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Abstract

Models of count time series with denumerable states space with conditional
probability distributios generated by Bernoulli trial scheme ( Poisson (model
M), Geometric (model Ms), Negative binomial (model M3), Borel-Tanner
(model My) ) conditionally nonlinear autoregressive time series are developed.
Consistent estimators for parameters of proposed models based on Markov prop-
erties are constructed. Algorithms for statistical forecasting of count time series
are developed. Results of computer experiments are given.
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1 Mathematical models of count time series with
denumerable state space and their probability
properties

Count time series are widely used in different applications: genetics, economics, in-
formation protection [1-4]. The case of finite states space is considered in [3]. In this
paper we develop our results from [3] to the case of denumerable states space.

Let in probability space (2, F, P) a time series x; € A ={0,1,...} be defined. We
call it the conditionally nonlinear autoregressive time series if the conditional proba-
bility distribution of the random value x; under its prehistory {z;_1,z; o, ...} depends
only on s-prehistory X/~ = (zy_1,24_0,...,2,_,)" € A® for some depth s € N:

P{xt = j|$t—1 = Ji-1,Tt—2 = Ji—2, - - } = P{xt :j|Xtt:sl = Jf} = Q(j; Jf)7 (1)

where j € A, J7 € A%, Q(-; J7) is some discrete probability distribution on A for each
J7 € A®*. We will assume that this function is parameterized in the following way:

Q5 J7) == alg;0(J7)),) € A, Jy € A”. (2)
Here ¢(+; 0) is some fixed (standard) discrete probability distribution with some param-

eter # € R', and 6 = 6(J;}) is some function describing dependence of this parameter
on the s - prehistory in the form:
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0=0(J) =F ( a i (J7) ) (3)

where F'(-) : R — R' is some khown function; ¥(u) = w S Um(u)) A5 — R™
are some base functions, 1;(+) : A* — R!; a = ( ) € R is some unknown column-
vector of parameters.

Consider four special cases of proposed model (1)—(3) for count time series [2]:

Gie=0 /! for model M,
) e1—-0)y,jeA for model My,
a7:0) = Cl, 07 (1—0)y,j>r for model Ms, (4)

e I0r@i=rji=r=t/(j — 1), >1r for model My,

where r € N is some fixed value.
We use in (3) the function F'(z) = e for the model M;, and the logistic cumulative
distribution function for the models My — My:

F(z)=¢€*/(1+¢%),z € R". (5)

Lemma 1. Count time series determined by model (1)-(3) is the denumerable homo-
geneous Markov chain of order s with the states space A and the one-step transition
probabilities:

Pz, = j|Xi=5 = Ji} = a(5:0(J))).j € A, J; € A%, (6)

where q(-) is determined by (4) for the considered special cases.

2 Statistical estimation of model parameters

Give two auxiliary results.

Lemma 2. For model (1)-(3) the conditional mean is (J; € A®):

o) for M,
u(J7) s= Bl X770 = J3} = M(0(J})) = 21—_9;{}}%%&(]}%) ;Z: %z: (7)
r/(1=0(J7)) for M.

Lemma 3. For model (1)-(3) the following equations hold:

In pu(J7) for model M,
N (J ~1(\- s —In p(Jy del M,
AWR) = FR M () = —1E&((€f))/r) ;Z: model %z (8)

In((u(J;) —71)/r) for model My,

where p(-) is determined by (7).
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To construct statistical estimator for the unknown vector of parameters a = (a;) €
R™ in the models (1)-(5) we will use the approach based on the frequencies-based
estimators proposed in [3].

Introduce the notation: I{C'} is the indicator function of the event C’;

T
=Y I(XTE =)

t=s+1

B(X]) ={JjeA*: v(J}) > 0} = {Jls’(l)’."’Jlsv(K)}7

where K < T — s and V(Jf’(i)> > V(Jf’(j)) for all i < 7,(4,5 = 1,...,K); K, =
Ko(m,T,s): N3 = N.m < Ky(m,T,s) < K, is a function nondecreasing w.r.t. m;
By = {Jf’(l), T Jf’(KO)} CB (XT) with the cardinality |Bo| = Kq.

Theorem 1. For model (1)-(3) under the observed realization X{ =

= (21,29, ...,27) € AT the statistical estimator
T
Al = Y wd (X272 = J7)/v(J3)
t=s+1

is a consistent estimator of p(J3) for T — +o0.

Theorem 2. For model (1)-(5) under the observed realization X{ =

= (21,29, ...,27) € AT the statistical estimator
a=H'C, (9)
is a consistent estimator of vector parameter a , where H =3~ . p U(JH)WT(J3),

In(a(J7)) ¥ (J; )S for M,
C = e F M (DN UIR) = X e, —mE EJ%)/T; () ) chZ; ]\]\2
In ((a(J5) —r) [r)¥(J5) for M,

and {(J7)} are from Theorem 1.

3 Statistical forecasting of count time series

Theorem 3. For the model (1)-(3) under the observed realization X{ =
= (21, 29,...,27) € AT and |H| # 0 the optimal forecasting statistic for the future
state xpy1 € A that minimizes the mean square error of forecasting [2] is:

( éJ for model My,
(1—@)/éJ for model M,
r(l—é)/éJ for model Ms,

:r/(l —é)J for model My,

(10)

Tr41 =
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where = F (@ U(XT_,11)), ly] means the floor function of y.

4 Results of computer experiments

Experiments were performed in R computer language. Figure 1 for model M; illustrates
dependence of the Monte-Carlo estimate of the mean square error (MSE) for estimator
(9) from logoT with M = 100 replications.
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Figure 1: Dependence of the mean square error from log,T'
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