in the following way:

Q(j; Js1) ::= q(j; θ(Js1)), j ∈ A, Js1 ∈ As. (2)

Here q(·; θ) is some fixed (standard) discrete probability distribution with some param-
eter θ ∈ R1, and θ = θ(Js1) is some function describing dependence of this parameter
on the s - prehistory in the form:
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θ = θ(Js1) ::= F

(
m∑
i=1

aiψi(J
s
1)

)
, (3)

where F (·) : R1 → R1 is some khown function; Ψ(u) = (ψ1(u), . . . , ψm(u))′ : As → Rm

are some base functions, ψi(·) : As → R1; a = (ai) ∈ Rm is some unknown column-
vector of parameters.

Consider four special cases of proposed model (1)–(3) for count time series [2]:

q(j; θ) =


θje−θ/j! for model M1

θ(1− θ)j, j ∈ A for model M2,
Cr
r+j−1θ

r(1− θ)j, j ≥ r for model M3,
e−jθrθj−rjj−r−1/(j − r)!, j ≥ r for model M4,

(4)

where r ∈ N is some fixed value.
We use in (3) the function F (z) = ez for the model M1, and the logistic cumulative

distribution function for the models M2 −M4:

F (z) = ez/(1 + ez), z ∈ R1. (5)

Lemma 1. Count time series determined by model (1)–(3) is the denumerable homo-
geneous Markov chain of order s with the states space A and the one-step transition
probabilities:

P{xt = j|X t−1
t−s = Js1} = q(j; θ(Js1)), j ∈ A, Js1 ∈ As, (6)

where q(·) is determined by (4) for the considered special cases.

2 Statistical estimation of model parameters

Give two auxiliary results.

Lemma 2. For model (1)–(3) the conditional mean is (Js1 ∈ As):

µ(Js1) ::= E{xt|X t−1
t−s = Js1} = M(θ(Js1)) =


θ(Js1) for M1,
(1− θ(Js1))/θ(Js1) for M2,
r(1− θ(Js1))/θ(Js1) for M3,
r/(1− θ(Js1)) for M4.

(7)

Lemma 3. For model (1)–(3) the following equations hold:

a′Ψ(Js1) = F−1(M−1(µ(Js1))) =


lnµ(Js1) for model M1,
− lnµ(Js1) for model M2,
− ln(µ(Js1)/r) for model M3,
ln((µ(Js1)− r)/r) for model M4,

(8)

where µ(·) is determined by (7).
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To construct statistical estimator for the unknown vector of parameters a = (ai) ∈
Rm in the models (1)–(5) we will use the approach based on the frequencies-based
estimators proposed in [3].

Introduce the notation: I{C} is the indicator function of the event C;

ν(Js1) =
T∑

t=s+1

I
(
X t−s
t−s = Js1

)
;

B
(
XT

1

)
= {Js1∈As : ν(Js1) > 0} =

{
J
s,(1)
1 , . . ., J

s,(K)
1

}
,

where K ≤ T − s and ν
(
J
s,(i)
1

)
≥ ν

(
J
s,(j)
1

)
for all i < j, (i, j = 1, . . ., K);K0 =

K0 (m,T, s) : N3 → N,m ≤ K0 (m,T, s) ≤ K, is a function nondecreasing w.r.t. m;

B0 =
{
J
s,(1)
1 , J

s,(2)
1 , . . ., J

s,(K0)
1

}
⊂B

(
XT

1

)
with the cardinality |B0| = K0.

Theorem 1. For model (1)–(3) under the observed realization XT
1 =

= (x1, x2, . . . , xT )′ ∈ AT the statistical estimator

µ̂(Js1) =
T∑

t=s+1

xtI(X t−s
t−s = Js1)/ν(Js1)

is a consistent estimator of µ(Js1) for T → +∞.

Theorem 2. For model (1)–(5) under the observed realization XT
1 =

= (x1, x2, . . . , xT )′ ∈ AT the statistical estimator

â = H−1C, (9)

is a consistent estimator of vector parameter a , where H =
∑

Js1∈B0
Ψ(Js1)ΨT (Js1),

C =
∑

Js1∈B0
F−1(M−1(µ(Js1)))Ψ(Js1) =

∑
Js1∈B0


ln(µ̂(Js1))Ψ(Js1) for M1,
− ln(µ̂(Js1))Ψ(Js1) for M2,
− ln(µ̂(Js1)/r)Ψ(Js1) for M3,
ln ((µ̂(Js1)− r) /r) Ψ(Js1) for M4,

and {µ̂(Js1)} are from Theorem 1.

3 Statistical forecasting of count time series

Theorem 3. For the model (1)–(3) under the observed realization XT
1 =

= (x1, x2, . . . , xT )′ ∈ AT and |H| 6= 0 the optimal forecasting statistic for the future
state xT+1 ∈ A that minimizes the mean square error of forecasting [2] is:

x̂T+1 =



⌊
θ̂
⌋

for model M1,⌊
(1− θ̂)/θ̂

⌋
for model M2,⌊

r(1− θ̂)/θ̂
⌋

for model M3,⌊
r/(1− θ̂)

⌋
for model M4,

(10)
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where θ̂ = F
(
â′Ψ(XT

T−s+1)
)
, byc means the floor function of y.

4 Results of computer experiments

Experiments were performed in R computer language. Figure 1 for model M1 illustrates
dependence of the Monte-Carlo estimate of the mean square error (MSE) for estimator
(9) from log2T with M = 100 replications.

Figure 1: Dependence of the mean square error from log2T
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