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Abstract

Epigenetic observations are represented by the total amount of reads from
a particular cell and the amount of methylated reads, making it reasonable to
model this data by a binomial distribution. There are numerous factors that
can influence probability of success from a particular region. We might also
expect spatial dependence of these probabilities. We incorporate dependence on
the covariates and spatial dependence of methylation probability for observation
from a particular cell by means of a binomial regression model with a latent
Gaussian field. We run Mode Jumping Markov Chain Monte Carlo algorithm
(MJMCMC) across different choices of covariates in order to obtain the joint
posterior distribution of parameters and models. This also allows to find the best
set of covariates to model methylation probability within the genomic region of
interest.
Keywords: Binomial regression, Gaussian field, epigenetic data, data science

1 Introduction

Natural epigenetic variation provides a source for the generation of phenotypic di-
versity, but to understand its contributions to such diversity and its interaction with
genetic variation requires further investigation [4]. Epigenetic changes are crucial for
the development and differentiation of various cell types in an organism, as well as
for normal cellular processes. High-throughput epigenetics experiments have enabled
researchers to measure genome-wide epigenetic profiles. Epigenome-wide association
studies (EWAS) hold promise for the detection of new regulatory mechanisms that
may be susceptible to modification by environmental and lifestyle factors [3]. At the
same time, epigenetic data are often spatially correlated with high noise levels, which
requires careful spatial-temporal statistical modeling.

A major task today is the development of models and statistical methods for linking
epigenetic patterns to genetic and/or environmental variables and interpreting them.
Due to the availability of data, our focus will be on the plant Arabidopsis. [1] previ-
ously analysed Arabidopsis data consisting of epigenetic observations on a set of 10
lines, which were separately propagated in a common environment for 30 generations.
These were compared with two independent lines propagated for only three generations
(because of missing ancestor). Their analysis aimed at global summaries of structures
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Figure 1: Left graph depicts epigenetic observations, where blue dots are total number
of reads, red dots - number of methylated reads, green line corresponds to 2 total
reads distinguishing the inference and the identification data, light blue line gives näıve
probabilities as rates, brown line - probabilities as the posterior mean of the probability
of success parameter from the posterior mode model. Right graph depicts barplots of
RM estimates [2] of marginal inclusion probabilities of the covariates.

but was based on individual and (site-wise) hypothesis testing methods combined with
FDR control methodology.

In this paper we limit ourselves to finding a pattern of signals appearing along
genome that significantly influences methylation probability. We additionally take into
account spatial dependence between the observations as well as the unexplained by
the exogenous variables variability of the epigenetic observations. This is done by
means of applying the MJMCMC algorithm developed by [2] to the Bayesian binomial
regression with a random walk of order one, denoted as RW (1), and independent
Gaussian, denoted as IG, latent processes.

2 Mathematical model

We model the number of methylated reads Yt ∈ {1, ..., nt} per position in the genome
(nucleobase) to be binomially distributed with the number of trials equal to the number
of reads for this position nt ∈ N and probability of success pt ∈ R[0,1] modeled via logit
link to the covariates Xt = {Xt1, ..., XtM}, t ∈ {t1, ..., tT}, where T is the total number
of genomic positions in the addressed genomic region. These covariates might be a
position within a gene, indicator of the underlying genetic structure, and others (our
choice of the covariates is given in Section 3). A latent Gaussian RW (1) process
δt ∈ R is included into the model in order to take into account spatial dependence
of methylation probabilities along the genome, whilst a latent independent Gaussian
process (IG) ζt is used to model the variance of the observations, which is not explained
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by the covariates. This gives the following model formulation:

Pr(Yt = y|nt, pt) =

(
nt
y

)
pyt (1− pt)nt−y, (1)

pt =
eβ0+

∑M
i=1 γiβiXti+δt+ζt

1 + eβ0+
∑M
i=1 γiβiXti+δt+ζt

, (2)

δt = δt−1 + εt, εt ∼ N(0, σ2
ε ), (3)

ζt ∼ N(0, σ2
ζ ), (4)

where βi ∈ R, i ∈ {0, ...,M} are regression coefficients of the covariates of the model
showing whether and in which way the corresponding covariate influences the probabil-
ity of methylation on average, γi ∈ {0, 1}, i ∈ {1, ...,M} are latent indicators, defining
if covariate i is included into the model(γi = 1) or not (γi = 0), εt are the error terms
of RW (1) process δt, which are normally distributed with zero mean and variance σε

2.
Finally, σ2

ζ is the variance term of the IG process ζt. We then put the following priors
for the parameters of the model:

γi ∼ Bernoulli(q), βi|γi ∼ 1(γi = 1)N(µβ, σ
2
β), ψj ∼ log Γ(1, 5 · 10−5), j ∈ {1, 2}, (5)

where the log Gamma distributed ψ1 = log 1
σ2
ε,t

and ψ2 = log 1
σ2
ζ,t

are the scaled hyper-

parameters of the latent models, q = 0.5 is the prior Bernoulli probability of including a
covariate into the model. We perform analysis for the model defined by Equations (1)-
(5) by means of the MJMCMC algorithm [2]. The algorithm is capable of efficiently
moving in the defined model space by means of both accurately exploring the modes of
the probability mass and switching between these modes using large jumps combined
with local optimization and randomization [2].

3 Data description

The addressed data set consists of 1502 observations from the first chromosome of
Arabadopsis plant belonging to five predefined groups of genes. This data set was
divided into 950 observations (with more than 2 reads, see Figure 1) for inference and
552 observations (with less than 3 reads) for model based identification of methylation
probabilities for the positions with the lack of data.

Apart from the observations represented by the methylated versus total amount of
reads we have data on various exogenous variables (covariates). Among these covariates
we address the factor with 3 levels corresponding to whether the location belongs to
CGH, CHH or CHG genetic region, where H is either A, C or T and thus generating
two covariates XCGH and XCHH . The second group of factors indicates whether the
distance to the previous cytosine nucleobase (C) in DNA is 1, 2, 3, 4, 5, from 6 to
20 or greater than 20 inducing six binary covariates XDT1, XDT2, XDT3, XDT4, XDT5,
and XDT6:20. We also include such 1D distance as a continuous covariate XDIST . The
third addressed group of factors corresponds to whether the location belongs to a gene
from a particular group of genes of biological interest. These groups are indicated as
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Ma, Mg and Md, yielding two additional covariates XMa , XMg . Additionally we have a
covariate XCODE indicating if the corresponding nucleobase is in the coding region of
a gene and a covariate XSTRD indicating if the nucleobase is on a ”+” or a ”-” strand.
Finally, we have a continuous covariate XEXPR ∈ R+ representing expression level
for the corresponding gene and interactions between expression levels and gene groups
XEXPR,a, XEXPR,g, XEXPR,d ∈ R+. Thus multiple predictors with respect to a strict
choice of the reference model in our example induced M = 17 potentially important
covariates.

4 Results and discussion

MJMCMC algorithm was run until around 10000 unique models (7.6% of the model
space) were explored. We parallelized the search on 10 CPUs. Default frequencies of
large jumps and corresponding local optimizers from [2] were used. Also the default
radiuses of proposals of global moves and local moves were addressed.

According to the marginal inclusion probabilities reported in the right graph of
Figure 1, only factors XCHG, XCGH and XCODE are clearly significant for inference on
the methylation patterns for the addressed epigenetic region, factors XMa and XMg also
have some significance. In Table 1 one can find marginal posterior model probability
and posterior means of the parameters for the best model in the explored subset of
models from the model space. Based on the best model we carried out computations of

Table 1: Posterior means for the best model in terms of marginal posterior probability
(PMP)

PMP β0 βCHG βCGH βCODE σ2
ε σ2

ζ

0.4276 -8.8255 2.4717 5.2122 6.4240 0.1332 0.8258

methylation probabilities of the locations in both the inference set and the identification
set. Furthermore, we compared the results with the näıve approach based on computing
the proportion of methylated reads, which is currently addressed in the biological
literature as a standard way to evaluate methylation probability of a given nucleobase.
These results are summarized in the left graph of Figure 1. The results show that the
näıve approach should not be trusted in the presence of spatially correlated data and
the corresponding to it probabilities are strongly biased.

In future it would be of interest to obtain additional covariates such as whether the
corresponding nucleobase belongs to a particular part of the non-coding gene region like
promoter, intron or tranposone, and whether the nucleobase is within a CpG island.
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